首页 > 最新文献

Frontiers in Materials最新文献

英文 中文
A preliminary investigation of incorporating cellulose nanocrystals into engineered cementitious composites 在工程水泥基复合材料中加入纤维素纳米晶体的初步研究
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.3389/fmats.2024.1443517
Xiao Yang, Jian-Guo Ren, Lian-Xu Li, Zhen Wang, Qi-Hang Zhang, Qiao-Ling Liu
This paper explored the effects of various amounts of cellulose nanocrystals (CNCs), namely 0%, 0.1%, 0.2%, and 0.4% of binder weight, on the rheology, pore structure, mechanical properties, and 3D distribution of fibers of an engineered cementitious composite (ECC). The two rheological parameters, namely the yield stress and plastic viscosity, of the matrix containing the CNCs increased. Low-field nuclear magnetic resonance (LF-NMR) analysis, as a non-destructive method, proved that the addition of the CNCs to the ECC could reduce the porosity of the material and refine its pore size distribution. The addition of the CNCs enhanced the compressive strength of the ECC by 19.6%–33%. The results from uniaxial tensile tests showed incorporating the CNCs into the matrix could enhance the initial cracking strength and ultimate tensile strength of the ECC but reduce their tensile strain-hardening capacity. The optimal addition of 0.1% CNCs could effectively offset the decrease in strength due to increasing FA content, and maintain a relatively high level of tensile strain capacity of over 3%. Finally, X-ray micro-computed tomography (micro-CT) with ORS Dragonfly software was employed to reconstruct 3D images of the ECC to present the improvement in the fiber distribution due to the addition of the CNCs.
本文探讨了不同用量的纤维素纳米晶(CNCs)(即占粘结剂重量的 0%、0.1%、0.2% 和 0.4%)对工程水泥基复合材料(ECC)的流变学、孔隙结构、力学性能和纤维三维分布的影响。含有 CNC 的基体的两个流变参数(即屈服应力和塑性粘度)均有所增加。低场核磁共振(LF-NMR)分析作为一种非破坏性方法,证明了在 ECC 中添加氯化萘可降低材料的孔隙率并细化其孔径分布。添加 CNC 后,ECC 的抗压强度提高了 19.6%-33%。单轴拉伸试验结果表明,在基体中加入氯化萘可提高 ECC 的初始开裂强度和极限拉伸强度,但会降低其拉伸应变硬化能力。最佳添加量为 0.1% 的氯化萘可有效抵消因 FA 含量增加而导致的强度下降,并保持相对较高的拉伸应变能力(超过 3%)。最后,利用 ORS Dragonfly 软件进行了 X 射线显微计算机断层扫描(micro-CT),重建了 ECC 的三维图像,展示了添加 CNC 后纤维分布的改善情况。
{"title":"A preliminary investigation of incorporating cellulose nanocrystals into engineered cementitious composites","authors":"Xiao Yang, Jian-Guo Ren, Lian-Xu Li, Zhen Wang, Qi-Hang Zhang, Qiao-Ling Liu","doi":"10.3389/fmats.2024.1443517","DOIUrl":"https://doi.org/10.3389/fmats.2024.1443517","url":null,"abstract":"This paper explored the effects of various amounts of cellulose nanocrystals (CNCs), namely 0%, 0.1%, 0.2%, and 0.4% of binder weight, on the rheology, pore structure, mechanical properties, and 3D distribution of fibers of an engineered cementitious composite (ECC). The two rheological parameters, namely the yield stress and plastic viscosity, of the matrix containing the CNCs increased. Low-field nuclear magnetic resonance (LF-NMR) analysis, as a non-destructive method, proved that the addition of the CNCs to the ECC could reduce the porosity of the material and refine its pore size distribution. The addition of the CNCs enhanced the compressive strength of the ECC by 19.6%–33%. The results from uniaxial tensile tests showed incorporating the CNCs into the matrix could enhance the initial cracking strength and ultimate tensile strength of the ECC but reduce their tensile strain-hardening capacity. The optimal addition of 0.1% CNCs could effectively offset the decrease in strength due to increasing FA content, and maintain a relatively high level of tensile strain capacity of over 3%. Finally, X-ray micro-computed tomography (micro-CT) with ORS Dragonfly software was employed to reconstruct 3D images of the ECC to present the improvement in the fiber distribution due to the addition of the CNCs.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"39 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size dependence on shear fatigue and fracture behavior of ball grid array structure Cu/Sn–3.0Ag–0.5Cu/Cu solder joints under current stressing 电流应力下球栅阵列结构 Cu/Sn-3.0Ag-0.5Cu/Cu 焊点的剪切疲劳和断裂行为与尺寸有关
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.3389/fmats.2024.1452773
Bo Wang, Wangyun Li, Kailin Pan, Wei Huang, Yubing Gong
The shear fatigue performance and fracture behavior of microscale ball grid array (BGA) structure Cu/Sn-3.0Ag-0.5Cu/Cu solder joints with different heights (500 μm, 300 μm, and 100 μm) with increasing current density (from 6.0 × 103 to 1.1 × 104 A/cm2) were investigated systematically. The results reveal that the fatigue life of solder joints decreases with increasing current density, while increasing with decreasing the height of solder joints. The location of fatigue fracture shifts from solder matrix to the interface between solder and intermetallic compound (IMC) layer for those with heights of 500 μm and 300 μm with increasing current density, in which the interfacial fracture is triggered by current crowding at the groove of the IMC layer and driven by mismatch strain at the solder/IMC layer interface; while, the fatigue fracture all occurs in the solder matrix for solder joints with a height of 100 μm. Moreover, the fracture in solder matrix of solder joints with heights of 500 μm and 300 μm exhibits an arc-shape fracture path, while a linear path for those with a height of 100 μm. These fracture paths are consistent with the concentration distribution region of plastic strain energy in solder joints.
系统研究了不同高度(500 μm、300 μm 和 100 μm)的微尺度球栅阵列(BGA)结构 Cu/Sn-3.0Ag-0.5Cu/Cu 焊点在电流密度(从 6.0 × 103 到 1.1 × 104 A/cm2)增加时的剪切疲劳性能和断裂行为。结果表明,焊点的疲劳寿命随着电流密度的增加而降低,但随着焊点高度的降低而增加。随着电流密度的增加,高度为 500 μm 和 300 μm 的焊点的疲劳断裂位置从焊料基体转移到焊料和金属间化合物 (IMC) 层的界面,其中界面断裂是由 IMC 层沟槽处的电流拥挤引发的,并由焊料/IMC 层界面的错配应变驱动;而高度为 100 μm 的焊点的疲劳断裂全部发生在焊料基体中。此外,高度为 500 μm 和 300 μm 的焊点在焊料基体中的断裂路径呈弧形,而高度为 100 μm 的焊点的断裂路径呈线形。这些断裂路径与焊点塑性应变能的集中分布区域一致。
{"title":"Size dependence on shear fatigue and fracture behavior of ball grid array structure Cu/Sn–3.0Ag–0.5Cu/Cu solder joints under current stressing","authors":"Bo Wang, Wangyun Li, Kailin Pan, Wei Huang, Yubing Gong","doi":"10.3389/fmats.2024.1452773","DOIUrl":"https://doi.org/10.3389/fmats.2024.1452773","url":null,"abstract":"The shear fatigue performance and fracture behavior of microscale ball grid array (BGA) structure Cu/Sn-3.0Ag-0.5Cu/Cu solder joints with different heights (500 μm, 300 μm, and 100 μm) with increasing current density (from 6.0 × 10<jats:sup>3</jats:sup> to 1.1 × 10<jats:sup>4</jats:sup> A/cm<jats:sup>2</jats:sup>) were investigated systematically. The results reveal that the fatigue life of solder joints decreases with increasing current density, while increasing with decreasing the height of solder joints. The location of fatigue fracture shifts from solder matrix to the interface between solder and intermetallic compound (IMC) layer for those with heights of 500 μm and 300 μm with increasing current density, in which the interfacial fracture is triggered by current crowding at the groove of the IMC layer and driven by mismatch strain at the solder/IMC layer interface; while, the fatigue fracture all occurs in the solder matrix for solder joints with a height of 100 μm. Moreover, the fracture in solder matrix of solder joints with heights of 500 μm and 300 μm exhibits an arc-shape fracture path, while a linear path for those with a height of 100 μm. These fracture paths are consistent with the concentration distribution region of plastic strain energy in solder joints.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"10 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The research progress and Hotspot analysis of polymer cement mortar based on bibliometrics 基于文献计量学的聚合物水泥砂浆研究进展与热点分析
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-03 DOI: 10.3389/fmats.2024.1401816
Peng Wang, Fei Wang, Mingquan Ma
Ordinary cement mortar is commonly used in building engineering due to its high strength, affordability, and easy access to raw materials. However, it suffers from high shrinkage and poor impermeability, which result in reduced building service life and significant carbon dioxide emissions during production. Polymer additives have been found to enhance the mechanical properties of cement mortar, leading to increased interest in polymer cement mortar by researchers. This study collected and analyzed 420 papers published between 1995 and 2023 in the field of polymer cement mortar. The analysis included publication trends, author cooperation networks, national cooperation networks, published journals, co-citation of references, and keywords. The findings reveal a rapid publication growth from 2018 to 2023, with China making the most significant contribution in this field. Among the scholars, Ru Wang has published the highest number of articles in the field of polymer cement mortar, while Ohama’s papers have been cited the most. The journal with the most articles is Construction and Building Materials. Research in polymer cement mortar focuses on mechanical properties, performance, hydration process, microstructure, and other related aspects. The reinforcement effect of polymer-modified cement mortar on reinforced concrete and applying superabsorbent polymer-modified cement mortar and polymer fiber in cement mortar have emerged as recent research frontiers. This study can help scholars quickly identify high-quality references and research frontiers in the field of polymer cement mortar while also providing research directions and ideas.
普通水泥砂浆因其强度高、价格低廉、原材料易得而在建筑工程中得到普遍使用。然而,水泥砂浆的收缩率高、抗渗性差,导致建筑使用寿命缩短,并在生产过程中排放大量二氧化碳。研究发现,聚合物添加剂可提高水泥砂浆的机械性能,因此研究人员对聚合物水泥砂浆的兴趣日益浓厚。本研究收集并分析了 1995 年至 2023 年间发表的 420 篇聚合物水泥砂浆领域的论文。分析内容包括发表趋势、作者合作网络、国家合作网络、发表期刊、参考文献共引和关键词。研究结果显示,从2018年到2023年,中国在该领域的论文发表量增长迅速,贡献最大。学者中,王茹在聚合物水泥砂浆领域发表的文章数量最多,而Ohama的论文被引用次数最多。发表文章最多的期刊是《建筑与建材》。聚合物水泥砂浆的研究主要集中在力学性能、性能、水化过程、微观结构及其他相关方面。聚合物改性水泥砂浆对钢筋混凝土的加固作用、超强吸水性聚合物改性水泥砂浆和聚合物纤维在水泥砂浆中的应用成为近年来的研究前沿。本研究可以帮助学者快速确定聚合物水泥砂浆领域的高质量参考文献和研究前沿,同时也提供了研究方向和思路。
{"title":"The research progress and Hotspot analysis of polymer cement mortar based on bibliometrics","authors":"Peng Wang, Fei Wang, Mingquan Ma","doi":"10.3389/fmats.2024.1401816","DOIUrl":"https://doi.org/10.3389/fmats.2024.1401816","url":null,"abstract":"Ordinary cement mortar is commonly used in building engineering due to its high strength, affordability, and easy access to raw materials. However, it suffers from high shrinkage and poor impermeability, which result in reduced building service life and significant carbon dioxide emissions during production. Polymer additives have been found to enhance the mechanical properties of cement mortar, leading to increased interest in polymer cement mortar by researchers. This study collected and analyzed 420 papers published between 1995 and 2023 in the field of polymer cement mortar. The analysis included publication trends, author cooperation networks, national cooperation networks, published journals, co-citation of references, and keywords. The findings reveal a rapid publication growth from 2018 to 2023, with China making the most significant contribution in this field. Among the scholars, Ru Wang has published the highest number of articles in the field of polymer cement mortar, while Ohama’s papers have been cited the most. The journal with the most articles is Construction and Building Materials. Research in polymer cement mortar focuses on mechanical properties, performance, hydration process, microstructure, and other related aspects. The reinforcement effect of polymer-modified cement mortar on reinforced concrete and applying superabsorbent polymer-modified cement mortar and polymer fiber in cement mortar have emerged as recent research frontiers. This study can help scholars quickly identify high-quality references and research frontiers in the field of polymer cement mortar while also providing research directions and ideas.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"60 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the structural, electronic, and optical properties of the novel double perovskite K2AgBiI6 using DFT 利用 DFT 研究新型双包晶石 K2AgBiI6 的结构、电子和光学特性
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-03 DOI: 10.3389/fmats.2024.1448400
Mohamed Karouchi, Abdelkebir Ejjabli, Omar Bajjou, Jamal Guerroum, Mohamed Al-Hattab, Mohamed A. Basyooni-M. Kabatas, Khalid Rahmani, Youssef Lachtioui
In this groundbreaking study, we unveil the remarkable structural, electronic, and optical Properties of the newly discovered double perovskite material, K2AgBiI6, presenting a paradigm shift in materials science. The unique crystal structure and diverse atomic interactions inherent in this double perovskite make it an up-and-coming candidate for various technological applications, particularly in photovoltaics; owing to its stability and resistance to heat and humidity, we aim to shed light on the extraordinary potential of K2AgBiI6. Our study provides valuable insights for researchers engaged in tailored material design. We anticipate that the exceptional electronic properties of K2AgBiI6 will not only redefine the boundaries of materials engineering but also catalyze unprecedented advances in sustainable technology. Employing the powerful computational tool CASTEP, we conducted detailed electronic structure calculations within the framework of Density Functional Theory (DFT) to unravel the electronic properties of the double perovskite K2AgBiI6. Our investigation thoroughly explored structural properties, band structure, total density of states (DOS), and partial density of states (PDOS). Furthermore, we systematically examined the influence of different exchange-correlation functionals, including LDA, GGA, and m-GGA, on the electronic and optical features of the material by presenting a comparative analysis of these approximations.
在这项开创性的研究中,我们揭示了新发现的双包晶石材料 K2AgBiI6 的非凡结构、电子和光学特性,为材料科学带来了范式转变。K2AgBiI6 具有独特的晶体结构和多样化的原子相互作用,使其成为各种技术应用(尤其是光伏技术)的新兴候选材料;由于其稳定性和耐热性及耐湿性,我们旨在揭示 K2AgBiI6 的非凡潜力。我们的研究为从事定制材料设计的研究人员提供了宝贵的见解。我们预计,K2AgBiI6 的优异电子特性不仅将重新定义材料工程的界限,还将推动可持续技术取得前所未有的进步。我们利用功能强大的计算工具 CASTEP,在密度泛函理论(DFT)框架内进行了详细的电子结构计算,以揭示双包晶石 K2AgBiI6 的电子特性。我们的研究深入探讨了结构特性、能带结构、总态密度(DOS)和部分态密度(PDOS)。此外,我们还系统地研究了不同交换相关函数(包括 LDA、GGA 和 m-GGA)对材料电子和光学特性的影响,并对这些近似值进行了比较分析。
{"title":"Investigating the structural, electronic, and optical properties of the novel double perovskite K2AgBiI6 using DFT","authors":"Mohamed Karouchi, Abdelkebir Ejjabli, Omar Bajjou, Jamal Guerroum, Mohamed Al-Hattab, Mohamed A. Basyooni-M. Kabatas, Khalid Rahmani, Youssef Lachtioui","doi":"10.3389/fmats.2024.1448400","DOIUrl":"https://doi.org/10.3389/fmats.2024.1448400","url":null,"abstract":"In this groundbreaking study, we unveil the remarkable structural, electronic, and optical Properties of the newly discovered double perovskite material, K<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub>, presenting a paradigm shift in materials science. The unique crystal structure and diverse atomic interactions inherent in this double perovskite make it an up-and-coming candidate for various technological applications, particularly in photovoltaics; owing to its stability and resistance to heat and humidity, we aim to shed light on the extraordinary potential of K<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub>. Our study provides valuable insights for researchers engaged in tailored material design. We anticipate that the exceptional electronic properties of K<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub> will not only redefine the boundaries of materials engineering but also catalyze unprecedented advances in sustainable technology. Employing the powerful computational tool CASTEP, we conducted detailed electronic structure calculations within the framework of Density Functional Theory (DFT) to unravel the electronic properties of the double perovskite K<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub>. Our investigation thoroughly explored structural properties, band structure, total density of states (DOS), and partial density of states (PDOS). Furthermore, we systematically examined the influence of different exchange-correlation functionals, including LDA, GGA, and m-GGA, on the electronic and optical features of the material by presenting a comparative analysis of these approximations.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"39 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lifetime prediction of copper pillar bumps based on fatigue crack propagation 基于疲劳裂纹扩展的铜柱凸块寿命预测
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.3389/fmats.2024.1470365
Yuege Zhou, Qingsheng Liu, Tengfei Ma, Shupeng Li, Xinyu Zhang
2.5D package realizes the interconnection of multiple dies through Si interposers, which can greatly improve the data transmission rate between dies. However, its multi-layer structure and high package density also place higher reliability requirements on the interconnection structure. As a key structure for interconnection, copper pillar bump (CPB) has small size, high heat generation, and thermal mismatch with silicon chips. The thermal fatigue failure of CPB has gradually become the main failure mode in 2.5D package. Due to the small size of CPB and the large proportion of intermetallic compound (IMC) layers, the lifetime prediction method of spherical solder joints is no longer suitable for CPB. Therefore, it is necessary to establish a fatigue lifetime prediction method for CPB. This paper establishes a method for obtaining the lifetime of CPB based on the basic theory of fatigue crack propagation. Using the extended finite element simulation method, the crack propagation lifetime of CPB under thermal cycling was obtained, and the influence of different IMC layer thickness on the fatigue lifetime of CPB was analyzed. The results indicated that the fatigue lifetime of cracks propagating in the IMC layer is lower than that of cracks propagating in the solder layer, and an increase in the thickness of the IMC layer leads to a significant decrease in the fatigue lifetime of CPB. The lifetime prediction method for CPB proposed in this paper can be used for reliability evaluation of 2.5D package, and has certain reference value for the study of the lifetime of CPB.
2.5D 封装通过硅插芯实现了多个芯片的互连,可大大提高芯片间的数据传输速率。然而,其多层结构和高封装密度也对互连结构的可靠性提出了更高的要求。作为互连的关键结构,铜柱凸块(CPB)具有体积小、发热量大、与硅芯片热不匹配等特点。CPB 的热疲劳失效已逐渐成为 2.5D 封装的主要失效模式。由于 CPB 体积小、金属间化合物(IMC)层比例大,球形焊点的寿命预测方法已不再适用于 CPB。因此,有必要建立一种适用于 CPB 的疲劳寿命预测方法。本文基于疲劳裂纹扩展的基本理论,建立了一种获得 CPB 寿命的方法。利用扩展有限元模拟方法,得到了热循环条件下 CPB 的裂纹扩展寿命,并分析了不同 IMC 层厚度对 CPB 疲劳寿命的影响。结果表明,在 IMC 层中传播的裂纹的疲劳寿命低于在焊料层中传播的裂纹的疲劳寿命,而 IMC 层厚度的增加会导致 CPB 疲劳寿命的显著降低。本文提出的 CPB 寿命预测方法可用于 2.5D 封装的可靠性评估,对研究 CPB 的寿命具有一定的参考价值。
{"title":"Lifetime prediction of copper pillar bumps based on fatigue crack propagation","authors":"Yuege Zhou, Qingsheng Liu, Tengfei Ma, Shupeng Li, Xinyu Zhang","doi":"10.3389/fmats.2024.1470365","DOIUrl":"https://doi.org/10.3389/fmats.2024.1470365","url":null,"abstract":"2.5D package realizes the interconnection of multiple dies through Si interposers, which can greatly improve the data transmission rate between dies. However, its multi-layer structure and high package density also place higher reliability requirements on the interconnection structure. As a key structure for interconnection, copper pillar bump (CPB) has small size, high heat generation, and thermal mismatch with silicon chips. The thermal fatigue failure of CPB has gradually become the main failure mode in 2.5D package. Due to the small size of CPB and the large proportion of intermetallic compound (IMC) layers, the lifetime prediction method of spherical solder joints is no longer suitable for CPB. Therefore, it is necessary to establish a fatigue lifetime prediction method for CPB. This paper establishes a method for obtaining the lifetime of CPB based on the basic theory of fatigue crack propagation. Using the extended finite element simulation method, the crack propagation lifetime of CPB under thermal cycling was obtained, and the influence of different IMC layer thickness on the fatigue lifetime of CPB was analyzed. The results indicated that the fatigue lifetime of cracks propagating in the IMC layer is lower than that of cracks propagating in the solder layer, and an increase in the thickness of the IMC layer leads to a significant decrease in the fatigue lifetime of CPB. The lifetime prediction method for CPB proposed in this paper can be used for reliability evaluation of 2.5D package, and has certain reference value for the study of the lifetime of CPB.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"297 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic properties of CO2-cured foam concrete at different loading rates: Effect of the foam admixtures and addition of polypropylene fiber 不同加载速率下二氧化碳养护泡沫混凝土的动态特性:泡沫外加剂和聚丙烯纤维添加量的影响
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.3389/fmats.2024.1445848
Yunlin Liu, Shangwei Huo, Jiali Fu, Tingbo Shi, Dong Guo
This paper investigated the dynamic mechanical properties of CO2-cured foam concrete under varying conditions, focusing on the effects of foam admixture and fiber reinforcement. The study tends to enrich the knowledge regarding the performance of CO2-cured foam concrete under different loading rates, especially in relation to density and matrix strength. The foam admixture of the specimens ranges from 26% to 55%, achieving density from 600 kg/m3 to 1,000 kg/m3. The specimens were loaded at strain rates from 80 s-1 to 398 s-1. Experimental results revealed the dynamic elastic modulus, dynamic compressive strength, and Dynamic Increase Factor (DIF) showed a strong correlation with the foam admixture and density. In addition, the incorporation of polypropylene (PP) fibers effectively improved the mechanical behavior of the foam concrete, achieving up to a 17% increase in dynamic compressive strength. This comprehensive analysis highlights the critical role of foam admixture and fiber reinforcement in determining the dynamic properties of CO2-cured foam concrete and provides valuable insights for optimizing the dynamic performance of foam concrete in various construction applications.
本文研究了二氧化碳养护泡沫混凝土在不同条件下的动态力学性能,重点关注泡沫掺合料和纤维加固的影响。该研究旨在丰富二氧化碳固化泡沫混凝土在不同加载速率下的性能知识,尤其是与密度和基体强度相关的知识。试样的泡沫掺量从 26% 到 55%,密度从 600 kg/m3 到 1,000 kg/m3 不等。试样的加载应变速率为 80 s-1 至 398 s-1。实验结果表明,动态弹性模量、动态抗压强度和动态增大系数(DIF)与泡沫掺合料和密度密切相关。此外,聚丙烯(PP)纤维的掺入有效改善了泡沫混凝土的力学性能,使其动态抗压强度提高了 17%。这项综合分析强调了泡沫掺合料和纤维增强材料在决定二氧化碳养护泡沫混凝土动态性能方面的关键作用,并为优化泡沫混凝土在各种建筑应用中的动态性能提供了宝贵的见解。
{"title":"Dynamic properties of CO2-cured foam concrete at different loading rates: Effect of the foam admixtures and addition of polypropylene fiber","authors":"Yunlin Liu, Shangwei Huo, Jiali Fu, Tingbo Shi, Dong Guo","doi":"10.3389/fmats.2024.1445848","DOIUrl":"https://doi.org/10.3389/fmats.2024.1445848","url":null,"abstract":"This paper investigated the dynamic mechanical properties of CO<jats:sub>2</jats:sub>-cured foam concrete under varying conditions, focusing on the effects of foam admixture and fiber reinforcement. The study tends to enrich the knowledge regarding the performance of CO<jats:sub>2</jats:sub>-cured foam concrete under different loading rates, especially in relation to density and matrix strength. The foam admixture of the specimens ranges from 26% to 55%, achieving density from 600 kg/m<jats:sup>3</jats:sup> to 1,000 kg/m<jats:sup>3</jats:sup>. The specimens were loaded at strain rates from 80 s<jats:sup>-1</jats:sup> to 398 s<jats:sup>-1</jats:sup>. Experimental results revealed the dynamic elastic modulus, dynamic compressive strength, and Dynamic Increase Factor (DIF) showed a strong correlation with the foam admixture and density. In addition, the incorporation of polypropylene (PP) fibers effectively improved the mechanical behavior of the foam concrete, achieving up to a 17% increase in dynamic compressive strength. This comprehensive analysis highlights the critical role of foam admixture and fiber reinforcement in determining the dynamic properties of CO<jats:sub>2</jats:sub>-cured foam concrete and provides valuable insights for optimizing the dynamic performance of foam concrete in various construction applications.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"7 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulation analysis of the stability of the construction face of a super long tunnel under conditions of precipitation and abundant water 降水和丰水条件下超长隧道施工面稳定性的数值模拟分析
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-30 DOI: 10.3389/fmats.2024.1461308
Huoda Dun, Song Chen, Haitao Liu, Chen Chen, Yuansheng Zhang, Ying Yuan
Tunnel construction in central and western China presents significant challenges primarily due to the complex geological conditions. The presence of water-rich zones compromises the stability of excavation faces, leading to potential safety risks and economic losses. This study investigates the Yingpan Mountain extra-long tunnel through numerical simulations, focusing on stress and displacement variations under varying conditions. The primary focus is on assessing the influence of water on tunnel stability, particularly under water-rich conditions. The study proposes effective evaluation methods for different construction stages. The findings offer valuable guidance for future engineering projects, thereby enhancing safety and efficiency in tunnel construction.
由于地质条件复杂,中国中西部地区的隧道建设面临巨大挑战。富水区的存在影响了开挖面的稳定性,导致潜在的安全风险和经济损失。本研究通过数值模拟对营盘山特长隧道进行了研究,重点关注不同条件下的应力和位移变化。主要重点是评估水对隧道稳定性的影响,尤其是在富水条件下。研究针对不同的施工阶段提出了有效的评估方法。研究结果为未来的工程项目提供了宝贵的指导,从而提高了隧道施工的安全性和效率。
{"title":"Numerical simulation analysis of the stability of the construction face of a super long tunnel under conditions of precipitation and abundant water","authors":"Huoda Dun, Song Chen, Haitao Liu, Chen Chen, Yuansheng Zhang, Ying Yuan","doi":"10.3389/fmats.2024.1461308","DOIUrl":"https://doi.org/10.3389/fmats.2024.1461308","url":null,"abstract":"Tunnel construction in central and western China presents significant challenges primarily due to the complex geological conditions. The presence of water-rich zones compromises the stability of excavation faces, leading to potential safety risks and economic losses. This study investigates the Yingpan Mountain extra-long tunnel through numerical simulations, focusing on stress and displacement variations under varying conditions. The primary focus is on assessing the influence of water on tunnel stability, particularly under water-rich conditions. The study proposes effective evaluation methods for different construction stages. The findings offer valuable guidance for future engineering projects, thereby enhancing safety and efficiency in tunnel construction.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"6 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of machine learning-based hardness for the polycarbonate using additive manufacturing 利用增材制造技术,基于机器学习预测聚碳酸酯的硬度
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-29 DOI: 10.3389/fmats.2024.1410277
Haitham A. Mahmoud, G. Shanmugasundar, Swapnil Vyavahare, Rakesh Kumar, Robert Cep, Sachin Salunkhe, Sharad Gawade, Emad S. Abouel Nasr
IntroductionAdditive manufacturing (AM) is a revolutionary technology transforming traditional production processes by providing exceptional mechanical characteristics.MethodsThe present study aims explicitly to predict the hardness of Polycarbonate (PC) parts produced using AM. The objectives of this study are: (1) To investigate the process parameters that impact the ability to estimate the hardness of PC materials accurately, and (2) To develop a best-performing ML model from a range of models that can reliably predict the hardness of additively manufactured PC parts. Initially, fused filament fabrication (FFF), the most affordable AM technique, was used for the manufacturing of parts. Four process parameters, infill density, print direction, raster angle, and layer thickness, are selected for investigation. A heatmap is generated to obtain the influence of process parameters on hardness. Then, machine learning (ML) techniques create a range of predictive models that can predict hardness value considering the level of process parameters.ResultsThe developed ML models include Linear Regression, Decision Tree, Random Forest, K-nearest neighbor, Support Vector Regression, AdaBoost, and Artificial Neural Network. Further, an investigation has been done that includes choosing and improving ML algorithms and assessing the models’ performance.DiscussionPrediction plots, residual plots, and evaluation metrics plots are prepared to gauge the performance of the developed models. Thus, the research enhances AM capabilities by applying predictive modeling to process parameters and improving the quality and reliability of fabricated components.
导言增材制造(AM)是一项革命性技术,它通过提供优异的机械特性改变了传统的生产工艺。方法本研究旨在明确预测使用增材制造技术生产的聚碳酸酯(PC)部件的硬度。本研究的目标是(1) 研究影响准确估算 PC 材料硬度的工艺参数;(2) 从一系列模型中开发出性能最佳的 ML 模型,从而可靠地预测快速成型 PC 零件的硬度。起初,我们使用最经济实惠的快速成型技术--熔融长丝制造(FFF)来制造零件。研究选择了四个工艺参数:填充密度、打印方向、光栅角度和层厚度。通过生成热图来了解工艺参数对硬度的影响。然后,机器学习(ML)技术创建了一系列预测模型,这些模型可以根据工艺参数的水平预测硬度值。讨论绘制了预测图、残差图和评估指标图,以衡量所开发模型的性能。因此,该研究通过对工艺参数应用预测建模,提高了 AM 能力,并改善了制造部件的质量和可靠性。
{"title":"Prediction of machine learning-based hardness for the polycarbonate using additive manufacturing","authors":"Haitham A. Mahmoud, G. Shanmugasundar, Swapnil Vyavahare, Rakesh Kumar, Robert Cep, Sachin Salunkhe, Sharad Gawade, Emad S. Abouel Nasr","doi":"10.3389/fmats.2024.1410277","DOIUrl":"https://doi.org/10.3389/fmats.2024.1410277","url":null,"abstract":"IntroductionAdditive manufacturing (AM) is a revolutionary technology transforming traditional production processes by providing exceptional mechanical characteristics.MethodsThe present study aims explicitly to predict the hardness of Polycarbonate (PC) parts produced using AM. The objectives of this study are: (1) To investigate the process parameters that impact the ability to estimate the hardness of PC materials accurately, and (2) To develop a best-performing ML model from a range of models that can reliably predict the hardness of additively manufactured PC parts. Initially, fused filament fabrication (FFF), the most affordable AM technique, was used for the manufacturing of parts. Four process parameters, infill density, print direction, raster angle, and layer thickness, are selected for investigation. A heatmap is generated to obtain the influence of process parameters on hardness. Then, machine learning (ML) techniques create a range of predictive models that can predict hardness value considering the level of process parameters.ResultsThe developed ML models include Linear Regression, Decision Tree, Random Forest, K-nearest neighbor, Support Vector Regression, AdaBoost, and Artificial Neural Network. Further, an investigation has been done that includes choosing and improving ML algorithms and assessing the models’ performance.DiscussionPrediction plots, residual plots, and evaluation metrics plots are prepared to gauge the performance of the developed models. Thus, the research enhances AM capabilities by applying predictive modeling to process parameters and improving the quality and reliability of fabricated components.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"6 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on algae-mediated adsorption and catalytic processes for organic water pollution remediation 藻类介导的有机水污染修复吸附和催化过程综述
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-26 DOI: 10.3389/fmats.2024.1432704
R. Suresh, Saravanan Rajendran, Wei-Hsin Chen, Matias Soto-Moscoso, Thanigaivel Sundaram, Aishah Abdul Jalil, Suresh Kumar Rajamani Sekar
Wastewaters consist of organic pollutants that have environmental concerns. Wastewaters are treated by different methods, but efficient, low-cost, and sustainable techniques still need to be developed. Algae-based water pollution remediation techniques are considered to be sustainable approaches. This review exclusively discusses the facets of macro and microalgae in the treatment of organic toxicants. The current trends of algae-mediated water treatments have been discussed under adsorption and degradation methods. A focus on algae fuel cell, algae mediated activation of oxidizing agents, Fenton-like reactions, and photocatalysis was given. The need of algae-based adsorptive and catalytic materials was mentioned. The role of algae in the synthesis of catalysts which were employed in pollutant removal methods was also explained. The integrated algae-mediated water treatment techniques were also highlighted. The toxicant removal performances of different algae-based materials in the water medium were summarized. The conclusion and future prospects derived from the literature survey were described. This review will be helpful for researchers who are working in the field of sustainable water pollution remediation.
废水由引起环境问题的有机污染物组成。废水的处理方法多种多样,但高效、低成本和可持续的技术仍有待开发。基于藻类的水污染修复技术被认为是可持续的方法。本综述专门讨论了大型藻类和微型藻类在处理有机毒物方面的应用。在吸附和降解方法中讨论了当前以藻类为媒介的水处理趋势。重点介绍了藻类燃料电池、藻类介导的氧化剂活化、类芬顿反应和光催化。还提到了对基于藻类的吸附和催化材料的需求。还解释了藻类在合成用于去除污染物的催化剂中的作用。还强调了以藻类为媒介的综合水处理技术。总结了不同藻基材料在水介质中去除有毒物质的性能。对文献调查得出的结论和未来展望进行了阐述。这篇综述将对从事可持续水污染修复领域工作的研究人员有所帮助。
{"title":"A review on algae-mediated adsorption and catalytic processes for organic water pollution remediation","authors":"R. Suresh, Saravanan Rajendran, Wei-Hsin Chen, Matias Soto-Moscoso, Thanigaivel Sundaram, Aishah Abdul Jalil, Suresh Kumar Rajamani Sekar","doi":"10.3389/fmats.2024.1432704","DOIUrl":"https://doi.org/10.3389/fmats.2024.1432704","url":null,"abstract":"Wastewaters consist of organic pollutants that have environmental concerns. Wastewaters are treated by different methods, but efficient, low-cost, and sustainable techniques still need to be developed. Algae-based water pollution remediation techniques are considered to be sustainable approaches. This review exclusively discusses the facets of macro and microalgae in the treatment of organic toxicants. The current trends of algae-mediated water treatments have been discussed under adsorption and degradation methods. A focus on algae fuel cell, algae mediated activation of oxidizing agents, Fenton-like reactions, and photocatalysis was given. The need of algae-based adsorptive and catalytic materials was mentioned. The role of algae in the synthesis of catalysts which were employed in pollutant removal methods was also explained. The integrated algae-mediated water treatment techniques were also highlighted. The toxicant removal performances of different algae-based materials in the water medium were summarized. The conclusion and future prospects derived from the literature survey were described. This review will be helpful for researchers who are working in the field of sustainable water pollution remediation.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"6 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on anti-segregation performance of cement stabilized macadam and its impact on mechanical and shrinkage properties 水泥稳定碎石路面抗离析性能及其对机械和收缩性能影响的研究
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-26 DOI: 10.3389/fmats.2024.1411558
Xiaokun Chen, Caihong Deng, Xinming Zhai, Wenjin Di, Xuanhao Cao, Bowen Guan
This study systematically explores the relationship between the mechanical and shrinkage properties of cement-stabilized macadam (CSM) stone base layers and their resistance to segregation to address the issue of segregation in wide and thick base layers. It establishes three cement dosage levels and five aggregate gradation types (GW1, GW2, GW3, GW4, and GW5). This research evaluates the anti-segregation performance of the mixtures by introducing the shape segregation coefficient L and the sieving segregation coefficient Seg and investigates how these properties influence segregation resistance. The findings revealed that mixtures with GW3 and GW4 gradations exhibit superior segregation resistance, with the most concentrated gradation curves in each zone. These mixtures form a robust force chain structure that resists segregation tendencies during descent. With a 5% cement content, the shape segregation coefficient L decreases by an average of 3.1%, and the sieve segregation coefficient Seg reduces by 14.0%. In addition, mixtures with GW3 and GW4 gradations show optimal drying shrinkage properties. Effective segregation-resistant gradations can significantly reduce the dry shrinkage coefficient of the specimens.
本研究系统地探讨了水泥稳定碎石(CSM)石基层的机械和收缩性能与其抗离析能力之间的关系,以解决宽厚基层的离析问题。研究确定了三种水泥剂量水平和五种集料级配类型(GW1、GW2、GW3、GW4 和 GW5)。该研究通过引入形状离析系数 L 和筛分离析系数 Seg 来评估混合物的抗离析性能,并研究这些属性如何影响抗离析性。研究结果表明,具有 GW3 和 GW4 级配的混合物具有优异的抗离析性能,每个区域的级配曲线最为集中。这些混合物形成了坚固的力链结构,可在下降过程中抵抗离析趋势。水泥含量为 5%时,形状离析系数 L 平均降低 3.1%,筛分离析系数 Seg 降低 14.0%。此外,采用 GW3 和 GW4 级配的混合物显示出最佳的干燥收缩特性。有效的抗离析级配可显著降低试样的干燥收缩系数。
{"title":"Study on anti-segregation performance of cement stabilized macadam and its impact on mechanical and shrinkage properties","authors":"Xiaokun Chen, Caihong Deng, Xinming Zhai, Wenjin Di, Xuanhao Cao, Bowen Guan","doi":"10.3389/fmats.2024.1411558","DOIUrl":"https://doi.org/10.3389/fmats.2024.1411558","url":null,"abstract":"This study systematically explores the relationship between the mechanical and shrinkage properties of cement-stabilized macadam (CSM) stone base layers and their resistance to segregation to address the issue of segregation in wide and thick base layers. It establishes three cement dosage levels and five aggregate gradation types (GW1, GW2, GW3, GW4, and GW5). This research evaluates the anti-segregation performance of the mixtures by introducing the shape segregation coefficient L and the sieving segregation coefficient Seg and investigates how these properties influence segregation resistance. The findings revealed that mixtures with GW3 and GW4 gradations exhibit superior segregation resistance, with the most concentrated gradation curves in each zone. These mixtures form a robust force chain structure that resists segregation tendencies during descent. With a 5% cement content, the shape segregation coefficient L decreases by an average of 3.1%, and the sieve segregation coefficient Seg reduces by 14.0%. In addition, mixtures with GW3 and GW4 gradations show optimal drying shrinkage properties. Effective segregation-resistant gradations can significantly reduce the dry shrinkage coefficient of the specimens.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"6 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1