Pub Date : 2023-09-01DOI: 10.1088/2631-6331/acfa7f
A. Praveen Kumar, KESHAV KUMAR A
Abstract Thin-walled energy absorbing structures based on hybrid structural concepts have a lightweight benefit along with great potential of enhancing the crashworthiness characteristics. Inspired by the huge number of research investigations performed on novel additively manufactured hybrid metal-composite configurations and their latest developments, the current review article extensively reports the latest advances along with promising outcomes of the impact response of various additively manufactured hybrid metal-composite structures for crashworthiness applications. Specific consideration is given to the crushing performance of the hybrid structures fabricated from fused deposition modelling technique. The significant additive manufacturing techniques, their material selections and exceptional customized structural designs explored in recent times are discussed elaborately. Crushing patterns obtained by hybrid energy absorbing structures under various loading conditions are recognized. Furthermore, comparison of various hybrid structures and their latest advances revealed the efficiency of the thin-walled hybrid configuration based on 3D printing techniques in terms of weight reduction, crashworthiness and energy absorption behaviour. This review article will serve as a catalyst to boost the scientific improvement of hybrid energy absorbing structures utilized as passive safety protective devices in modern vehicles.
{"title":"Impact crushing response of additively manufactured hybrid metal-composite structures – A state of the art review","authors":"A. Praveen Kumar, KESHAV KUMAR A","doi":"10.1088/2631-6331/acfa7f","DOIUrl":"https://doi.org/10.1088/2631-6331/acfa7f","url":null,"abstract":"Abstract Thin-walled energy absorbing structures based on hybrid structural concepts have a lightweight benefit along with great potential of enhancing the crashworthiness characteristics. Inspired by the huge number of research investigations performed on novel additively manufactured hybrid metal-composite configurations and their latest developments, the current review article extensively reports the latest advances along with promising outcomes of the impact response of various additively manufactured hybrid metal-composite structures for crashworthiness applications. Specific consideration is given to the crushing performance of the hybrid structures fabricated from fused deposition modelling technique. The significant additive manufacturing techniques, their material selections and exceptional customized structural designs explored in recent times are discussed elaborately. Crushing patterns obtained by hybrid energy absorbing structures under various loading conditions are recognized. Furthermore, comparison of various hybrid structures and their latest advances revealed the efficiency of the thin-walled hybrid configuration based on 3D printing techniques in terms of weight reduction, crashworthiness and energy absorption behaviour. This review article will serve as a catalyst to boost the scientific improvement of hybrid energy absorbing structures utilized as passive safety protective devices in modern vehicles.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135348930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.1088/2631-6331/acf113
S. Montayev, K. Narikov, B. Shakeshev, A. Taudaeva, Karzhaubai Zh Dosov
The purpose of the study was to explore the effect of various pore-forming additives on the porosity and permeability of alumina ceramic material. Analysis of mineralogical, particle size distribution and chemical composition of raw materials and ceramics samples was performed using standard research methods, JCM-6000 (JEOL) and field emission scanning electron microscopy (FESEM) microscopes, LW600LT, x-ray diffractometer Rigaku D/max-RA, Hitachi SU-70 and Pore Master. The microstructure of the composite ceramic material in all experiments demonstrated the presence of numerous cross-sectionally elongated pores, which proves the dependence of the pore-forming structure on the shape of the pore-forming agent. The high permeability of samples with lignin is due to the improved plastic properties of the clays. By increasing the clay content from 5 to 10 wt.% it was possible to increase the sintering density of the samples and reduce their overall porosity. The permeability porosity increases with the introduction of more urea, and the strength of the samples is then at its maximum. Samples with the addition of lignin demonstrated resistance to mechanical stress and high permeability. The study identifies the prospects of using crystallised urea and lignin from manufacturing waste as a pore former, which will allow the establishment of environmentally friendly ceramic materials with high permeability and durability and solve the problem of atmospheric pollution.
{"title":"Influence of a powder-forming additive on the physical-mechanical properties and structure of a ceramic material","authors":"S. Montayev, K. Narikov, B. Shakeshev, A. Taudaeva, Karzhaubai Zh Dosov","doi":"10.1088/2631-6331/acf113","DOIUrl":"https://doi.org/10.1088/2631-6331/acf113","url":null,"abstract":"The purpose of the study was to explore the effect of various pore-forming additives on the porosity and permeability of alumina ceramic material. Analysis of mineralogical, particle size distribution and chemical composition of raw materials and ceramics samples was performed using standard research methods, JCM-6000 (JEOL) and field emission scanning electron microscopy (FESEM) microscopes, LW600LT, x-ray diffractometer Rigaku D/max-RA, Hitachi SU-70 and Pore Master. The microstructure of the composite ceramic material in all experiments demonstrated the presence of numerous cross-sectionally elongated pores, which proves the dependence of the pore-forming structure on the shape of the pore-forming agent. The high permeability of samples with lignin is due to the improved plastic properties of the clays. By increasing the clay content from 5 to 10 wt.% it was possible to increase the sintering density of the samples and reduce their overall porosity. The permeability porosity increases with the introduction of more urea, and the strength of the samples is then at its maximum. Samples with the addition of lignin demonstrated resistance to mechanical stress and high permeability. The study identifies the prospects of using crystallised urea and lignin from manufacturing waste as a pore former, which will allow the establishment of environmentally friendly ceramic materials with high permeability and durability and solve the problem of atmospheric pollution.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41790674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-21DOI: 10.1088/2631-6331/acf272
J. Gaur, Sanjeev Kumar, M. Pal, H. Kaur, Ramneet Kaur Rana, K. Bala, P. Singh, Changanamkandath Rajesh, Supreet .
In this research, the photocatalytic and seed germination potentials of bio-functionalized, as-synthesized zinc oxide (ZnO) nanoparticles (NPs) were investigated. ZnO NPs were created by reducing zinc acetate hexahydrate with a citrus limetta (C. limetta) peel extract. The hexagonal wurtzite crystal was observed in C. limetta/ZnO NPs, with crystallite diameters ranging from 50 to 60 nm and an energy-band gap of 3.08 eV. Fourier-transform infrared spectrum confirmed the presence of phytochemicals from C. limetta on the surface of the resultant ZnO. The unique, elongated hexagonal bi-pyramidal nanostructures were spread evenly across a vast region, as validated by High-resolution transmission electron microscopy and field emission scanning electron microscope. The highly porous microstructure of C. limetta/ZnO and its large specific surface area of 80.72 m2 g−1 were established by Brunauer–Emmett–Teller analysis. The catalytic performance of C. limetta/ZnO for the decomposition of the industrial reactive yellow 18 dye (RY18) was examined. Under UV light, RY18 dye could be broken down by more than 98% in 100 min. With a minimal energy consumption of 4.34 × 1022 J mol−1, the C. limetta/ZnO NPs demonstrated excellent performance (a quantum yield of 1.79 × 10−4Ϣ and a figure-of-merit of 2.92 × 10−10 mol l J−1g−1h−1). The seed germinating capability of C. limetta/ZnO was investigated first time for the Brassica juncea crop. The germination and development of Brassica juncea seed were greatly enhanced by priming with C limetta/ZnO. Hence, C. limetta/ZnO NPs are identified as photocatalytic and seed-germinating agents with remarkable efficiency.
在本研究中,研究了生物功能化的合成氧化锌(ZnO)纳米颗粒(NP)的光催化和种子发芽潜力。ZnO NP是通过用柑橘酸橙(C.limetta)果皮提取物还原六水合乙酸锌而产生的。在C.limetta/ZnO NPs中观察到六方纤锌矿晶体,其晶粒直径范围为50至60nm,能带隙为3.08eV。傅里叶变换红外光谱证实在所得ZnO的表面上存在C.limetta的植物化学物质。高分辨率透射电子显微镜和场发射扫描电子显微镜证实,独特的细长六边形双金字塔纳米结构均匀分布在广阔的区域。Brunauer–Emmett–Teller分析建立了C.limetta/ZnO的高度多孔微观结构及其80.72 m2 g−1的大比表面积。考察了石灰塔/氧化锌对工业活性黄18染料(RY18)的催化性能。在紫外光下,RY18染料可以在100分钟内分解98%以上。在4.34×1022 J mol−1的最小能耗下,C.limetta/ZnO纳米颗粒表现出优异的性能(量子产率为1.79×10−4Ϣ,优值为2.92×10−10 mol l J−1g−1h−1)。首次研究了酸橙花/ZnO对芥菜种子发芽能力的影响。柠檬酸锌对芥菜种子的发芽和发育有明显的促进作用。因此,C.limetta/ZnO纳米粒子被认为是具有显著效率的光催化和种子发芽剂。
{"title":"Bio-functionalized, elongated hexagonal bi-pyramidal, citrus limetta/ZnO nanostructures as potential photocatalytic and seed germinating agents","authors":"J. Gaur, Sanjeev Kumar, M. Pal, H. Kaur, Ramneet Kaur Rana, K. Bala, P. Singh, Changanamkandath Rajesh, Supreet .","doi":"10.1088/2631-6331/acf272","DOIUrl":"https://doi.org/10.1088/2631-6331/acf272","url":null,"abstract":"In this research, the photocatalytic and seed germination potentials of bio-functionalized, as-synthesized zinc oxide (ZnO) nanoparticles (NPs) were investigated. ZnO NPs were created by reducing zinc acetate hexahydrate with a citrus limetta (C. limetta) peel extract. The hexagonal wurtzite crystal was observed in C. limetta/ZnO NPs, with crystallite diameters ranging from 50 to 60 nm and an energy-band gap of 3.08 eV. Fourier-transform infrared spectrum confirmed the presence of phytochemicals from C. limetta on the surface of the resultant ZnO. The unique, elongated hexagonal bi-pyramidal nanostructures were spread evenly across a vast region, as validated by High-resolution transmission electron microscopy and field emission scanning electron microscope. The highly porous microstructure of C. limetta/ZnO and its large specific surface area of 80.72 m2 g−1 were established by Brunauer–Emmett–Teller analysis. The catalytic performance of C. limetta/ZnO for the decomposition of the industrial reactive yellow 18 dye (RY18) was examined. Under UV light, RY18 dye could be broken down by more than 98% in 100 min. With a minimal energy consumption of 4.34 × 1022 J mol−1, the C. limetta/ZnO NPs demonstrated excellent performance (a quantum yield of 1.79 × 10−4Ϣ and a figure-of-merit of 2.92 × 10−10 mol l J−1g−1h−1). The seed germinating capability of C. limetta/ZnO was investigated first time for the Brassica juncea crop. The germination and development of Brassica juncea seed were greatly enhanced by priming with C limetta/ZnO. Hence, C. limetta/ZnO NPs are identified as photocatalytic and seed-germinating agents with remarkable efficiency.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"5 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41343788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-17DOI: 10.1088/2631-6331/acf124
Seonghwan Lee, Young‐Bin Park
The rapid depletion and adverse environmental impacts of fossil fuels necessitate the development of alternative sources of sustainable and ecofriendly energy to address the increasing energy demand due to population growth and technological advancement. Energy harvesting is a major strategy for the generation of sustainable and clean energy. It involves the scavenging and subsequent conversion of the energy from the surroundings into usable electrical energy. In this study, the conversion of the mechanical energy externally applied to a carbon-fiber-reinforced plastic (CFRP)-based structure into electrical energy using a triboelectric nanogenerator (TENG) was demonstrated. CFRPs are ultralight composites with high strength and stiffness, and they are primarily utilized in aircraft and automobiles. CFRP was the primary component of the CFRP-based TENG (CFRP-TENG) developed in this study. The carbon fibers of the CFRP acted as an electrode. Polyamide 6, which corresponded to the matrix of the CFRP, and polytetrafluoroethylene, which was attached to the surface of the CFRP, acted as friction pairs. The CFRP-TENG generated a voltage, short-circuit current, and power of up to 62 V, 7.76 μA, and 400 mW m−2, respectively, with an optimal external resistance of 20 MΩ. A structural CFRP was successfully applied as a TENG in this study; thus, the possibility of transforming a CFRP-based structure into a self-powering structure was demonstrated. The technique used in this study is expected to serve as a novel approach for energy generation in cyber-physical systems. This will facilitate the attachment of self-supporting energy systems such as sensors, power management systems, and actuators to the human body without additional batteries.
{"title":"Contact–separation mode triboelectric nanogenerator utilizing carbon-fiber composite structure for harvesting mechanical energy","authors":"Seonghwan Lee, Young‐Bin Park","doi":"10.1088/2631-6331/acf124","DOIUrl":"https://doi.org/10.1088/2631-6331/acf124","url":null,"abstract":"The rapid depletion and adverse environmental impacts of fossil fuels necessitate the development of alternative sources of sustainable and ecofriendly energy to address the increasing energy demand due to population growth and technological advancement. Energy harvesting is a major strategy for the generation of sustainable and clean energy. It involves the scavenging and subsequent conversion of the energy from the surroundings into usable electrical energy. In this study, the conversion of the mechanical energy externally applied to a carbon-fiber-reinforced plastic (CFRP)-based structure into electrical energy using a triboelectric nanogenerator (TENG) was demonstrated. CFRPs are ultralight composites with high strength and stiffness, and they are primarily utilized in aircraft and automobiles. CFRP was the primary component of the CFRP-based TENG (CFRP-TENG) developed in this study. The carbon fibers of the CFRP acted as an electrode. Polyamide 6, which corresponded to the matrix of the CFRP, and polytetrafluoroethylene, which was attached to the surface of the CFRP, acted as friction pairs. The CFRP-TENG generated a voltage, short-circuit current, and power of up to 62 V, 7.76 μA, and 400 mW m−2, respectively, with an optimal external resistance of 20 MΩ. A structural CFRP was successfully applied as a TENG in this study; thus, the possibility of transforming a CFRP-based structure into a self-powering structure was demonstrated. The technique used in this study is expected to serve as a novel approach for energy generation in cyber-physical systems. This will facilitate the attachment of self-supporting energy systems such as sensors, power management systems, and actuators to the human body without additional batteries.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48692689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-16DOI: 10.1088/2631-6331/acf114
Mohammed Huzaifa Mulla, M. N. Norizan, Che Ku Abdullah, Nurul Fazita Mohd Rawi, Mohamad Haafiz Mohamad Kassim, N. Abdullah, M. Norrrahim, M. E. M. Soudagar
Natural fibre-reinforced polymer composites (NFRPC) are versatile and applicable materials for structural applications that require durability and reliability under various forces. However, these composites are susceptible to crack formation when exposed to low-velocity impact (LVI) loads, compromising their functionality and performance. Therefore, it is essential to investigate the influence of LVI on NFRPC and their characterization methods, testing standards, and failure mechanisms. This paper reviews the latest research and development on the characterization, testing, and modelling of NFRPCs under LVI loads. It also explores the impact behaviour of various natural fibres, such as kenaf, bamboo, mallow, buriti, and curaua, and the effect of fibre hybridization and nanofiller incorporation on the LVI response of NFRPCs. The paper evaluates the properties, failure mechanisms, and applications of NFRPCs in relation to LVI resistance. The paper provides useful information for developing advanced composite systems and achieving material efficiency for various structural applications. Finally, it highlights the potential applications and challenges of NFRPC as LVI-resistant materials for advanced composite systems.
{"title":"Low velocity impact performance of natural fibre reinforced polymer composites: a review","authors":"Mohammed Huzaifa Mulla, M. N. Norizan, Che Ku Abdullah, Nurul Fazita Mohd Rawi, Mohamad Haafiz Mohamad Kassim, N. Abdullah, M. Norrrahim, M. E. M. Soudagar","doi":"10.1088/2631-6331/acf114","DOIUrl":"https://doi.org/10.1088/2631-6331/acf114","url":null,"abstract":"Natural fibre-reinforced polymer composites (NFRPC) are versatile and applicable materials for structural applications that require durability and reliability under various forces. However, these composites are susceptible to crack formation when exposed to low-velocity impact (LVI) loads, compromising their functionality and performance. Therefore, it is essential to investigate the influence of LVI on NFRPC and their characterization methods, testing standards, and failure mechanisms. This paper reviews the latest research and development on the characterization, testing, and modelling of NFRPCs under LVI loads. It also explores the impact behaviour of various natural fibres, such as kenaf, bamboo, mallow, buriti, and curaua, and the effect of fibre hybridization and nanofiller incorporation on the LVI response of NFRPCs. The paper evaluates the properties, failure mechanisms, and applications of NFRPCs in relation to LVI resistance. The paper provides useful information for developing advanced composite systems and achieving material efficiency for various structural applications. Finally, it highlights the potential applications and challenges of NFRPC as LVI-resistant materials for advanced composite systems.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44639741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-11DOI: 10.1088/2631-6331/ace3a1
Reza Emrahi, Y. Rostamiyan, Mehdi Hashemi-Tilehnoee
Carbon fiber are of great importance materials exploited in various industrial applications in the recent years. Because of its strong flexural and compressive properties, these fibers have been commonly utilized as a reinforcement for producing polymer composite laminates. Carbon fiber-reinforced polymer (CFRP) laminates are subjected to extreme forces and damaged. In the component assembly of the structures, one of the conventional damages that still occurs on the CFRP laminates is holes that is created on the specimen by drilling tools, which causes a reduction in the laminates’ mechanical strength. One of the suggested ways to strengthen the mechanical properties of composites is to add nanoparticles. Therefore, the impact of silica nanoparticles (nano-SiO2) on the tensile, flexural, and compressive characteristics of the open-hole CFRP laminated composites is experimentally determined in this research. Nano-SiO2 with various weight percentage of 0, 1, 2, 3, and 4 is added into the CFRP. A scanning electron microscope images are used to observe the microscopic structure of the composites. The results showed that adding 1–3 wt.% of nano-SiO2 into the CFRP enhances the tensile, flexural, and compressive strength of the specimens and reduces the fiber pull out and delamination.
{"title":"Influences of nano-SiO2 on the tensile, flexural, and compressive characteristics of the open-hole carbon fiber-reinforced polymer laminated composites: experimental study","authors":"Reza Emrahi, Y. Rostamiyan, Mehdi Hashemi-Tilehnoee","doi":"10.1088/2631-6331/ace3a1","DOIUrl":"https://doi.org/10.1088/2631-6331/ace3a1","url":null,"abstract":"Carbon fiber are of great importance materials exploited in various industrial applications in the recent years. Because of its strong flexural and compressive properties, these fibers have been commonly utilized as a reinforcement for producing polymer composite laminates. Carbon fiber-reinforced polymer (CFRP) laminates are subjected to extreme forces and damaged. In the component assembly of the structures, one of the conventional damages that still occurs on the CFRP laminates is holes that is created on the specimen by drilling tools, which causes a reduction in the laminates’ mechanical strength. One of the suggested ways to strengthen the mechanical properties of composites is to add nanoparticles. Therefore, the impact of silica nanoparticles (nano-SiO2) on the tensile, flexural, and compressive characteristics of the open-hole CFRP laminated composites is experimentally determined in this research. Nano-SiO2 with various weight percentage of 0, 1, 2, 3, and 4 is added into the CFRP. A scanning electron microscope images are used to observe the microscopic structure of the composites. The results showed that adding 1–3 wt.% of nano-SiO2 into the CFRP enhances the tensile, flexural, and compressive strength of the specimens and reduces the fiber pull out and delamination.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45790561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-02DOI: 10.1088/2631-6331/acdb45
Jae-An Jeon, Sangeui Lee
Interlaminar shear strength (ILSS) indicates the resistance to interlaminar delamination of fiber-reinforced composite structures. The short beam shear (SBS) method has been commonly used for ILSS measurement, but unwanted failure modes can appear like a compressive or tensile failure in surface, and diagonal shear failure, causing poor measurement accuracy. The lap joint method has advantage that leading to a clear measurement of the shear strength. This paper proposed the lap joint method for extracting ILSS values of co-cured carbon or glass fiber-reinforced fabric composites (CFRC or GFRC) by minimizing the discrepancy between the experiment and finite element analysis of ILSS test. The lap joint method can compensate for the shortcomings of the SBS method. The calculated ILSS based on the lap joint method (LJ-ILSS) with correction factors showed similar values to the ILSS values by SBS method (SBS-ILSS) done by our work and other works of literature. Therefore, the proposed lap joint method has shown potential as a method to measure ILSS of the co-cured fiber-reinforced fabric composites, but also it can be extended to other types of fiber-reinforced composites.
{"title":"Evaluation of interlaminar shear strength of co-cured fiber-reinforced fabric composite structures by lap joint method","authors":"Jae-An Jeon, Sangeui Lee","doi":"10.1088/2631-6331/acdb45","DOIUrl":"https://doi.org/10.1088/2631-6331/acdb45","url":null,"abstract":"Interlaminar shear strength (ILSS) indicates the resistance to interlaminar delamination of fiber-reinforced composite structures. The short beam shear (SBS) method has been commonly used for ILSS measurement, but unwanted failure modes can appear like a compressive or tensile failure in surface, and diagonal shear failure, causing poor measurement accuracy. The lap joint method has advantage that leading to a clear measurement of the shear strength. This paper proposed the lap joint method for extracting ILSS values of co-cured carbon or glass fiber-reinforced fabric composites (CFRC or GFRC) by minimizing the discrepancy between the experiment and finite element analysis of ILSS test. The lap joint method can compensate for the shortcomings of the SBS method. The calculated ILSS based on the lap joint method (LJ-ILSS) with correction factors showed similar values to the ILSS values by SBS method (SBS-ILSS) done by our work and other works of literature. Therefore, the proposed lap joint method has shown potential as a method to measure ILSS of the co-cured fiber-reinforced fabric composites, but also it can be extended to other types of fiber-reinforced composites.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48825790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-11DOI: 10.1088/2631-6331/acd490
Chongyang Xu, Guiyuan Duan, Wei Xu, Xingzhu Wang, Yang Huang, Xiangyang Zhang, Huaxin Zhu, Ben-Xin Wang
In this paper, a thermally tunable broadband metamaterial absorber, with switchable functionality in the terahertz band, consisted of periodically arranged vanadium dioxide (VO2) and a gold film separated by a layer of polyimide is reported, which is capable of switching from absorber to reflector through the phase change property of VO2. When VO2 is in the metallic state, three near-perfect absorption peaks localized at 3.48 THz, 5.09 THz and 7.05 THz are obtained, and the combination of them gives rise to a broadband absorption, more than 90% of absolute absorption bandwidth reaches 4.35 THz (3.1–7.45 THz) with a relative absorption bandwidth of 82.46%. When VO2 is in the dielectric state, it can switch from near-perfect broadband absorption to near-perfect reflection with the maximum intensity modulation of 92.4%. The broadband absorption is insensitive to polarization of incident beam due to symmetrical structure design and exhibits excellent tolerance for large oblique incidence angle. In addition, size changes of patterned VO2 array structure provides a large impact on the absorption performance of the thermally tunable device, especially the absorption bandwidth. Our proposed device is expected to have outstanding prospects in terahertz thermal imaging, communications, and temperature-controlled metasurface.
{"title":"Thermally tunable vanadium-dioxide-based broadband metamaterial absorber with switchable functionality in the terahertz band","authors":"Chongyang Xu, Guiyuan Duan, Wei Xu, Xingzhu Wang, Yang Huang, Xiangyang Zhang, Huaxin Zhu, Ben-Xin Wang","doi":"10.1088/2631-6331/acd490","DOIUrl":"https://doi.org/10.1088/2631-6331/acd490","url":null,"abstract":"In this paper, a thermally tunable broadband metamaterial absorber, with switchable functionality in the terahertz band, consisted of periodically arranged vanadium dioxide (VO2) and a gold film separated by a layer of polyimide is reported, which is capable of switching from absorber to reflector through the phase change property of VO2. When VO2 is in the metallic state, three near-perfect absorption peaks localized at 3.48 THz, 5.09 THz and 7.05 THz are obtained, and the combination of them gives rise to a broadband absorption, more than 90% of absolute absorption bandwidth reaches 4.35 THz (3.1–7.45 THz) with a relative absorption bandwidth of 82.46%. When VO2 is in the dielectric state, it can switch from near-perfect broadband absorption to near-perfect reflection with the maximum intensity modulation of 92.4%. The broadband absorption is insensitive to polarization of incident beam due to symmetrical structure design and exhibits excellent tolerance for large oblique incidence angle. In addition, size changes of patterned VO2 array structure provides a large impact on the absorption performance of the thermally tunable device, especially the absorption bandwidth. Our proposed device is expected to have outstanding prospects in terahertz thermal imaging, communications, and temperature-controlled metasurface.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45990486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-11DOI: 10.1088/2631-6331/acd48f
E. O. Oyedeji, Mohammed Dauda, S. Yaro, M. Abdulwahab, Ayodeji Nathaniel Oyedeji
Due to heavy usage and rising populations, there is a growing need for local and naturally derived materials in the automotive and aerospace industries. Furthermore, due to their excellent mechanical qualities and high strength-to-weight ratio, composite materials are expected to perform better than traditional materials, particularly in automotive and aerospace applications. According to this perspective, this research aims to investigate the effects of optimal compositions of Al–Mg–Si alloy reinforced with palm kernel shell ash (PKSA) particles on dynamic mechanical characteristics of the composite produced via the powder metallurgy route. PKSA compositions of 0, 2, 4, 6, 8, 10 and 12 wt% as reinforcement on Al–Mg–Si powder were used to evaluate the static tensile strength of the produced composites. In this study, the damping factor, change in length, flexural, storage, and loss moduli were determined. In addition, the produced composites’ bulk density, hardness, creep, and dynamic mechanical thermal analysis were also investigated. According to the study’s morphology result, recrystallisation of the powdered composition during ball milling increased dislocation density and harder phases in the PKSA, contributing to the PKSA’s better characteristics. Furthermore, the optimum weight percentage of 6.0 wt% of PKSA (Sample C4) has significant properties compared to the unreinforced (control) sample and was also found to have improved storage modulus, loss modulus, and damping behaviour. These findings showed that the developed composite, particularly sample C4, may be used in various technical applications, including automotive and aerospace industries.
{"title":"Analysis of Al–Mg–Si alloy reinforced with optimal palm kernel shell ash particle and its impact on dynamic properties for sounding rocket application","authors":"E. O. Oyedeji, Mohammed Dauda, S. Yaro, M. Abdulwahab, Ayodeji Nathaniel Oyedeji","doi":"10.1088/2631-6331/acd48f","DOIUrl":"https://doi.org/10.1088/2631-6331/acd48f","url":null,"abstract":"Due to heavy usage and rising populations, there is a growing need for local and naturally derived materials in the automotive and aerospace industries. Furthermore, due to their excellent mechanical qualities and high strength-to-weight ratio, composite materials are expected to perform better than traditional materials, particularly in automotive and aerospace applications. According to this perspective, this research aims to investigate the effects of optimal compositions of Al–Mg–Si alloy reinforced with palm kernel shell ash (PKSA) particles on dynamic mechanical characteristics of the composite produced via the powder metallurgy route. PKSA compositions of 0, 2, 4, 6, 8, 10 and 12 wt% as reinforcement on Al–Mg–Si powder were used to evaluate the static tensile strength of the produced composites. In this study, the damping factor, change in length, flexural, storage, and loss moduli were determined. In addition, the produced composites’ bulk density, hardness, creep, and dynamic mechanical thermal analysis were also investigated. According to the study’s morphology result, recrystallisation of the powdered composition during ball milling increased dislocation density and harder phases in the PKSA, contributing to the PKSA’s better characteristics. Furthermore, the optimum weight percentage of 6.0 wt% of PKSA (Sample C4) has significant properties compared to the unreinforced (control) sample and was also found to have improved storage modulus, loss modulus, and damping behaviour. These findings showed that the developed composite, particularly sample C4, may be used in various technical applications, including automotive and aerospace industries.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49225168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-19DOI: 10.1088/2631-6331/acce30
O. Gülcan, K. Günaydın, A. Tamer
Many engineering structures, especially defense applications, need to be reinforced against blast loads due to a nearby explosion. Today, much more attention needs to be given to this issue because of increased exposure to explosions, and natural disasters. Different solutions have been used in the literature to mitigate blast-loading effects. One of these applications, sandwich panels, are a good candidate for blast-loading applications. In a sandwich panel structure, several parameters have considerable effects on deflections, deformations, and energy absorption capability. The most important of these parameters are: (i) the material and thickness of the front and back face sheets and core; (ii) core density and grading; (iii) core and face sheet types; (iv) filling and stiffening strategies of the core; (v) radius of curvature of the panel; (vi) mass of explosive charge; and (vii) standoff distance. The aim of this paper is to review these critical aspects of blast loading of sandwich panels to provide an overall insight into the state of the art of the application.
{"title":"The effect of geometrical parameters on blast resistance of sandwich panels—a review","authors":"O. Gülcan, K. Günaydın, A. Tamer","doi":"10.1088/2631-6331/acce30","DOIUrl":"https://doi.org/10.1088/2631-6331/acce30","url":null,"abstract":"Many engineering structures, especially defense applications, need to be reinforced against blast loads due to a nearby explosion. Today, much more attention needs to be given to this issue because of increased exposure to explosions, and natural disasters. Different solutions have been used in the literature to mitigate blast-loading effects. One of these applications, sandwich panels, are a good candidate for blast-loading applications. In a sandwich panel structure, several parameters have considerable effects on deflections, deformations, and energy absorption capability. The most important of these parameters are: (i) the material and thickness of the front and back face sheets and core; (ii) core density and grading; (iii) core and face sheet types; (iv) filling and stiffening strategies of the core; (v) radius of curvature of the panel; (vi) mass of explosive charge; and (vii) standoff distance. The aim of this paper is to review these critical aspects of blast loading of sandwich panels to provide an overall insight into the state of the art of the application.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46595665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}