首页 > 最新文献

Frontiers in Materials最新文献

英文 中文
Transition metal oxides: a new frontier in spintronics driven by novel quantum states and efficient charge-spin interconversion 过渡金属氧化物:由新型量子态和高效电荷-自旋相互转换驱动的自旋电子学新领域
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-26 DOI: 10.3389/fmats.2024.1444769
Yamin Han, Bin Lao, Xuan Zheng, Sheng Li, Run-Wei Li, Zhiming Wang
Transition metal oxides (TMOs) have emerged as promising candidates for spintronic applications due to their unique electronic properties and novel quantum states. The intricate interplay between strong spin-orbit coupling and electronic correlations in TMOs gives rise to distinct spin and orbital textures, leading to enhanced spin-momentum locking and efficient charge-spin interconversion. Remarkably, recent researches have unveiled the significant and highly tunable nature of charge-spin interconversion efficiency in TMOs, which can be manipulated through strategies such as electric field gating, epitaxial strain, and heterostructure engineering. This review provides a comprehensive overview of the recent advances in understanding the electronic band structures of TMOs and their correlation with charge-spin interconversion mechanisms. We summarize the tunability of these properties through various experimental approaches and discuss the potential implications for spintronic device applications. The insights gained from this review can guide future research efforts towards the development of high-performance, energy-efficient spintronic devices based on TMOs.
过渡金属氧化物(TMOs)因其独特的电子特性和新颖的量子态,已成为自旋电子应用的理想候选材料。在过渡金属氧化物中,强自旋轨道耦合和电子相关之间错综复杂的相互作用产生了独特的自旋和轨道纹理,从而增强了自旋动量锁定和高效的电荷-自旋相互转换。值得注意的是,最近的研究揭示了 TMOs 中电荷-自旋相互转换效率的显著性和高度可调性,这种效率可以通过电场门控、外延应变和异质结构工程等策略来操纵。本综述全面概述了在理解 TMO 电子能带结构及其与电荷-自旋相互转换机制的相关性方面的最新进展。我们通过各种实验方法总结了这些特性的可调性,并讨论了其对自旋电子器件应用的潜在影响。从这篇综述中获得的见解可以指导未来的研究工作,以开发基于 TMOs 的高性能、高能效自旋电子器件。
{"title":"Transition metal oxides: a new frontier in spintronics driven by novel quantum states and efficient charge-spin interconversion","authors":"Yamin Han, Bin Lao, Xuan Zheng, Sheng Li, Run-Wei Li, Zhiming Wang","doi":"10.3389/fmats.2024.1444769","DOIUrl":"https://doi.org/10.3389/fmats.2024.1444769","url":null,"abstract":"Transition metal oxides (TMOs) have emerged as promising candidates for spintronic applications due to their unique electronic properties and novel quantum states. The intricate interplay between strong spin-orbit coupling and electronic correlations in TMOs gives rise to distinct spin and orbital textures, leading to enhanced spin-momentum locking and efficient charge-spin interconversion. Remarkably, recent researches have unveiled the significant and highly tunable nature of charge-spin interconversion efficiency in TMOs, which can be manipulated through strategies such as electric field gating, epitaxial strain, and heterostructure engineering. This review provides a comprehensive overview of the recent advances in understanding the electronic band structures of TMOs and their correlation with charge-spin interconversion mechanisms. We summarize the tunability of these properties through various experimental approaches and discuss the potential implications for spintronic device applications. The insights gained from this review can guide future research efforts towards the development of high-performance, energy-efficient spintronic devices based on TMOs.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the effect of sizing agent on the interface and compression performance of carbon fiber composites 施胶剂对碳纤维复合材料界面和压缩性能的影响研究
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-22 DOI: 10.3389/fmats.2024.1437104
Xinfeng Ouyang, Guojie Ge, Yizhi Geng, Yangyang Zong, Tong Pan, Xiao Wang, Weiwei Zhu, Yuefeng Bai, Yunpeng Liu, Shuo Duan, Kangmin Niu
The present study involves the preparation of continuous carbon fiber samples treated with epoxy-based sizing agent (EP) and vinyl ester resin-based sizing agent (VE), alongside untreated fibers, aiming to explore the influence pattern of interfacial differences caused by these sizing agents on the compressive properties of carbon fiber composites. Surface analysis, including Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and X-ray Photoelectron Spectroscopy (XPS), followed by testing the mechanical properties of carbon fibers and the composite materials. Results indicate that, compared to unsized carbon fibers, EP and VE increase the O atom content on the carbon fiber surface by 13.0% and 18.1%, respectively, and enhance the proportion of active C atoms by 11.3% and 20.3%, respectively. The interlaminar shear strength (GB/T) of carbon fibers is improved by 9.3% and 20.0%, respectively. Given the compatibility between the sizing agent and the matrix resin, VE improves the open-hole compressive strength of composites by 6.7% compared to EP. This improvement in interface bonding performance positively impacts the open-hole compressive properties of the composites, though it has limited effect on the 0° compressive and post-impact compressive strengths. Following EP and VE sizing, the 0° compressive strength increases by 11.8% and 13.6%, respectively, with VE only resulting in a marginal 1.6% improvement over EP. The enhancements in both interlaminar shear strength and open-hole compressive strength are attributed to the increased number of active functional groups at the fiber-resin interface, facilitated by sizing agents, which promote stronger chemical bonding and thus improved load transfer between the fibers and the matrix. VE demonstrates superior performance over EP in regulating the interface state of carbon fibers.The presence or absence of a sizing agent has a more significant impact on the compressive properties of carbon fiber composites than the type of sizing agent used. These findings provide valuable insights for optimizing the preparation and enhancing the compressive performance of carbon fiber composite materials.
本研究制备了经过环氧基上浆剂(EP)和乙烯基酯树脂基上浆剂(VE)处理的连续碳纤维样品,以及未经处理的纤维,旨在探索这些上浆剂造成的界面差异对碳纤维复合材料抗压性能的影响模式。在进行了扫描电子显微镜(SEM)、原子力显微镜(AFM)和 X 射线光电子能谱(XPS)等表面分析后,还测试了碳纤维和复合材料的机械性能。结果表明,与未施胶的碳纤维相比,EP 和 VE 使碳纤维表面的 O 原子含量分别提高了 13.0% 和 18.1%,活性 C 原子的比例分别提高了 11.3% 和 20.3%。碳纤维的层间剪切强度(GB/T)分别提高了 9.3% 和 20.0%。鉴于施胶剂与基体树脂之间的相容性,与 EP 相比,VE 可将复合材料的开孔抗压强度提高 6.7%。界面粘结性能的提高对复合材料的开孔抗压性能产生了积极影响,但对 0° 抗压强度和冲击后抗压强度的影响有限。经过 EP 和 VE 施胶后,0° 抗压强度分别提高了 11.8% 和 13.6%,而 VE 只比 EP 稍微提高了 1.6%。层间剪切强度和开孔抗压强度的提高归因于纤维-树脂界面上活性官能团数量的增加,施胶剂促进了化学键的加强,从而改善了纤维与基体之间的载荷传递。在调节碳纤维界面状态方面,VE 的性能优于 EP。有无施胶剂对碳纤维复合材料抗压性能的影响比施胶剂的类型更为显著。这些发现为优化碳纤维复合材料的制备和提高其抗压性能提供了有价值的见解。
{"title":"Research on the effect of sizing agent on the interface and compression performance of carbon fiber composites","authors":"Xinfeng Ouyang, Guojie Ge, Yizhi Geng, Yangyang Zong, Tong Pan, Xiao Wang, Weiwei Zhu, Yuefeng Bai, Yunpeng Liu, Shuo Duan, Kangmin Niu","doi":"10.3389/fmats.2024.1437104","DOIUrl":"https://doi.org/10.3389/fmats.2024.1437104","url":null,"abstract":"The present study involves the preparation of continuous carbon fiber samples treated with epoxy-based sizing agent (EP) and vinyl ester resin-based sizing agent (VE), alongside untreated fibers, aiming to explore the influence pattern of interfacial differences caused by these sizing agents on the compressive properties of carbon fiber composites. Surface analysis, including Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and X-ray Photoelectron Spectroscopy (XPS), followed by testing the mechanical properties of carbon fibers and the composite materials. Results indicate that, compared to unsized carbon fibers, EP and VE increase the O atom content on the carbon fiber surface by 13.0% and 18.1%, respectively, and enhance the proportion of active C atoms by 11.3% and 20.3%, respectively. The interlaminar shear strength (GB/T) of carbon fibers is improved by 9.3% and 20.0%, respectively. Given the compatibility between the sizing agent and the matrix resin, VE improves the open-hole compressive strength of composites by 6.7% compared to EP. This improvement in interface bonding performance positively impacts the open-hole compressive properties of the composites, though it has limited effect on the 0° compressive and post-impact compressive strengths. Following EP and VE sizing, the 0° compressive strength increases by 11.8% and 13.6%, respectively, with VE only resulting in a marginal 1.6% improvement over EP. The enhancements in both interlaminar shear strength and open-hole compressive strength are attributed to the increased number of active functional groups at the fiber-resin interface, facilitated by sizing agents, which promote stronger chemical bonding and thus improved load transfer between the fibers and the matrix. VE demonstrates superior performance over EP in regulating the interface state of carbon fibers.The presence or absence of a sizing agent has a more significant impact on the compressive properties of carbon fiber composites than the type of sizing agent used. These findings provide valuable insights for optimizing the preparation and enhancing the compressive performance of carbon fiber composite materials.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production and characterization of biodiesel fuel produced from third-generation feedstock 利用第三代原料生产生物柴油燃料的生产和特性分析
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-22 DOI: 10.3389/fmats.2024.1454120
Suraj Verma, Deepak Sahu, Bader O. Almutairi
Biodiesel is an eco-friendly, renewable alternative fuel, and it can be obtained from soybean oil, vegetable oils, animal fat, or microalgae. This study presents a comprehensive investigation into the production and characterization of microalgae biodiesel utilizing multiple analytical techniques, including CHNSO analysis, Fourier-transform infrared spectroscopy (FTIR), gas chromatography–mass spectrometry (GC–MS), and proton nuclear magnetic resonance spectroscopy (1H NMR). The CHNSO analysis revealed the elemental composition of biodiesel blends, highlighting the effects of TiO2 nanoparticle concentrations on carbon, nitrogen, sulfur, and oxygen content. With increasing TiO2 concentration, a steady increase in the carbon content and a gradual decrease in the nitrogen content were observed. According to the CHNSO analysis, the sulfur content of blended biodiesel was found to be lower than that of fossil diesel, with an empirical formula of CH2.26N0.000584S0.000993O0.0517. FTIR and 1H NMR spectroscopy confirmed the synthesis of biodiesel. Fourier-transform infrared resonance confirmed the presence of ester groups at 1732 cm-1, and a prominent peak at 1,455 cm-1 indicated a higher carbon content in the blended biodiesel. GC–MS analysis identified compounds of fatty acid methyl esters (FAMEs) and hydrocarbons. The major components of FAMEs were 9-octadecenoic acid methyl ester (C19H36O2), linoleic acid ethyl ester (C20H36O2), and hexadecanoic acid methyl ester (C17H34O2), with compositions 20.65%, 9.67%, and 6.26%, respectively. The presence of methyl ester in the blended fuel suggests its potential as an alternative fuel source.
生物柴油是一种环保、可再生的替代燃料,它可以从大豆油、植物油、动物脂肪或微藻中获得。本研究利用多种分析技术,包括 CHNSO 分析、傅立叶变换红外光谱(FTIR)、气相色谱-质谱联用仪(GC-MS)和质子核磁共振波谱(1H NMR),对微藻生物柴油的生产和表征进行了全面研究。CHNSO 分析揭示了生物柴油混合物的元素组成,突出显示了 TiO2 纳米粒子浓度对碳、氮、硫和氧含量的影响。随着二氧化钛浓度的增加,碳含量稳步上升,氮含量逐渐下降。根据 CHNSO 分析,混合生物柴油的硫含量低于化石柴油,其经验公式为 CH2.26N0.000584S0.000993O0.0517。傅立叶变换红外光谱和 1H NMR 光谱证实了生物柴油的合成。傅立叶变换红外共振证实在 1732 cm-1 处存在酯基,而在 1 455 cm-1 处的突出峰值表明混合生物柴油中的碳含量较高。气相色谱-质谱分析确定了脂肪酸甲酯(FAMEs)和碳氢化合物的化合物。脂肪酸甲酯的主要成分是 9-十八烯酸甲酯(C19H36O2)、亚油酸乙酯(C20H36O2)和十六烷酸甲酯(C17H34O2),含量分别为 20.65%、9.67% 和 6.26%。混合燃料中甲酯的存在表明其具有作为替代燃料来源的潜力。
{"title":"Production and characterization of biodiesel fuel produced from third-generation feedstock","authors":"Suraj Verma, Deepak Sahu, Bader O. Almutairi","doi":"10.3389/fmats.2024.1454120","DOIUrl":"https://doi.org/10.3389/fmats.2024.1454120","url":null,"abstract":"Biodiesel is an eco-friendly, renewable alternative fuel, and it can be obtained from soybean oil, vegetable oils, animal fat, or microalgae. This study presents a comprehensive investigation into the production and characterization of microalgae biodiesel utilizing multiple analytical techniques, including CHNSO analysis, Fourier-transform infrared spectroscopy (FTIR), gas chromatography–mass spectrometry (GC–MS), and proton nuclear magnetic resonance spectroscopy (<jats:sup>1</jats:sup>H NMR). The CHNSO analysis revealed the elemental composition of biodiesel blends, highlighting the effects of TiO<jats:sub>2</jats:sub> nanoparticle concentrations on carbon, nitrogen, sulfur, and oxygen content. With increasing TiO<jats:sub>2</jats:sub> concentration, a steady increase in the carbon content and a gradual decrease in the nitrogen content were observed. According to the CHNSO analysis, the sulfur content of blended biodiesel was found to be lower than that of fossil diesel, with an empirical formula of CH<jats:sub>2.26</jats:sub>N<jats:sub>0.000584</jats:sub>S<jats:sub>0.000993</jats:sub>O<jats:sub>0.0517</jats:sub>. FTIR and <jats:sup>1</jats:sup>H NMR spectroscopy confirmed the synthesis of biodiesel. Fourier-transform infrared resonance confirmed the presence of ester groups at 1732 cm<jats:sup>-1</jats:sup>, and a prominent peak at 1,455 cm<jats:sup>-1</jats:sup> indicated a higher carbon content in the blended biodiesel. GC–MS analysis identified compounds of fatty acid methyl esters (FAMEs) and hydrocarbons. The major components of FAMEs were 9-octadecenoic acid methyl ester (C<jats:sub>19</jats:sub>H<jats:sub>36</jats:sub>O<jats:sub>2</jats:sub>), linoleic acid ethyl ester (C<jats:sub>20</jats:sub>H<jats:sub>36</jats:sub>O<jats:sub>2</jats:sub>), and hexadecanoic acid methyl ester (C<jats:sub>17</jats:sub>H<jats:sub>34</jats:sub>O<jats:sub>2</jats:sub>), with compositions 20.65%, 9.67%, and 6.26%, respectively. The presence of methyl ester in the blended fuel suggests its potential as an alternative fuel source.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerically efficient analysis of FRP confined CFST members under lateral low-velocity impact loading 横向低速冲击荷载下 FRP 密封 CFST 构件的高效数值分析
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-22 DOI: 10.3389/fmats.2024.1435059
Jikai Tang, Bin Liu, Lijing Kang, Wei Fan, Debo Zhao, Tao Wang, Liang He, Jing Xie
Fiber-reinforced polymer (FRP) confined concrete filled steel tube (CFST) structures effectively harness the advantages of FRP materials, improving the performance of CFST structures and overcoming durability issues of steel tubes. Three-dimensional detailed finite element (FE) models are usually employed to estimate the impact-resistant performance of FRP confined CFST members under impact loadings. However, detailed FE models are typically complex in modeling and low in calculation efficiency as well as require high performance in computer hardware. Hence, this paper aims to develop an alternative modeling method that can predict the impact behavior of FRP confined CFST members with high efficiency and low requirements in computer resources. The proposed method includes a contact model using mass-spring-damper elements to describe the contact behavior between the impactor and the impacted FRP confined CFST members and a nonlinear fiber-based beam-column element model to simulate the behavior of FRP-confined CFST members under impact loading. The accuracies of fiber-section beam-column elements are carefully examined for FRP confined CFST members based on quasi-static test data reported in the literature. It is found that the fiber-based elements considering confinement effects provided by FRP and steel tubes can accurately predict the force-deformation relationship of the FRP confined CFST members under monotonic loading. By incorporating the strain-rate effects of concrete, steel, and FRP materials, the validated fiber-section elements are employed to simulate eight impact tests on FRP confined CFST members. Good agreements are observed between the results obtained from the proposed models and the experimental data. The computational efficiency of the developed model is three orders of magnitude faster than that of the conventional detailed FE model.
纤维增强聚合物(FRP)约束混凝土填充钢管(CFST)结构有效利用了 FRP 材料的优势,改善了 CFST 结构的性能,克服了钢管的耐久性问题。通常采用三维详细有限元(FE)模型来估算 FRP 密闭 CFST 构件在冲击荷载下的抗冲击性能。然而,详细的有限元模型通常建模复杂,计算效率低,对计算机硬件性能要求高。因此,本文旨在开发一种替代建模方法,以高效率、低计算机资源要求来预测 FRP 承压 CFST 构件的冲击行为。所提出的方法包括一个使用质量-弹簧-阻尼元件的接触模型,用于描述冲击器与受冲击的 FRP 承压 CFST 构件之间的接触行为;以及一个基于纤维的非线性梁柱元件模型,用于模拟 FRP 承压 CFST 构件在冲击荷载下的行为。根据文献中报告的准静态试验数据,对 FRP 承压 CFST 构件的纤维截面梁柱元素精确性进行了仔细研究。研究发现,考虑到 FRP 和钢管提供的约束效应,基于纤维的元素可以准确预测单调荷载下 FRP 约束 CFST 构件的力-变形关系。通过纳入混凝土、钢和玻璃钢材料的应变速率效应,采用经过验证的纤维截面元素模拟了玻璃钢约束 CFST 构件的八次冲击试验。观察发现,所建模型得出的结果与实验数据之间具有良好的一致性。所开发模型的计算效率比传统的详细 FE 模型快三个数量级。
{"title":"Numerically efficient analysis of FRP confined CFST members under lateral low-velocity impact loading","authors":"Jikai Tang, Bin Liu, Lijing Kang, Wei Fan, Debo Zhao, Tao Wang, Liang He, Jing Xie","doi":"10.3389/fmats.2024.1435059","DOIUrl":"https://doi.org/10.3389/fmats.2024.1435059","url":null,"abstract":"Fiber-reinforced polymer (FRP) confined concrete filled steel tube (CFST) structures effectively harness the advantages of FRP materials, improving the performance of CFST structures and overcoming durability issues of steel tubes. Three-dimensional detailed finite element (FE) models are usually employed to estimate the impact-resistant performance of FRP confined CFST members under impact loadings. However, detailed FE models are typically complex in modeling and low in calculation efficiency as well as require high performance in computer hardware. Hence, this paper aims to develop an alternative modeling method that can predict the impact behavior of FRP confined CFST members with high efficiency and low requirements in computer resources. The proposed method includes a contact model using mass-spring-damper elements to describe the contact behavior between the impactor and the impacted FRP confined CFST members and a nonlinear fiber-based beam-column element model to simulate the behavior of FRP-confined CFST members under impact loading. The accuracies of fiber-section beam-column elements are carefully examined for FRP confined CFST members based on quasi-static test data reported in the literature. It is found that the fiber-based elements considering confinement effects provided by FRP and steel tubes can accurately predict the force-deformation relationship of the FRP confined CFST members under monotonic loading. By incorporating the strain-rate effects of concrete, steel, and FRP materials, the validated fiber-section elements are employed to simulate eight impact tests on FRP confined CFST members. Good agreements are observed between the results obtained from the proposed models and the experimental data. The computational efficiency of the developed model is three orders of magnitude faster than that of the conventional detailed FE model.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations in mechanical wood properties of half-sibling genetic families of black alder [Alnus glutinosa (L.) Gaertn.] 黑赤杨(Alnus glutinosa (L.) Gaertn.]
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-22 DOI: 10.3389/fmats.2024.1425107
Benas Šilinskas, Iveta Varnagirytė-Kabašinskienė, Lina Beniušienė, Marius Aleinikovas
The study investigated the wood mechanical properties of black alder [Alnus glutinosa (L.) Gaertn.], a widely distributed deciduous tree in Europe valued for its suitability in silviculture and wood industry applications. The aim was to compare these properties among selected half-sib families and assess the relationship between wood hardness and other characteristics. Experimental plantations of black alder progenies from Lithuanian populations were established in different forest regions in 1998. The study analyzed various parameters for different genetic families, including tree diameter, height, wood hardness, moisture content, wood density, and mechanical properties. The findings revealed significant variability in wood properties among half-sib families, highlighting a strong genetic influence. Although the static modulus of elasticity showed no notable difference across families, other properties showed significant variations. Furthermore, the analysis identified weak correlations between wood hardness and other mechanical properties like density, modulus of elasticity, and bending strength. This suggests that wood hardness may not reliably indicate wood quality for industrial applications. Consequently, the study recommends considering alternative non-destructive properties, such as the dynamic modulus of elasticity, in future genetic studies of black alder for more accurate assessments of wood quality.
该研究调查了欧洲广泛分布的落叶乔木黑赤杨(Alnus glutinosa (L.) Gaertn.)的木材机械特性,因为它适合造林和木材工业应用。研究的目的是对选定的半同父异母科之间的这些特性进行比较,并评估木材硬度与其他特性之间的关系。1998 年,在不同的森林地区建立了立陶宛种群的黑赤杨后代实验种植园。研究分析了不同基因家族的各种参数,包括树木直径、高度、木材硬度、含水量、木材密度和机械性能。研究结果表明,半同父异母家族之间的木材特性存在很大差异,这突出表明了遗传因素的强大影响。虽然静态弹性模量在不同家系之间没有明显差异,但其他特性却存在显著差异。此外,分析还发现木材硬度与密度、弹性模量和弯曲强度等其他机械特性之间的相关性很弱。这表明,在工业应用中,木材硬度可能并不能可靠地表明木材的质量。因此,研究建议在未来的黑赤杨遗传研究中考虑采用动态弹性模量等其他非破坏性特性,以更准确地评估木材质量。
{"title":"Variations in mechanical wood properties of half-sibling genetic families of black alder [Alnus glutinosa (L.) Gaertn.]","authors":"Benas Šilinskas, Iveta Varnagirytė-Kabašinskienė, Lina Beniušienė, Marius Aleinikovas","doi":"10.3389/fmats.2024.1425107","DOIUrl":"https://doi.org/10.3389/fmats.2024.1425107","url":null,"abstract":"The study investigated the wood mechanical properties of black alder [<jats:italic>Alnus glutinosa</jats:italic> (L.) Gaertn.], a widely distributed deciduous tree in Europe valued for its suitability in silviculture and wood industry applications. The aim was to compare these properties among selected half-sib families and assess the relationship between wood hardness and other characteristics. Experimental plantations of black alder progenies from Lithuanian populations were established in different forest regions in 1998. The study analyzed various parameters for different genetic families, including tree diameter, height, wood hardness, moisture content, wood density, and mechanical properties. The findings revealed significant variability in wood properties among half-sib families, highlighting a strong genetic influence. Although the static modulus of elasticity showed no notable difference across families, other properties showed significant variations. Furthermore, the analysis identified weak correlations between wood hardness and other mechanical properties like density, modulus of elasticity, and bending strength. This suggests that wood hardness may not reliably indicate wood quality for industrial applications. Consequently, the study recommends considering alternative non-destructive properties, such as the dynamic modulus of elasticity, in future genetic studies of black alder for more accurate assessments of wood quality.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Room temperature magnetoelectric magnetic spirals by design 室温磁电磁螺旋设计
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-19 DOI: 10.3389/fmats.2024.1448765
Arnau Romaguera, Marisa Medarde
Frustrated magnets with ordered magnetic spiral phases that spontaneously break inversion symmetry have received significant attention from both fundamental and applied sciences communities due to the experimental demonstration that some of these materials can couple to the lattice and induce electric polarization. In these materials, the common origin of the electric and magnetic orders guarantees substantial coupling between them, which is highly desirable for applications. However, their low-magnetic ordering temperatures (typically < 100 K) greatly restrict their fields of application. Recently, investigations on Cu/Fe-based layered perovskites uncovered an unexpected knob to control the stability range of a magnetic spiral-chemical disorder-, which has been successfully employed to stabilize magnetic spiral phases at temperatures as high as 400 K. These unexpected observations, which are hard to conciliate with traditional magnetic frustration mechanisms, were recently rationalized in terms of an original, local frustration model that explicitly accounts for the presence of disorder. In this mini-review, we summarize the main experimental observations on Cu/Fe layered perovskites, which show excellent agreement with the predictions of this novel magnetic frustration mechanism. We also present different strategies aimed at exploiting these experimental and theoretical developments for the design of materials featuring magnetoelectric spirals stable up to temperatures high enough for daily-life applications.
自发打破反转对称性的有序磁螺旋相挫折磁体受到了基础科学和应用科学界的极大关注,因为实验证明其中一些材料可以与晶格耦合并诱导电极化。在这些材料中,电阶和磁阶的共同起源保证了它们之间的实质性耦合,这在应用中是非常理想的。然而,它们的低磁有序温度(通常为 100 K)极大地限制了它们的应用领域。最近,对铜/铁基层状包晶石的研究发现了一种意想不到的控制磁性螺旋稳定范围的方法--化学无序,这种方法已被成功用于在高达 400 K 的温度下稳定磁性螺旋相。这些意想不到的观察结果很难与传统的磁沮度机制相吻合,而最近的研究则从一个原创的局部沮度模型的角度对其进行了合理化,该模型明确考虑了无序的存在。在这篇微型综述中,我们总结了对铜/铁层包晶石的主要实验观察结果,这些观察结果与这种新型磁沮度机制的预测非常吻合。我们还介绍了不同的策略,旨在利用这些实验和理论进展,设计出具有磁电螺旋特性的材料,使其在足够高的温度下保持稳定,以满足日常生活应用的需要。
{"title":"Room temperature magnetoelectric magnetic spirals by design","authors":"Arnau Romaguera, Marisa Medarde","doi":"10.3389/fmats.2024.1448765","DOIUrl":"https://doi.org/10.3389/fmats.2024.1448765","url":null,"abstract":"Frustrated magnets with ordered magnetic spiral phases that spontaneously break inversion symmetry have received significant attention from both fundamental and applied sciences communities due to the experimental demonstration that some of these materials can couple to the lattice and induce electric polarization. In these materials, the common origin of the electric and magnetic orders guarantees substantial coupling between them, which is highly desirable for applications. However, their low-magnetic ordering temperatures (typically <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mo>&lt;</mml:mo></mml:math></jats:inline-formula> 100 K) greatly restrict their fields of application. Recently, investigations on Cu/Fe-based layered perovskites uncovered an unexpected knob to control the stability range of a magnetic spiral-chemical disorder-, which has been successfully employed to stabilize magnetic spiral phases at temperatures as high as 400 K. These unexpected observations, which are hard to conciliate with traditional magnetic frustration mechanisms, were recently rationalized in terms of an original, local frustration model that explicitly accounts for the presence of disorder. In this mini-review, we summarize the main experimental observations on Cu/Fe layered perovskites, which show excellent agreement with the predictions of this novel magnetic frustration mechanism. We also present different strategies aimed at exploiting these experimental and theoretical developments for the design of materials featuring magnetoelectric spirals stable up to temperatures high enough for daily-life applications.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of salt erosion on mechanical and drying shrinkage performance of cement stabilized macadam 盐侵蚀对水泥稳定碎石路面机械和干燥收缩性能的影响
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-14 DOI: 10.3389/fmats.2024.1453768
Chengbin Wang, Yadi Chen, Baoping An, Qinglin Guo, Yibo Wang
The arch expansion damage of asphalt pavement is a typical disease in desert Gobi and saline-alkali areas, and the reasons for arch expansion are very complex. Exploring the impact of salt solution on the mechanical and drying shrinkage performances of cement-stabilized macadam helps to clarify the causes of the arch expansion damage. To this purpose, this paper designed a salt solution infiltration experiment, using salt solution infiltration to simulate the transmission and accumulation of salts in cement-stabilized macadam, and carried out the compressive and flexural tests of cement-stabilized mortar and cement-stabilized macadam, and measured the drying shrinkage performance of cement-stabilized mortar and macadam. The results show that the type of salt solution has a significant influence on the weight of the cement-stabilized mortar samples, sulfates will cause the samples to lose weight, while chlorides and mixed solutions cause the increase in weight. Chlorides and sulfates lead to the decrease in the strengths of cement-stabilized mortar and macadam. The salt crystallization will lead to the decline of the drying shrinkage strains of cement-stabilized mortar and macadam, which has a positive action for reducing the drying shrinkage deformation. However, under the combined action of chlorides and sulfates, cement-stabilized macadam expands with the moisture loss. This may be one of the important causes of the arch expansion of asphalt pavement in the Gobi area and saline-alkali area.
沥青路面的拱胀破坏是沙漠戈壁和盐碱地区的典型病害,拱胀的原因非常复杂。探讨盐溶液对水泥稳定碎石路面力学性能和干燥收缩性能的影响,有助于弄清拱胀破坏的原因。为此,本文设计了盐溶液渗透实验,利用盐溶液渗透模拟盐分在水泥稳定金刚砂中的传递和积累,并对水泥稳定砂浆和水泥稳定金刚砂进行了抗压和抗折试验,测定了水泥稳定砂浆和金刚砂的干燥收缩性能。结果表明,盐溶液的类型对水泥稳定砂浆样品的重量有很大影响,硫酸盐会导致样品重量减轻,而氯化物和混合溶液则会导致样品重量增加。氯化物和硫酸盐会导致水泥稳定砂浆和金刚砂强度降低。盐的结晶会导致水泥稳定砂浆和金刚砂的干燥收缩应变下降,这对减少干燥收缩变形有积极作用。然而,在氯化物和硫酸盐的共同作用下,水泥稳定的金刚砂会随着水分的流失而膨胀。这可能是戈壁地区和盐碱地区沥青路面拱胀的重要原因之一。
{"title":"Impact of salt erosion on mechanical and drying shrinkage performance of cement stabilized macadam","authors":"Chengbin Wang, Yadi Chen, Baoping An, Qinglin Guo, Yibo Wang","doi":"10.3389/fmats.2024.1453768","DOIUrl":"https://doi.org/10.3389/fmats.2024.1453768","url":null,"abstract":"The arch expansion damage of asphalt pavement is a typical disease in desert Gobi and saline-alkali areas, and the reasons for arch expansion are very complex. Exploring the impact of salt solution on the mechanical and drying shrinkage performances of cement-stabilized macadam helps to clarify the causes of the arch expansion damage. To this purpose, this paper designed a salt solution infiltration experiment, using salt solution infiltration to simulate the transmission and accumulation of salts in cement-stabilized macadam, and carried out the compressive and flexural tests of cement-stabilized mortar and cement-stabilized macadam, and measured the drying shrinkage performance of cement-stabilized mortar and macadam. The results show that the type of salt solution has a significant influence on the weight of the cement-stabilized mortar samples, sulfates will cause the samples to lose weight, while chlorides and mixed solutions cause the increase in weight. Chlorides and sulfates lead to the decrease in the strengths of cement-stabilized mortar and macadam. The salt crystallization will lead to the decline of the drying shrinkage strains of cement-stabilized mortar and macadam, which has a positive action for reducing the drying shrinkage deformation. However, under the combined action of chlorides and sulfates, cement-stabilized macadam expands with the moisture loss. This may be one of the important causes of the arch expansion of asphalt pavement in the Gobi area and saline-alkali area.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferroelastic twin walls for neuromorphic device applications 用于神经形态设备应用的铁弹性孪生壁
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-14 DOI: 10.3389/fmats.2024.1406853
Guangming Lu, Ekhard K. H. Salje
The possibility to use ferroelastic materials as components of neuromorphic devices is discussed. They can be used as local memristors with the advantage that ionic transport is constraint to twin boundaries where ionic diffusion is much faster than in the bulk and does not leak into adjacent domains. It is shown that nano-scale ferroelastic memristors can contain a multitude of domain walls. These domain walls interact by strain fields where the interactions near surfaces are fundamentally different from bulk materials. We show that surface relaxations (∼image forces) are curtailed to short range dipolar interactions which decay as 1/d2 where d is the distance between domain walls. In bigger samples such interactions are long ranging with 1/d. The cross-over regime is typically in the range of some 200–1500 nm using a simple spring interaction model.
本文讨论了将铁弹性材料用作神经形态设备元件的可能性。铁弹性材料可用作局部忆阻器,其优势在于离子传输受限于孪生边界,离子扩散速度远快于体态,且不会泄漏到相邻畴中。研究表明,纳米级铁弹性忆阻器可以包含大量畴壁。这些畴壁通过应变场相互作用,其中表面附近的相互作用与块体材料有本质区别。我们的研究表明,表面弛豫(∼图像力)被限制为短程偶极相互作用,其衰减为 1/d2,其中 d 是域壁之间的距离。在较大的样品中,这种相互作用是长程的,衰减为 1/d。使用简单的弹簧相互作用模型,交叉机制通常在大约 200-1500 nm 的范围内。
{"title":"Ferroelastic twin walls for neuromorphic device applications","authors":"Guangming Lu, Ekhard K. H. Salje","doi":"10.3389/fmats.2024.1406853","DOIUrl":"https://doi.org/10.3389/fmats.2024.1406853","url":null,"abstract":"The possibility to use ferroelastic materials as components of neuromorphic devices is discussed. They can be used as local memristors with the advantage that ionic transport is constraint to twin boundaries where ionic diffusion is much faster than in the bulk and does not leak into adjacent domains. It is shown that nano-scale ferroelastic memristors can contain a multitude of domain walls. These domain walls interact by strain fields where the interactions near surfaces are fundamentally different from bulk materials. We show that surface relaxations (∼image forces) are curtailed to short range dipolar interactions which decay as 1/d<jats:sup>2</jats:sup> where d is the distance between domain walls. In bigger samples such interactions are long ranging with 1/d. The cross-over regime is typically in the range of some 200–1500 nm using a simple spring interaction model.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the strength characteristics and micro-mechanism of modified solidified red mud 改性固化赤泥的强度特性和微观机理研究
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-14 DOI: 10.3389/fmats.2024.1461198
Ziyi Ding, Yu Cheng, Lu Jin, Wentong Wang, Shiying Yan
The residue generated during the production process of alumina, known as red mud, is a type of solid waste. The engineering properties of red mud can be significantly enhanced through the modification and solidification using inorganic materials. This study primarily utilized red mud as the raw material, supplemented with fly ash, lime, and clay, to conduct a solidification experiment of red mud. Orthogonal tests with three factors of two ash ratio (ratio of lime to fly ash), two ash content (total lime and fly ash), and red mud types were designed to study the changes of different ratios and maintenance conditions, etc., on the engineering properties of red mud. In addition, the micro-mechanisms of modified red mud were investigated by means of XRF, XRD, SEM and EDX. The results show that for optimum moisture content, red mud types are the most important influencing factor and for maximum dry density, two ash content is the most important influencing factor. For strength characteristics, the optimum two ash ratio was 1.5:1, the optimum two ash content was 50%, and the optimum red mud types were 70% CRM (red mud made of Chalco Shandong Co., Ltd) mixed with 30% clay. The addition of lime, fly ash, and clay improves the temperature shrinkage coefficient of the red mud. Through the analysis of microscopic composition and structure, it can be seen that goethite (α-FeO(OH)) and magnetite (γ-Fe2O3) in the red mud reacted with the modified materials to generate crystalline aluminosilicate and amorphous hydrated silicate gel, and these products together with the original calcium carbonate (CaCO3), tricalcium aluminate (Ca3Al2O6) and garnet (Ca3TiFeSi3O12) in the red mud which have certain strengths enhance the structural strength of the modified red mud. The optimum ratio obtained from the combined test results was lime: fly ash: CRM = 30:20:50. Therefore, using lime, fly ash and clay as modified materials can greatly enhance the engineering properties of red mud and realise the resourceful use of red mud.
氧化铝生产过程中产生的残渣称为赤泥,是一种固体废物。通过使用无机材料对赤泥进行改性和固化,可以显著提高赤泥的工程特性。本研究主要以赤泥为原料,辅以粉煤灰、石灰和粘土,对赤泥进行固化实验。设计了两灰比(石灰和粉煤灰的比例)、两灰含量(石灰和粉煤灰的总量)和赤泥类型三个因素的正交试验,研究不同比例和养护条件等对赤泥工程性质的变化。此外,还通过 XRF、XRD、SEM 和 EDX 等方法研究了改性赤泥的微观机理。结果表明,对于最佳含水量,赤泥类型是最重要的影响因素;对于最大干密度,二灰含量是最重要的影响因素。在强度特性方面,最佳二灰比为 1.5:1,最佳二灰含量为 50%,最佳赤泥类型为 70%的 CRM(中铝山东有限公司生产的赤泥)与 30%的粘土混合。石灰、粉煤灰和粘土的添加提高了赤泥的温度收缩系数。通过对微观成分和结构的分析,可以看出赤泥中的鹅铁矿(α-FeO(OH))和磁铁矿(γ-Fe2O3)与改性材料反应生成结晶铝硅酸盐和无定形水合硅酸盐凝胶、这些产物与赤泥中原有的具有一定强度的碳酸钙(CaCO3)、铝酸三钙(Ca3Al2O6)和石榴石(Ca3TiFeSi3O12)一起增强了改性赤泥的结构强度。综合试验结果得出的最佳配比为石灰:粉煤灰:CRM=30:20:50。因此,使用石灰、粉煤灰和粘土作为改性材料,可大大提高赤泥的工程性能,实现赤泥的资源化利用。
{"title":"Study on the strength characteristics and micro-mechanism of modified solidified red mud","authors":"Ziyi Ding, Yu Cheng, Lu Jin, Wentong Wang, Shiying Yan","doi":"10.3389/fmats.2024.1461198","DOIUrl":"https://doi.org/10.3389/fmats.2024.1461198","url":null,"abstract":"The residue generated during the production process of alumina, known as red mud, is a type of solid waste. The engineering properties of red mud can be significantly enhanced through the modification and solidification using inorganic materials. This study primarily utilized red mud as the raw material, supplemented with fly ash, lime, and clay, to conduct a solidification experiment of red mud. Orthogonal tests with three factors of two ash ratio (ratio of lime to fly ash), two ash content (total lime and fly ash), and red mud types were designed to study the changes of different ratios and maintenance conditions, etc., on the engineering properties of red mud. In addition, the micro-mechanisms of modified red mud were investigated by means of XRF, XRD, SEM and EDX. The results show that for optimum moisture content, red mud types are the most important influencing factor and for maximum dry density, two ash content is the most important influencing factor. For strength characteristics, the optimum two ash ratio was 1.5:1, the optimum two ash content was 50%, and the optimum red mud types were 70% CRM (red mud made of Chalco Shandong Co., Ltd) mixed with 30% clay. The addition of lime, fly ash, and clay improves the temperature shrinkage coefficient of the red mud. Through the analysis of microscopic composition and structure, it can be seen that goethite (α-FeO(OH)) and magnetite (γ-Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) in the red mud reacted with the modified materials to generate crystalline aluminosilicate and amorphous hydrated silicate gel, and these products together with the original calcium carbonate (CaCO<jats:sub>3</jats:sub>), tricalcium aluminate (Ca3Al2O6) and garnet (Ca<jats:sub>3</jats:sub>TiFeSi<jats:sub>3</jats:sub>O<jats:sub>12</jats:sub>) in the red mud which have certain strengths enhance the structural strength of the modified red mud. The optimum ratio obtained from the combined test results was lime: fly ash: CRM = 30:20:50. Therefore, using lime, fly ash and clay as modified materials can greatly enhance the engineering properties of red mud and realise the resourceful use of red mud.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in the study of AIE polymers AIE 聚合物研究的进展
IF 3.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-14 DOI: 10.3389/fmats.2024.1446307
Yiran Pei, Leixin Liu, Xinfeng Cao, Jian Zhou, Cuiyun Liu
Aggregation-induced emission (AIE) can exhibit different properties in different situations, such as non-emission and highly fluorescent in the dissolved state of the molecule and in the aggregate or solid state, respectively. This property of AIE is distinguished from aggregation-induced quenching (ACQ) or even the opposite. Combining the AIE phenomenon with different polymers yields different polymers with corresponding AIE properties. In this paper, the mechanism, synthesis, branching and application of AIE in the fields of optoelectronic functional materials, sensors, biology, and environment are reviewed. It is hoped that this review will stimulate more research on molecular aggregates and promote further cross-fertilisation and greater development in the disciplines of materials, chemistry and biomedicine.
聚集诱导发射(AIE)在不同的情况下会表现出不同的性质,例如在分子溶解状态和聚集状态或固体状态下分别表现为不发射和高荧光。AIE 的这种特性有别于聚集诱导淬灭(ACQ),甚至相反。将 AIE 现象与不同的聚合物相结合,可以得到具有相应 AIE 特性的不同聚合物。本文综述了 AIE 的机理、合成、分支以及在光电功能材料、传感器、生物和环境领域的应用。希望这篇综述能激发更多关于分子聚合体的研究,促进材料、化学和生物医学学科的进一步交叉融合和更大发展。
{"title":"Advances in the study of AIE polymers","authors":"Yiran Pei, Leixin Liu, Xinfeng Cao, Jian Zhou, Cuiyun Liu","doi":"10.3389/fmats.2024.1446307","DOIUrl":"https://doi.org/10.3389/fmats.2024.1446307","url":null,"abstract":"Aggregation-induced emission (AIE) can exhibit different properties in different situations, such as non-emission and highly fluorescent in the dissolved state of the molecule and in the aggregate or solid state, respectively. This property of AIE is distinguished from aggregation-induced quenching (ACQ) or even the opposite. Combining the AIE phenomenon with different polymers yields different polymers with corresponding AIE properties. In this paper, the mechanism, synthesis, branching and application of AIE in the fields of optoelectronic functional materials, sensors, biology, and environment are reviewed. It is hoped that this review will stimulate more research on molecular aggregates and promote further cross-fertilisation and greater development in the disciplines of materials, chemistry and biomedicine.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1