Pub Date : 2024-11-12DOI: 10.3389/fmars.2024.1319791
Auriane Virgili, Hélder Araújo, Amaia Astarloa Diaz, Ghislain Dorémus, Isabel García-Barón, Catarina Eira, Maite Louzao Arsuaga, Sophie Laran, Camilo Saavedra, Olivier Van Canneyt, Vincent Ridoux
As apex predators, cetaceans play an essential ecological role in marine ecosystems. Fluctuations in the abundance of these top predators linked to human activities can have detrimental consequences for the entire ecosystem. Cetaceans face numerous anthropogenic threats that can have both short and long-term effects. To ensure their conservation, it is necessary to identify changes in seasonal distributions at small and large scales. We aimed to model the seasonal distribution of the most abundant cetacean species in the European Atlantic waters and the Mediterranean Sea by assembling datasets collected over 16 years of surveys using a standardised line-transect protocol. Data were homogenised, detection functions fitted and effective strip widths estimated. We extracted environmental variables integrated over the water column, which we transformed using a principal component analysis (PCA). The dimensions of the PCA were then integrated as explanatory variables in a generalised additive model, taking seasonal and spatial effects into account to predict the seasonal cetacean distribution. We were able to highlight changes in the spatial distribution and/or density of cetaceans throughout the year at a large scale, considering environmental extrapolation areas to predict where environmental variables were sampled during the surveys. For minke (Balaenoptera acutorostrata) and fin (B. physalus) whales, densities varied over the seasons but not the distribution, suggesting a seasonal migration outside the survey areas. For common dolphins (Delphinus delphis), bottlenose dolphins (Tursiops truncatus) and harbour porpoises (Phocoena phocoena), densities varied little but distributions did over the seasons. Finally, pilot whales (Globicephala spp), Risso’s (Grampus griseus) and striped (Stenella coeruleoalba) dolphins showed little seasonal variation in their distribution. Using monthly dynamic environmental variables at depth and PCA dimensions in habitat models, we produced maps of the seasonal distribution of cetaceans in the Mediterranean Sea and the European Atlantic waters to help fill gaps in our knowledge of cetacean distribution.
{"title":"Seasonal distribution of cetaceans in the European Atlantic and Mediterranean waters","authors":"Auriane Virgili, Hélder Araújo, Amaia Astarloa Diaz, Ghislain Dorémus, Isabel García-Barón, Catarina Eira, Maite Louzao Arsuaga, Sophie Laran, Camilo Saavedra, Olivier Van Canneyt, Vincent Ridoux","doi":"10.3389/fmars.2024.1319791","DOIUrl":"https://doi.org/10.3389/fmars.2024.1319791","url":null,"abstract":"As apex predators, cetaceans play an essential ecological role in marine ecosystems. Fluctuations in the abundance of these top predators linked to human activities can have detrimental consequences for the entire ecosystem. Cetaceans face numerous anthropogenic threats that can have both short and long-term effects. To ensure their conservation, it is necessary to identify changes in seasonal distributions at small and large scales. We aimed to model the seasonal distribution of the most abundant cetacean species in the European Atlantic waters and the Mediterranean Sea by assembling datasets collected over 16 years of surveys using a standardised line-transect protocol. Data were homogenised, detection functions fitted and effective strip widths estimated. We extracted environmental variables integrated over the water column, which we transformed using a principal component analysis (PCA). The dimensions of the PCA were then integrated as explanatory variables in a generalised additive model, taking seasonal and spatial effects into account to predict the seasonal cetacean distribution. We were able to highlight changes in the spatial distribution and/or density of cetaceans throughout the year at a large scale, considering environmental extrapolation areas to predict where environmental variables were sampled during the surveys. For minke (<jats:italic>Balaenoptera acutorostrata</jats:italic>) and fin (<jats:italic>B. physalus</jats:italic>) whales, densities varied over the seasons but not the distribution, suggesting a seasonal migration outside the survey areas. For common dolphins (<jats:italic>Delphinus delphis</jats:italic>), bottlenose dolphins (<jats:italic>Tursiops truncatus</jats:italic>) and harbour porpoises (<jats:italic>Phocoena phocoena</jats:italic>), densities varied little but distributions did over the seasons. Finally, pilot whales (<jats:italic>Globicephala</jats:italic> spp), Risso’s (<jats:italic>Grampus griseus</jats:italic>) and striped (<jats:italic>Stenella coeruleoalba</jats:italic>) dolphins showed little seasonal variation in their distribution. Using monthly dynamic environmental variables at depth and PCA dimensions in habitat models, we produced maps of the seasonal distribution of cetaceans in the Mediterranean Sea and the European Atlantic waters to help fill gaps in our knowledge of cetacean distribution.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.3389/fmars.2024.1473053
Amr Fadel, Mohamed M. M. Metwally, Habib Ul Hassan, Adel A. Abdelmageed, Takaomi Arai, Mohammad Z. Ahmed, Mohamed F. A. Abdel-Aziz
Phytobiotics are promising diet alternatives, yet their effectiveness in high-risk aquaculture conditions remains underexplored. Therefore, a 90-day feeding trial was conducted based on dietary supplementation of Nile tilapia, Oreochromis niloticus, with herbal extracts, namely, lemon balm [Melissa officinalis (MOE)], marjoram [Origanum majorana (OME)], and chamomile [Matricaria chamomilla (MCE)] with 0% water change. The treated groups were compared to groups untreated with herbs or control groups [positive control (PC; 0% water change) and negative control (NC; 20% water exchange per day]. Fish were cultured at stocking density (20 fish m-3: 1.8kg of biomass/m3). We conducted a physicochemical analysis of the water and the clinical responses, growth, and immune responses of the fish were evaluated. Furthermore, the herbal-supplemented fish were then challenged with a pathogenic Edwardseilla tarda strain and mortality was monitored. In the 1st and 2nd months, the water parameters were within the permissible limits. After that, a fatally low dissolved oxygen concentration and the highest levels of ammonia, nitrite, nitrate, and pH were recorded during the 3rd month. Blood and immune assays were conducted in the treated groups and control groups. The herbal-treated groups appeared healthy, but during the 3rd month, lethargy and decreased appetite were evident. Generally, the herbal-treated fish showed improved growth performance parameters, survival rates, and resistance against pathogenic bacteria E. tarda, particularly in the OME and MOE-treated groups compared to the positive control group. Finally, phytobiotic supplements were shown to improve fish stress tolerance and immune activation for a certain period under stressful conditions or unchanged water, based on the stocking density, dosages of herbs used, and the extent of deterioration of the water quality.
{"title":"Growth, immunomodulatory, histopathological, and antibacterial effects of phytobiotic-incorporated diets on Oreochromis niloticus in unchanged water","authors":"Amr Fadel, Mohamed M. M. Metwally, Habib Ul Hassan, Adel A. Abdelmageed, Takaomi Arai, Mohammad Z. Ahmed, Mohamed F. A. Abdel-Aziz","doi":"10.3389/fmars.2024.1473053","DOIUrl":"https://doi.org/10.3389/fmars.2024.1473053","url":null,"abstract":"Phytobiotics are promising diet alternatives, yet their effectiveness in high-risk aquaculture conditions remains underexplored. Therefore, a 90-day feeding trial was conducted based on dietary supplementation of Nile tilapia, <jats:italic>Oreochromis niloticus</jats:italic>, with herbal extracts, namely, lemon balm [<jats:italic>Melissa officinalis</jats:italic> (MOE)], marjoram [<jats:italic>Origanum majorana</jats:italic> (OME)], and chamomile [<jats:italic>Matricaria chamomilla</jats:italic> (MCE)] with 0% water change. The treated groups were compared to groups untreated with herbs or control groups [positive control (PC; 0% water change) and negative control (NC; 20% water exchange per day]. Fish were cultured at stocking density (20 fish m<jats:sup>-3</jats:sup>: 1.8kg of biomass/m3). We conducted a physicochemical analysis of the water and the clinical responses, growth, and immune responses of the fish were evaluated. Furthermore, the herbal-supplemented fish were then challenged with a pathogenic <jats:italic>Edwardseilla tarda</jats:italic> strain and mortality was monitored. In the 1<jats:sup>st</jats:sup> and 2<jats:sup>nd</jats:sup> months, the water parameters were within the permissible limits. After that, a fatally low dissolved oxygen concentration and the highest levels of ammonia, nitrite, nitrate, and pH were recorded during the 3<jats:sup>rd</jats:sup> month. Blood and immune assays were conducted in the treated groups and control groups. The herbal-treated groups appeared healthy, but during the 3rd month, lethargy and decreased appetite were evident. Generally, the herbal-treated fish showed improved growth performance parameters, survival rates, and resistance against pathogenic bacteria <jats:italic>E. tarda</jats:italic>, particularly in the OME and MOE-treated groups compared to the positive control group. Finally, phytobiotic supplements were shown to improve fish stress tolerance and immune activation for a certain period under stressful conditions or unchanged water, based on the stocking density, dosages of herbs used, and the extent of deterioration of the water quality.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.3389/fmars.2024.1456205
Guoqiang Liu, Gregory C. Smith, Audry-Anne Gauthier, Charlie Hébert-Pinard, Will Perrie, Maryam Rashed Al Shehhi
The Surface Water Ocean Topography (SWOT) mission significantly improves on the capabilities of current nadir altimeters by enabling two-dimensional mapping. Assimilating this advanced data into high-resolution models poses challenges. To address this, Observing System Simulation Experiments (OSSEs) were conducted to evaluate the effects of both simulated and actual SWOT data on the Regional Ice Ocean Prediction System (RIOPS). This study examines the OSSEs’ design, focusing on the simulated observations and assimilation systems used. The validity of the OSSE designs is confirmed by ensuring the deviations between the assimilation system and the Nature Run (NR) align with discrepancies observed between actual oceanic data and OSSE simulations. The study measures the impact of assimilating SWOT and two nadir altimeters by calculating root mean square forecast error for sea surface height (SSH), temperature, and velocities, along with performing wave-number spectra and coherence analyses of SSH errors. The inclusion of SWOT data is found to reduce RMS SSH errors by 16% and RMS velocity errors by 6% in OSSEs. The SSH error spectrum shows that the most notable improvements are for scales associated with the largest errors in the range of 200-400 km, with a 33% reduction compared to traditional data assimilation. Additionally, spectral coherence analysis shows that the limit of constrained scales is reduced from 280 km for conventional observations to 195 km when SWOT is assimilated as well. This study also represents our first attempt at assimilating early-release SWOT data. A set of Observing System (data denial) experiments using early-release SWOT measurements shows similar (but smaller) responses to OSSE experiments in a two nadir-altimeter context. In a six-altimeter constellation setup, a positive impact of SWOT is also noted, but of significantly diminished amplitude. These findings robustly advocate for the integration of SWOT observations into RIOPS and similar ocean analysis and forecasting frameworks.
{"title":"Assimilation of synthetic and real SWOT observations for the North Atlantic Ocean and Canadian east coast using the regional ice ocean prediction system","authors":"Guoqiang Liu, Gregory C. Smith, Audry-Anne Gauthier, Charlie Hébert-Pinard, Will Perrie, Maryam Rashed Al Shehhi","doi":"10.3389/fmars.2024.1456205","DOIUrl":"https://doi.org/10.3389/fmars.2024.1456205","url":null,"abstract":"The Surface Water Ocean Topography (SWOT) mission significantly improves on the capabilities of current nadir altimeters by enabling two-dimensional mapping. Assimilating this advanced data into high-resolution models poses challenges. To address this, Observing System Simulation Experiments (OSSEs) were conducted to evaluate the effects of both simulated and actual SWOT data on the Regional Ice Ocean Prediction System (RIOPS). This study examines the OSSEs’ design, focusing on the simulated observations and assimilation systems used. The validity of the OSSE designs is confirmed by ensuring the deviations between the assimilation system and the Nature Run (NR) align with discrepancies observed between actual oceanic data and OSSE simulations. The study measures the impact of assimilating SWOT and two nadir altimeters by calculating root mean square forecast error for sea surface height (SSH), temperature, and velocities, along with performing wave-number spectra and coherence analyses of SSH errors. The inclusion of SWOT data is found to reduce RMS SSH errors by 16% and RMS velocity errors by 6% in OSSEs. The SSH error spectrum shows that the most notable improvements are for scales associated with the largest errors in the range of 200-400 km, with a 33% reduction compared to traditional data assimilation. Additionally, spectral coherence analysis shows that the limit of constrained scales is reduced from 280 km for conventional observations to 195 km when SWOT is assimilated as well. This study also represents our first attempt at assimilating early-release SWOT data. A set of Observing System (data denial) experiments using early-release SWOT measurements shows similar (but smaller) responses to OSSE experiments in a two nadir-altimeter context. In a six-altimeter constellation setup, a positive impact of SWOT is also noted, but of significantly diminished amplitude. These findings robustly advocate for the integration of SWOT observations into RIOPS and similar ocean analysis and forecasting frameworks.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.3389/fmars.2024.1473367
Ying Zhou, Zhengjiang Liu, Xinjian Wang, Hui Xie, Juncheng Tao, Jin Wang, Zaili Yang
To address human errors in collision avoidance tasks of remotely controlled ships, this study aims to develop a comprehensive framework for human error analysis within the context of autonomous ships. Firstly, the Hierarchical Task Analysis method is utilized to identify crew collision avoidance tasks associated with the traditional ship, and these tasks are then dissected into different operational stages using the Information Decision Action in a Crew cognitive model. Secondly, a combination of the fault hypothesis method and expert opinions are used to identify potential human error that may occur during collision avoidance operations of remotely controlled ships. Thirdly, an integrated approach is proposed to build a quantitative risk assessment model, which combines Failure Mode and Effects Analysis, Evidential Reasoning, and Belief rules-based Bayesian Network. Then, axiomatic analysis is used to verify the robustness and applicability of the risk assessment model. Finally, based on the results of quantitative risk assessment, specific measures are proposed for enhancing the safety of collision avoidance process of remotely controlled ships. The findings show that uncoordinated interactions of human-computer systems during the decision-making stage are a pivotal factor in the collision avoidance process. Therefore, future design efforts for remote-control centre should prioritize improving the clarity of human-computer interaction interfaces.
{"title":"Human errors analysis for remotely controlled ships during collision avoidance","authors":"Ying Zhou, Zhengjiang Liu, Xinjian Wang, Hui Xie, Juncheng Tao, Jin Wang, Zaili Yang","doi":"10.3389/fmars.2024.1473367","DOIUrl":"https://doi.org/10.3389/fmars.2024.1473367","url":null,"abstract":"To address human errors in collision avoidance tasks of remotely controlled ships, this study aims to develop a comprehensive framework for human error analysis within the context of autonomous ships. Firstly, the Hierarchical Task Analysis method is utilized to identify crew collision avoidance tasks associated with the traditional ship, and these tasks are then dissected into different operational stages using the Information Decision Action in a Crew cognitive model. Secondly, a combination of the fault hypothesis method and expert opinions are used to identify potential human error that may occur during collision avoidance operations of remotely controlled ships. Thirdly, an integrated approach is proposed to build a quantitative risk assessment model, which combines Failure Mode and Effects Analysis, Evidential Reasoning, and Belief rules-based Bayesian Network. Then, axiomatic analysis is used to verify the robustness and applicability of the risk assessment model. Finally, based on the results of quantitative risk assessment, specific measures are proposed for enhancing the safety of collision avoidance process of remotely controlled ships. The findings show that uncoordinated interactions of human-computer systems during the decision-making stage are a pivotal factor in the collision avoidance process. Therefore, future design efforts for remote-control centre should prioritize improving the clarity of human-computer interaction interfaces.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.3389/fmars.2024.1479528
Wenwen Li, Zhengliang Hu
The shipping industry is featured by high carbon emissions. The 2023 IMO Strategy on Reduction of GHG Emissions from Ships sets forth the global goals of shipping decarbonization. Shipping decarbonization involves complicated issues of economy, technology, policy and law etc., and implies the conflicts between economic interests and environmental interests, between individual interests and public interests, between individual States’ interests and international common interests and between current interests and long-term interests. This research suggests that balancing such conflicting interests need to follow the principle of prioritizing the international public environmental interests while taking into account the other interests because protection of environmental interests should be taken as the basic value orientation in shipping decarbonization governance and the principle of collaborating governmental intervention and market mechanisms by reference to the theory on the relationship between government and market in economics. Under the guidance of these principle, by reference to the equilibrium analysis method in economics and following the progressive decision theory in management, this research demonstrates that the main pathways in achieving such balance may include: making strategic plan and basic policy for reducing GHG emissions from ships by the government, implementing economic incentive policies such as tax incentives and fiscal subsidies, implementing ship energy efficiency measures, prudently implementing shipping carbon emissions trading mechanism, accelerating the establishment of alternative marine fuel supply chain, innovating alternative marine fuel technology and ship propulsion technology, and actively engaging in international cooperation.
{"title":"Pathways in the governance of shipping decarbonization from perspective of balancing the conflicting interests","authors":"Wenwen Li, Zhengliang Hu","doi":"10.3389/fmars.2024.1479528","DOIUrl":"https://doi.org/10.3389/fmars.2024.1479528","url":null,"abstract":"The shipping industry is featured by high carbon emissions. The 2023 IMO Strategy on Reduction of GHG Emissions from Ships sets forth the global goals of shipping decarbonization. Shipping decarbonization involves complicated issues of economy, technology, policy and law etc., and implies the conflicts between economic interests and environmental interests, between individual interests and public interests, between individual States’ interests and international common interests and between current interests and long-term interests. This research suggests that balancing such conflicting interests need to follow the principle of prioritizing the international public environmental interests while taking into account the other interests because protection of environmental interests should be taken as the basic value orientation in shipping decarbonization governance and the principle of collaborating governmental intervention and market mechanisms by reference to the theory on the relationship between government and market in economics. Under the guidance of these principle, by reference to the equilibrium analysis method in economics and following the progressive decision theory in management, this research demonstrates that the main pathways in achieving such balance may include: making strategic plan and basic policy for reducing GHG emissions from ships by the government, implementing economic incentive policies such as tax incentives and fiscal subsidies, implementing ship energy efficiency measures, prudently implementing shipping carbon emissions trading mechanism, accelerating the establishment of alternative marine fuel supply chain, innovating alternative marine fuel technology and ship propulsion technology, and actively engaging in international cooperation.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.3389/fmars.2024.1486234
Karoline Holand, Henrik Kalisch
This study evaluates the potential of applying echo state networks (ESN) and autoregression (AR) for dynamic time series prediction of free surface elevation for use in wave energy converters (WECs). The performance of these models is evaluated on time series data at different water depths and wave conditions, including both measured and simulated data with a focus on real-time prediction of ocean waves at a given location without resolving for the surrounding ocean surface, in other words, short-time single-point forecasting. The work presented includes training the models on historical wave data and testing their ability to predict phase-resolved future surface wave patterns for short-time forecasts. Additionally, this study discusses the feasibility of deploying these models for extended time intervals. It provides valuable insights into the trade-offs between accuracy and practicality in the real-time implementation of predictive models for wave elevation, which are needed in wave energy converters to optimise the control algorithm.
{"title":"Real-time ocean wave prediction in time domain with autoregression and echo state networks","authors":"Karoline Holand, Henrik Kalisch","doi":"10.3389/fmars.2024.1486234","DOIUrl":"https://doi.org/10.3389/fmars.2024.1486234","url":null,"abstract":"This study evaluates the potential of applying echo state networks (ESN) and autoregression (AR) for dynamic time series prediction of free surface elevation for use in wave energy converters (WECs). The performance of these models is evaluated on time series data at different water depths and wave conditions, including both measured and simulated data with a focus on real-time prediction of ocean waves at a given location without resolving for the surrounding ocean surface, in other words, short-time single-point forecasting. The work presented includes training the models on historical wave data and testing their ability to predict phase-resolved future surface wave patterns for short-time forecasts. Additionally, this study discusses the feasibility of deploying these models for extended time intervals. It provides valuable insights into the trade-offs between accuracy and practicality in the real-time implementation of predictive models for wave elevation, which are needed in wave energy converters to optimise the control algorithm.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hadal trenches (> 6,000 m water depth) have been revealed as hotspots of organic carbon deposition and mineralization. Here, we present the molecular compositions of porewater dissolved organic matter (DOM) at the “Challenger” Deep (Site MT02; 10,954 m water depth) sediments of the Mariana Trench and the adjacent abyssal plain sediments (Site MT04; 5,800 m water depth) using ultra high-resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). The "Challenger" Deep sediments are characterized by higher abundance of recalcitrant compounds, mainly composed of highly unsaturated compounds (79.7%) and carboxyl-rich alicyclic molecules (57.1%), compared to the abyssal plain sediments (68.3%&51.5%). Principal component analysis suggests that TOC content in the sediments exerts an important control on the molecular characteristics of porewater DOM. It is likely that higher TOC content triggers elevated microbial-mediated organic matter mineralization, thereby forming more refractory organic matter compounds. These results improved the knowledge of the poorly-understood DOM compositions and microbial organic matter degradation in the ultra-deep, extreme ocean environment.
哈达尔海沟(> 6,000米水深)是有机碳沉积和矿化的热点。在此,我们利用超高分辨率傅立叶变换离子回旋共振质谱仪(FT-ICR MS)研究了马里亚纳海沟 "挑战者 "深渊(MT02站点;水深10954米)沉积物和邻近的深海平原沉积物(MT04站点;水深5800米)的孔隙水溶解有机物(DOM)的分子组成。与深海平原沉积物(68.3%&51.5%)相比,"挑战者 "深海沉积物的特点是富含更多的难降解化合物,主要由高度不饱和化合物(79.7%)和富含羧基的脂环族分子(57.1%)组成。主成分分析表明,沉积物中的 TOC 含量对孔隙水 DOM 的分子特征具有重要的控制作用。较高的 TOC 含量可能会引发微生物介导的有机物矿化度升高,从而形成更多的难溶有机物化合物。这些结果增进了人们对超深极端海洋环境中鲜为人知的 DOM 组成和微生物有机物降解的了解。
{"title":"Molecular characteristics of dissolved organic matter in the porewater of \"Challenger\" Deep sediments, Mariana Trench","authors":"Kexin Zheng, Tingcang Hu, Min Luo, Linying Chen, Yulin Qi, Jingqian Xie, Duofu Chen","doi":"10.3389/fmars.2024.1469547","DOIUrl":"https://doi.org/10.3389/fmars.2024.1469547","url":null,"abstract":"Hadal trenches (&gt; 6,000 m water depth) have been revealed as hotspots of organic carbon deposition and mineralization. Here, we present the molecular compositions of porewater dissolved organic matter (DOM) at the “Challenger” Deep (Site MT02; 10,954 m water depth) sediments of the Mariana Trench and the adjacent abyssal plain sediments (Site MT04; 5,800 m water depth) using ultra high-resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). The \"Challenger\" Deep sediments are characterized by higher abundance of recalcitrant compounds, mainly composed of highly unsaturated compounds (79.7%) and carboxyl-rich alicyclic molecules (57.1%), compared to the abyssal plain sediments (68.3%&amp;51.5%). Principal component analysis suggests that TOC content in the sediments exerts an important control on the molecular characteristics of porewater DOM. It is likely that higher TOC content triggers elevated microbial-mediated organic matter mineralization, thereby forming more refractory organic matter compounds. These results improved the knowledge of the poorly-understood DOM compositions and microbial organic matter degradation in the ultra-deep, extreme ocean environment.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.3389/fmars.2024.1430572
Mingyan Lai, Qian Liu, Xiaogu Wang, Dong Sun, Lihua Ran, Xiaohu Li, Chenghao Yang, Bo Lu, Xue-Wei Xu, Chun-Sheng Wang
Most studies on the genesis of polymetallic nodules suggested that nodules in the South China Sea (SCS) are hydrogenetic; however, the complexity and the heterogeneity in hydrology and geochemistry of the SCS might cause different processes of nodule formation, impacting their application and economic value. Microbial-mediated ferromanganese deposition is an important process in nodule formation, but the related microbial potentials are still unclear in the SCS. In this study, we sampled in three typical regions (A, B, and C) of the SCS enriched with polymetallic nodules. Firstly, we investigated environmental and microbial characteristics of the water columns to determine the heterogeneity of upper seawater that directly influenced deep-sea environments. Then, microbial compositions and structures in sediment cores, overlying waters, and nodules (inside and outside) collected within the same region were analyzed for inferring features of nodule environments. Microbial interactions between nodules and surrounding environments were estimated with collinear network analysis. The microbial evidence indicated that geochemical characteristics in deep sea of the SCS that were key to the polymetallic nodule formation were severely affected by organic matter flux from upper water column. The sediment in region A was sub-oxic due to the large input of terrigenous and phytoplankton-derived organic matter, potentially enhancing the overflow of reduced metals from the porewater. The intense microbial interaction between nodules and surface sediment reinforced the origin of metals for the ferromanganese deposition from the sediment (diagenetic type). Contrarily, the sediments in regions B and C were relatively rich in oxygen, and metal ions could be majorly supplied from seawater (hydrogenetic type). The large discrepancy in microbial communities between nodule inside and remaining samples suggested that nodules experienced a long-term formation process, consistent with the feature of hydrogenetic nodules. Overall, distributions and interactions of microbial communities in nodules and surrounding environments significantly contributed to the nodule formation in the SCS by manipulating biogeochemical processes that eventually determined the source and the fate of metal ions.
{"title":"Heterogeneous marine environments diversify microbial-driven polymetallic nodule formation in the South China Sea","authors":"Mingyan Lai, Qian Liu, Xiaogu Wang, Dong Sun, Lihua Ran, Xiaohu Li, Chenghao Yang, Bo Lu, Xue-Wei Xu, Chun-Sheng Wang","doi":"10.3389/fmars.2024.1430572","DOIUrl":"https://doi.org/10.3389/fmars.2024.1430572","url":null,"abstract":"Most studies on the genesis of polymetallic nodules suggested that nodules in the South China Sea (SCS) are hydrogenetic; however, the complexity and the heterogeneity in hydrology and geochemistry of the SCS might cause different processes of nodule formation, impacting their application and economic value. Microbial-mediated ferromanganese deposition is an important process in nodule formation, but the related microbial potentials are still unclear in the SCS. In this study, we sampled in three typical regions (A, B, and C) of the SCS enriched with polymetallic nodules. Firstly, we investigated environmental and microbial characteristics of the water columns to determine the heterogeneity of upper seawater that directly influenced deep-sea environments. Then, microbial compositions and structures in sediment cores, overlying waters, and nodules (inside and outside) collected within the same region were analyzed for inferring features of nodule environments. Microbial interactions between nodules and surrounding environments were estimated with collinear network analysis. The microbial evidence indicated that geochemical characteristics in deep sea of the SCS that were key to the polymetallic nodule formation were severely affected by organic matter flux from upper water column. The sediment in region A was sub-oxic due to the large input of terrigenous and phytoplankton-derived organic matter, potentially enhancing the overflow of reduced metals from the porewater. The intense microbial interaction between nodules and surface sediment reinforced the origin of metals for the ferromanganese deposition from the sediment (diagenetic type). Contrarily, the sediments in regions B and C were relatively rich in oxygen, and metal ions could be majorly supplied from seawater (hydrogenetic type). The large discrepancy in microbial communities between nodule inside and remaining samples suggested that nodules experienced a long-term formation process, consistent with the feature of hydrogenetic nodules. Overall, distributions and interactions of microbial communities in nodules and surrounding environments significantly contributed to the nodule formation in the SCS by manipulating biogeochemical processes that eventually determined the source and the fate of metal ions.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.3389/fmars.2024.1464653
Fernando Aguado Gonzalo, Marcin Stokowski, Katarzyna Koziorowska-Makuch, Przemysław Makuch, Agnieszka Beszczyńska-Möller, Piotr Kukliński, Karol Kuliński
The aim of this study was to decouple and quantify the influence of various biological and physical processes on the structure and variability of the marine carbonate system in the surface waters of the eastern part of the Fram Strait area. This productive region is characterized by its complex hydrographic and sea ice dynamics, providing an ideal set up to study their influence on the variability of the marine carbonate system. Different variables of the marine CO2 system: Total Alkalinity (TA), Dissolved Inorganic Carbon (DIC), partial pressure of CO2 (pCO2), and pH, were analysed together with temperature, salinity, sea ice extension, and chlorophyll a distribution during three consecutive summers (2019, 2020 and 2021), each of them having a unique oceanographic setting. The data revealed that TA and DIC are mostly controlled by the mixing of Atlantic water and sea ice meltwater. The combined effects of organic matter production/remineralization, calcium carbonate precipitation/dissolution, and air/sea CO2 gas exchange cause deviations from this salinity-related mixing. The scale of these deviations and the proportion between the effects observed for TA and DIC suggest interannual shifts in net primary production and dominant phytoplankton species in the area. These shifts are correlated with the sea ice extent and the spread of the Polar Surface Waters in the region. Net primary production is the main factor controlling the temporal and spatial variability of pH and pCO2 in the study area followed by the influence of temperature and, mixing of water masses expressed with salinity (seawater freshening). Surface waters of the Fram Strait area were generally undersaturated in CO2. The lowest pCO2 values, coinciding with an increase in oxygen saturation, were observed in areas of mixing of Arctic and Atlantic-derived water masses. However, as shown for 2021, a reduction of the sea ice extent may induce a westward shift of the chlorophyll maximum, resulting in pCO2 increase and pH decrease in the eastern part. This indicates that sea ice extent and associated spread of Polar Surface Waters may be important factors shaping primary production, and thus pCO2 and pH, in the Fram Strait area.
{"title":"Key processes controlling the variability of the summer marine CO2 system in Fram Strait surface waters","authors":"Fernando Aguado Gonzalo, Marcin Stokowski, Katarzyna Koziorowska-Makuch, Przemysław Makuch, Agnieszka Beszczyńska-Möller, Piotr Kukliński, Karol Kuliński","doi":"10.3389/fmars.2024.1464653","DOIUrl":"https://doi.org/10.3389/fmars.2024.1464653","url":null,"abstract":"The aim of this study was to decouple and quantify the influence of various biological and physical processes on the structure and variability of the marine carbonate system in the surface waters of the eastern part of the Fram Strait area. This productive region is characterized by its complex hydrographic and sea ice dynamics, providing an ideal set up to study their influence on the variability of the marine carbonate system. Different variables of the marine CO<jats:sub>2</jats:sub> system: Total Alkalinity (TA), Dissolved Inorganic Carbon (DIC), partial pressure of CO<jats:sub>2</jats:sub> (pCO<jats:sub>2</jats:sub>), and pH, were analysed together with temperature, salinity, sea ice extension, and chlorophyll <jats:italic>a</jats:italic> distribution during three consecutive summers (2019, 2020 and 2021), each of them having a unique oceanographic setting. The data revealed that TA and DIC are mostly controlled by the mixing of Atlantic water and sea ice meltwater. The combined effects of organic matter production/remineralization, calcium carbonate precipitation/dissolution, and air/sea CO<jats:sub>2</jats:sub> gas exchange cause deviations from this salinity-related mixing. The scale of these deviations and the proportion between the effects observed for TA and DIC suggest interannual shifts in net primary production and dominant phytoplankton species in the area. These shifts are correlated with the sea ice extent and the spread of the Polar Surface Waters in the region. Net primary production is the main factor controlling the temporal and spatial variability of pH and pCO<jats:sub>2</jats:sub> in the study area followed by the influence of temperature and, mixing of water masses expressed with salinity (seawater freshening). Surface waters of the Fram Strait area were generally undersaturated in CO<jats:sub>2</jats:sub>. The lowest pCO<jats:sub>2</jats:sub> values, coinciding with an increase in oxygen saturation, were observed in areas of mixing of Arctic and Atlantic-derived water masses. However, as shown for 2021, a reduction of the sea ice extent may induce a westward shift of the chlorophyll maximum, resulting in pCO<jats:sub>2</jats:sub> increase and pH decrease in the eastern part. This indicates that sea ice extent and associated spread of Polar Surface Waters may be important factors shaping primary production, and thus pCO<jats:sub>2</jats:sub> and pH, in the Fram Strait area.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.3389/fmars.2024.1471312
Peng Zhang, Zongyi Yang, Hong Yu, Wan Tu, Chencheng Gao, Yue Wang
Fish segmentation in underwater videos can be used to accurately determine the silhouette size of fish objects, which provides key information for fish population monitoring and fishery resources survey. Some researchers have utilized underwater optical flow to improve the fish segmentation accuracy of underwater videos. However, the underwater optical flow is not evaluated and screen in existing works, and its predictions are easily disturbed by motion of non-fish. Therefore, in this paper, by analyzing underwater optical flow data, we propose a robust underwater segmentation network, RUSNet, with adaptive screening and fusion of input information. First, to enhance the robustness of the segmentation model to low-quality optical flow inputs, a global optical flow quality evaluation module is proposed for evaluating and aligning the underwater optical flow. Second, a decoder is designed by roughly localizing the fish object and then applying the proposed multidimension attention (MDA) module to iteratively recover the rough localization map from the spatial and edge dimensions of the fish. Finally, a multioutput selective fusion method is proposed in the testing stage, in which the mean absolute error (MAE) of the prediction using a single input is compared with that obtained using multisource input. Then, the information with the highest confidence is selected for predictive fusion, which facilitates the acquisition of the ultimate underwater fish segmentation results. To verify the effectiveness of the proposed model, we trained and evaluated it using a publicly available joint underwater video dataset and a separate DeepFish public dataset. Compared with the advanced underwater fish segmentation model, the proposed model has greater robustness to low-quality background optical flow in the DeepFish dataset, with the mean pixel accuracy (mPA) and mean intersection over union (mIoU) values reaching 98.77% and 97.65%, respectively. On the joint dataset, the mPA and mIoU of the proposed model are 92.61% and 90.12%, respectively, which are 0.72% and 1.21% higher than those of the advanced underwater video object segmentation model MSGNet. The results indicate that the proposed model can adaptively select the input and accurately segment fish in complex underwater scenes, which provides an effective solution for investigating fishery resources.
{"title":"RUSNet: Robust fish segmentation in underwater videos based on adaptive selection of optical flow","authors":"Peng Zhang, Zongyi Yang, Hong Yu, Wan Tu, Chencheng Gao, Yue Wang","doi":"10.3389/fmars.2024.1471312","DOIUrl":"https://doi.org/10.3389/fmars.2024.1471312","url":null,"abstract":"Fish segmentation in underwater videos can be used to accurately determine the silhouette size of fish objects, which provides key information for fish population monitoring and fishery resources survey. Some researchers have utilized underwater optical flow to improve the fish segmentation accuracy of underwater videos. However, the underwater optical flow is not evaluated and screen in existing works, and its predictions are easily disturbed by motion of non-fish. Therefore, in this paper, by analyzing underwater optical flow data, we propose a robust underwater segmentation network, RUSNet, with adaptive screening and fusion of input information. First, to enhance the robustness of the segmentation model to low-quality optical flow inputs, a global optical flow quality evaluation module is proposed for evaluating and aligning the underwater optical flow. Second, a decoder is designed by roughly localizing the fish object and then applying the proposed multidimension attention (MDA) module to iteratively recover the rough localization map from the spatial and edge dimensions of the fish. Finally, a multioutput selective fusion method is proposed in the testing stage, in which the mean absolute error (MAE) of the prediction using a single input is compared with that obtained using multisource input. Then, the information with the highest confidence is selected for predictive fusion, which facilitates the acquisition of the ultimate underwater fish segmentation results. To verify the effectiveness of the proposed model, we trained and evaluated it using a publicly available joint underwater video dataset and a separate DeepFish public dataset. Compared with the advanced underwater fish segmentation model, the proposed model has greater robustness to low-quality background optical flow in the DeepFish dataset, with the mean pixel accuracy (mPA) and mean intersection over union (mIoU) values reaching 98.77% and 97.65%, respectively. On the joint dataset, the mPA and mIoU of the proposed model are 92.61% and 90.12%, respectively, which are 0.72% and 1.21% higher than those of the advanced underwater video object segmentation model MSGNet. The results indicate that the proposed model can adaptively select the input and accurately segment fish in complex underwater scenes, which provides an effective solution for investigating fishery resources.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}