Reversible transitions between epithelial and mesenchymal cell states are a crucial form of epithelial plasticity for development and disease progression. Recent experimental data and mechanistic models showed multiple intermediate epithelial–mesenchymal transition (EMT) states as well as trajectories of EMT underpinned by complex gene regulatory networks. In this review, we summarize recent progress in quantifying EMT and characterizing EMT paths with computational methods and quantitative experiments including omics-level measurements. We provide perspectives on how these studies can help relating fundamental cell biology to physiological and pathological outcomes of EMT.
{"title":"Data- and theory-driven approaches for understanding paths of epithelial–mesenchymal transition","authors":"Tian Hong, Jianhua Xing","doi":"10.1002/dvg.23591","DOIUrl":"10.1002/dvg.23591","url":null,"abstract":"<p>Reversible transitions between epithelial and mesenchymal cell states are a crucial form of epithelial plasticity for development and disease progression. Recent experimental data and mechanistic models showed multiple intermediate epithelial–mesenchymal transition (EMT) states as well as trajectories of EMT underpinned by complex gene regulatory networks. In this review, we summarize recent progress in quantifying EMT and characterizing EMT paths with computational methods and quantitative experiments including omics-level measurements. We provide perspectives on how these studies can help relating fundamental cell biology to physiological and pathological outcomes of EMT.</p>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.23591","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Denise G. Lanza, Jianqiang Mao, Isabel Lorenzo, Lan Liao, John R. Seavitt, M. Cecilia Ljungberg, Elizabeth M. Simpson, Francesco J. DeMayo, Jason D. Heaney