This study has compared the ability of paramagnetic element oxides i.e. Pr, Eu, Yb in catalyst oxidation of methane. These have been prepared by precipitation, and then calcined at 600°C to get M2O3. Methane was then passed through a disk in KBr, and the reactions were conducted at room temperature; 200°C and then 300°C. The reaction products were then identified by F.T.I.R spectroscopy. It was observed that these oxides have extracted the protons from methane and the CH3·radicals were evidently formed. This focused radical react further to give CH3O, C2H6 and the formation of Propionic acid is reported as one of the catalytic reaction products. The study also indicated the presence of aromatic products and in some instances, phenol was identified. Thereafter, the mechanism of the reaction was envisaged. For all the catalysts the conversion increases relatively with increasing the reaction temperature. The study can deduce that these oxides have the same ability as those of high paramagnetic properties to extract the proton, but the products are trapped and react further on the surface of the oxide.
{"title":"Surface Species Formed during Methane Oxidation over Some Rare Earth Elements Oxides","authors":"M. Al-Dosari","doi":"10.4236/GSC.2018.81001","DOIUrl":"https://doi.org/10.4236/GSC.2018.81001","url":null,"abstract":"This study has compared the ability of paramagnetic element oxides i.e. Pr, Eu, Yb in catalyst oxidation of methane. These have been prepared by precipitation, and then calcined at 600°C to get M2O3. Methane was then passed through a disk in KBr, and the reactions were conducted at room temperature; 200°C and then 300°C. The reaction products were then identified by F.T.I.R spectroscopy. It was observed that these oxides have extracted the protons from methane and the CH3·radicals were evidently formed. This focused radical react further to give CH3O, C2H6 and the formation of Propionic acid is reported as one of the catalytic reaction products. The study also indicated the presence of aromatic products and in some instances, phenol was identified. Thereafter, the mechanism of the reaction was envisaged. For all the catalysts the conversion increases relatively with increasing the reaction temperature. The study can deduce that these oxides have the same ability as those of high paramagnetic properties to extract the proton, but the products are trapped and react further on the surface of the oxide.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":"1 1","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83163382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fanny A. Cabrera-Rivera, Luis G. Hernández-Vázquez, P. Flores-Sánchez, M. Durán-Galván, J. Escalante
It has been found that microwave assisted decarboxylation of malonic acid derivatives can be achieved under solvent-free and catalyst free conditions. This new method produces the corresponding carboxylic acid in a pure manner and with a high yield in a very short reaction time: 3 - 10 min. In general terms, the condition under which this reaction is carried out accelerates the decarboxylation significantly of a series of disubstituted malonic acid derivatives, and makes this new process efficient, easy and environmentally friendly.
{"title":"Solvent- and Catalyst-Free Microwave-Assisted Decarboxylation of Malonic Acid Derivatives","authors":"Fanny A. Cabrera-Rivera, Luis G. Hernández-Vázquez, P. Flores-Sánchez, M. Durán-Galván, J. Escalante","doi":"10.4236/GSC.2017.74021","DOIUrl":"https://doi.org/10.4236/GSC.2017.74021","url":null,"abstract":"It has been found that microwave assisted decarboxylation of malonic acid derivatives can be achieved under solvent-free and catalyst free conditions. This new method produces the corresponding carboxylic acid in a pure manner and with a high yield in a very short reaction time: 3 - 10 min. In general terms, the condition under which this reaction is carried out accelerates the decarboxylation significantly of a series of disubstituted malonic acid derivatives, and makes this new process efficient, easy and environmentally friendly.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":"2010 1","pages":"270-280"},"PeriodicalIF":0.0,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82603910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Konno, Y. Oike, Yasutaka Ohba, Osamu Sasaki, Y. Takiguchi, K. Onoe, Tatsuaki Yamaguchi
The microwave induced argon plasma was applied to the preparation of NaOH-activated carbon from sugar cane bagasse. The distinguished feature of the heating technique with this cold plasma is the short operation time. The carbonization and the activation process were finalized in one step within 3 min. The prepared activated carbon with NaOH ratio 3 to bagasse characterized using N2 adsorption of type IV (IUPAC classification) to give specific surface area of 1980 m2/g and mesopore volume of 0.73 ml/g. It also showed a higher specific capacitance of 201 F/g in 1 M H2SO4 solution (with standard three electrodes) than the corresponding one by the conventional heating, previously reported. The other features were the absence of oxygen groups and the presence of carbon centered stable radicals, detected by ESR spectra, on the surface.
采用微波诱导氩等离子体法制备蔗渣naoh活性炭。这种冷等离子体加热技术的显著特点是操作时间短。炭化和活化过程在3 min内一步完成。制备的NaOH比为3与甘蔗渣的活性炭采用ⅳ型N2吸附(IUPAC分级)表征,比表面积为1980 m2/g,介孔体积为0.73 ml/g。在1 M H2SO4溶液中(标准三电极),比电容为201 F/g,高于传统加热方法。其他特征是表面没有氧基团和碳中心稳定自由基的存在,通过ESR光谱检测到。
{"title":"Short-Time Preparation of NaOH-Activated Carbon from Sugar Cane Bagasse Using Microwave Plasma Heating","authors":"K. Konno, Y. Oike, Yasutaka Ohba, Osamu Sasaki, Y. Takiguchi, K. Onoe, Tatsuaki Yamaguchi","doi":"10.4236/GSC.2017.74020","DOIUrl":"https://doi.org/10.4236/GSC.2017.74020","url":null,"abstract":"The microwave induced argon plasma was applied to the preparation of NaOH-activated carbon from sugar cane bagasse. The distinguished feature of the heating technique with this cold plasma is the short operation time. The carbonization and the activation process were finalized in one step within 3 min. The prepared activated carbon with NaOH ratio 3 to bagasse characterized using N2 adsorption of type IV (IUPAC classification) to give specific surface area of 1980 m2/g and mesopore volume of 0.73 ml/g. It also showed a higher specific capacitance of 201 F/g in 1 M H2SO4 solution (with standard three electrodes) than the corresponding one by the conventional heating, previously reported. The other features were the absence of oxygen groups and the presence of carbon centered stable radicals, detected by ESR spectra, on the surface.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":"38 1","pages":"259-269"},"PeriodicalIF":0.0,"publicationDate":"2017-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91158164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deactivation of solid catalyst often occurs in biodiesel production. In this work, deactivated modified red mud catalysts used in biodiesel production were regenerated with hexane and calcination treatments. The deactivated and regenerated catalysts were characterized using XRD, FTIR, SEM, TG, N2 adsorption, measured for their basic strength, and tested in the transesterification of canola oil. The results revealed that the main cause of the catalyst deactivation is due to obstruction of the active sites by contaminants. The regeneration by washing with hexane followed by calcination can effectively improve the properties of the deactivated catalyst and increase its catalytic activity.
{"title":"Study on Deactivation and Regeneration of Modified Red Mud Catalyst Used in Biodiesel Production","authors":"A. Wahyudi, W. Kurniawan, H. Hinode","doi":"10.4236/GSC.2017.74019","DOIUrl":"https://doi.org/10.4236/GSC.2017.74019","url":null,"abstract":"Deactivation of solid catalyst often occurs in biodiesel production. In this work, deactivated modified red mud catalysts used in biodiesel production were regenerated with hexane and calcination treatments. The deactivated and regenerated catalysts were characterized using XRD, FTIR, SEM, TG, N2 adsorption, measured for their basic strength, and tested in the transesterification of canola oil. The results revealed that the main cause of the catalyst deactivation is due to obstruction of the active sites by contaminants. The regeneration by washing with hexane followed by calcination can effectively improve the properties of the deactivated catalyst and increase its catalytic activity.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":"12 1","pages":"247-258"},"PeriodicalIF":0.0,"publicationDate":"2017-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88671885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dry Matter (DM) is a powdery substance which is composed of micro droplets and surrounding hydrophobic silica nanoparticles. Because of the much larger surface area than that of the corresponding bulk liquid, DM, which contains amino-functionalized ionic liquids (ILs), is a promising CO2 absorption material provided with quick absorption speed. In the present study, we successfully prepared powdery DMs by utilizing aqueous solutions of amino acid-based ILs (tetraethylammonium glycine [N2222][Gly], and tetraethylammonium alanine [N2222][Ala]). Although a DM with lysine-based IL (N2222) [Lys]) was also prepared, only a souffle-like material was obtained. We measured CO2 absorption performance for the DMs to find that the mass-base absorption ability (mass-base A.A.) (CO2 mol/DM kg) and the mol-base one (CO2 mol/IL mol) of [N2222][Lys] were ca. two times of [N2222][Gly] and [N2222][Ala], while the absorption speed of the former was inferior to the latter two, i.e., ca.15 min vs. 5 min for 90% absorption. In order to improve the mass-base A.A. of [N2222][Gly], we used 10% of aqueous poly(allylamine) (PAlAm) solution instead of water. The resultant mass-base A.A. proved to be significantly larger (1.9) than either of those of the respective single component systems (1.1 and 0.75 for the bulk IL and aq. PAlAm, respectively), and comparable to the A.A. (1.6 - 2.5) of 20% - 30% monoethanolamine solution which is commonly used in industrial application.
干物质(DM)是一种由微液滴和周围的疏水性二氧化硅纳米颗粒组成的粉状物质。DM含有氨基功能化离子液体(il),由于其比相应的散装液体表面积大得多,吸收速度快,是一种很有前途的CO2吸收材料。在本研究中,我们利用氨基酸基il(四乙基甘氨酸铵[N2222][Gly]和四乙基丙氨酸铵[N2222][Ala])的水溶液成功制备了粉末状DMs。虽然也制备了含有赖氨酸基IL (N2222) [Lys])的DM,但得到的只是蛋奶酥状材料。测定了DMs的CO2吸收性能,发现[N2222][Lys]的质量基吸收能力(质量基a.a) (CO2 mol/DM kg)和摩尔基吸收能力(CO2 mol/IL mol)是[N2222][Gly]和[N2222][Ala]的约2倍,而前者的吸收速度低于后两者,即吸收90%时约15 min vs. 5 min。为了提高[N2222][Gly]的质量基A.A.,我们用10%的聚烯丙胺(PAlAm)水溶液代替水。所得的质量基a.a值(1.9)明显大于各自的单组分体系(散装IL和aq. PAlAm分别为1.1和0.75),并且与工业应用中常用的20% - 30%单乙醇胺溶液的a.a值(1.6 - 2.5)相当。
{"title":"CO 2 Absorption Performance of “Dry Matter” Prepared with Amino Acid-Based Ionic Liquids","authors":"M. Miyake, M. Satoh","doi":"10.4236/GSC.2017.73016","DOIUrl":"https://doi.org/10.4236/GSC.2017.73016","url":null,"abstract":"Dry Matter (DM) is a powdery substance which is composed of micro droplets and surrounding hydrophobic silica nanoparticles. Because of the much larger surface area than that of the corresponding bulk liquid, DM, which contains amino-functionalized ionic liquids (ILs), is a promising CO2 absorption material provided with quick absorption speed. In the present study, we successfully prepared powdery DMs by utilizing aqueous solutions of amino acid-based ILs (tetraethylammonium glycine [N2222][Gly], and tetraethylammonium alanine [N2222][Ala]). Although a DM with lysine-based IL (N2222) [Lys]) was also prepared, only a souffle-like material was obtained. We measured CO2 absorption performance for the DMs to find that the mass-base absorption ability (mass-base A.A.) (CO2 mol/DM kg) and the mol-base one (CO2 mol/IL mol) of [N2222][Lys] were ca. two times of [N2222][Gly] and [N2222][Ala], while the absorption speed of the former was inferior to the latter two, i.e., ca.15 min vs. 5 min for 90% absorption. In order to improve the mass-base A.A. of [N2222][Gly], we used 10% of aqueous poly(allylamine) (PAlAm) solution instead of water. The resultant mass-base A.A. proved to be significantly larger (1.9) than either of those of the respective single component systems (1.1 and 0.75 for the bulk IL and aq. PAlAm, respectively), and comparable to the A.A. (1.6 - 2.5) of 20% - 30% monoethanolamine solution which is commonly used in industrial application.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":"57 1","pages":"203-216"},"PeriodicalIF":0.0,"publicationDate":"2017-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82304540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Claisen rearrangement is a [3,3]-sigmatropic rearrangement which is an important method for new C-C bond formation in organic synthesis. This reaction is a typical thermal reaction that requires a high temperature and long reaction time. In this paper, the acceleration effects of the iron (III) chloride (FeCl3) catalyst and microwave irradiation during the Claisen rearrangement reaction of allyloxyarene derivatives are reported. The FeCl3 catalyst was able to initiate the reaction at low temperature and induced the subsequent cyclization reaction. The moderation of excellent yields was obtained in a short reaction time. The formation of complex ferric-arenes under microwave irradiation conditions to efficiently absorb the microwaves was expected and confirmed.
{"title":"Iron (III) Chloride Catalyzed Claisen Rearrangement Reaction of Allyloxyarenes under Microwave Conditions","authors":"I. N. Pramesti, Y. Okada","doi":"10.4236/GSC.2017.73018","DOIUrl":"https://doi.org/10.4236/GSC.2017.73018","url":null,"abstract":"The Claisen rearrangement is a [3,3]-sigmatropic rearrangement which is an important method for new C-C bond formation in organic synthesis. This reaction is a typical thermal reaction that requires a high temperature and long reaction time. In this paper, the acceleration effects of the iron (III) chloride (FeCl3) catalyst and microwave irradiation during the Claisen rearrangement reaction of allyloxyarene derivatives are reported. The FeCl3 catalyst was able to initiate the reaction at low temperature and induced the subsequent cyclization reaction. The moderation of excellent yields was obtained in a short reaction time. The formation of complex ferric-arenes under microwave irradiation conditions to efficiently absorb the microwaves was expected and confirmed.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":"92 10 1","pages":"234-245"},"PeriodicalIF":0.0,"publicationDate":"2017-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87741669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Buzynin, Yu. N. Buzynin, V. Shengurov, V. Voronkov, A. Menke, A. E. Luk’yanov, V. Panov, N. Baidus
In the present paper, some novel opportunities for the development of high-efficient Si and III-V-based solar cells are considered: energy-saving environment friendly low-temperature technology of forming p-n junctions in Si (1), elaboration of structurally perfect GaAs/Ge/Si epitaxial substrates (2) and application of protective antireflecting coatings based on cubic zirconia (3). As a result: 1) New technique of forming p-n junctions in silicon has been elaborated. The technique provided easy and comparatively cheap process of production of semiconductor devices such as solar cells. The essence of the technique under the study is comprised in formation p-n junctions in silicon by a change of conductivity in the bulk of the sample occurring as a result of redistribution of the impurities, which already exists in the sample before its processing by ions. It differs from the techniques of diffusion and ion doping where change of conductivity and formation of p-n junction in the sample occur as a result of introduction of atoms of the other dopants from the outside; 2) The conditions for synthesis of GaAs/Ge/Si epitaxial substrates with a thin (200 nm) Ge buffer layer featured with (1 - 2) × 105 cm-2 density of the threading dislocation in the GaAs layer. Ge buffer was obtained by chemical vapor deposition with a hot wire and GaAs layer of 1 μm thick was grown by the metal organic chemical vapor deposition. Root mean square surface roughness of GaAs layers of the less than 1 nm and good photoluminescence properties along with their high uniformity were obtained; 3) The conditions ensuring the synthesis of uniform functional (buffer, insulating and protective) fianite layers on Si and GaAs substrates by means of magnetron and electron-beam sputtering have been determined. Fianite films have been shown to be suitable for the use as an ideal anti-reflecting material with high protective and anticorrosive properties.
{"title":"Silicon and III-V Solar Cells: From Modus Vivendi to Modus Operandi","authors":"A. Buzynin, Yu. N. Buzynin, V. Shengurov, V. Voronkov, A. Menke, A. E. Luk’yanov, V. Panov, N. Baidus","doi":"10.4236/GSC.2017.73017","DOIUrl":"https://doi.org/10.4236/GSC.2017.73017","url":null,"abstract":"In the present paper, some novel opportunities for the development of high-efficient Si and III-V-based solar cells are considered: energy-saving environment friendly low-temperature technology of forming p-n junctions in Si (1), elaboration of structurally perfect GaAs/Ge/Si epitaxial substrates (2) and application of protective antireflecting coatings based on cubic zirconia (3). As a result: 1) New technique of forming p-n junctions in silicon has been elaborated. The technique provided easy and comparatively cheap process of production of semiconductor devices such as solar cells. The essence of the technique under the study is comprised in formation p-n junctions in silicon by a change of conductivity in the bulk of the sample occurring as a result of redistribution of the impurities, which already exists in the sample before its processing by ions. It differs from the techniques of diffusion and ion doping where change of conductivity and formation of p-n junction in the sample occur as a result of introduction of atoms of the other dopants from the outside; 2) The conditions for synthesis of GaAs/Ge/Si epitaxial substrates with a thin (200 nm) Ge buffer layer featured with (1 - 2) × 105 cm-2 density of the threading dislocation in the GaAs layer. Ge buffer was obtained by chemical vapor deposition with a hot wire and GaAs layer of 1 μm thick was grown by the metal organic chemical vapor deposition. Root mean square surface roughness of GaAs layers of the less than 1 nm and good photoluminescence properties along with their high uniformity were obtained; 3) The conditions ensuring the synthesis of uniform functional (buffer, insulating and protective) fianite layers on Si and GaAs substrates by means of magnetron and electron-beam sputtering have been determined. Fianite films have been shown to be suitable for the use as an ideal anti-reflecting material with high protective and anticorrosive properties.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":"6 1","pages":"217-233"},"PeriodicalIF":0.0,"publicationDate":"2017-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73141948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeolite catalyzed Friedel-Crafts reactions were examined using acetic anhydride as an acetylating agent and an acetic acid as a solvent. It revealed that the reaction of anisole smoothly occurred quantitatively for 3 h using mordenite zeolite with SiO2/Al2O3 = 200, and with SiO2/Al2O3 = 110, the increasing of Bronsted acidity allowed to completely react within 2 h. Furthermore the selectivity of 4-methoxyacetophenone (4-MA) among the isomers was found to be quantitative, no by-products and/or isomers were not detectable. With the excellent recyclability and reusability, the mordenite zeolite exhibited at least 30 times quantitatively both conversion of anisole and selectivity of 4-MA. The mordenite catalysts of fresh and the used after 30 times were characterized. This opportunity obviously indicates the sufficient shape selective catalyst of mordenite zeolite and gives a green synthetic tool for heterogeneous acylation reaction.
{"title":"A Novel Friedel-Crafts Acylation Reaction of Anisole for Production of 4-Methoxyacetophenone with High Selectivity and Sufficient Reusability of Mordenite Zeolite Catalyst","authors":"M. Makihara, K. Komura","doi":"10.4236/GSC.2017.73014","DOIUrl":"https://doi.org/10.4236/GSC.2017.73014","url":null,"abstract":"Zeolite catalyzed Friedel-Crafts reactions were examined using acetic anhydride as an acetylating agent and an acetic acid as a solvent. It revealed that the reaction of anisole smoothly occurred quantitatively for 3 h using mordenite zeolite with SiO2/Al2O3 = 200, and with SiO2/Al2O3 = 110, the increasing of Bronsted acidity allowed to completely react within 2 h. Furthermore the selectivity of 4-methoxyacetophenone (4-MA) among the isomers was found to be quantitative, no by-products and/or isomers were not detectable. With the excellent recyclability and reusability, the mordenite zeolite exhibited at least 30 times quantitatively both conversion of anisole and selectivity of 4-MA. The mordenite catalysts of fresh and the used after 30 times were characterized. This opportunity obviously indicates the sufficient shape selective catalyst of mordenite zeolite and gives a green synthetic tool for heterogeneous acylation reaction.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":"1 1","pages":"185-192"},"PeriodicalIF":0.0,"publicationDate":"2017-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90716636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Björn Rößiger, R. Röver, Gerd Unkelbach, Daniela Pufky-Heinrich
Objective of this study was the investigation on the up-scaling of base-catalyzed depolymerization (BCD) of lignin to pilot plant dimension. The cleavage process was carried out in dilute alkaline solution at temperatures up to 340°C and a pressure of 25 MPa in a continuously operated tubular flow reactor with throughputs up to 20 kg/h. Investigations included the proof of the feasibility of the scale-up as well as a parameter study on the cleavage of hardwood Organosolv lignin and softwood Kraft lignin within the established pilot plant. Yields and molecular compositions of the isolated product fractions BCD-oil (liquid phenolic fraction) and BCD-oligomers (solid phenolic fraction) are similar to those described in technical lab scale, showing a good scalability. Here, BCD-oils rich in phenolic monomers such as guaiacol, catechol and/or syringol were obtained with a content of up to 13.3 wt% and 14.5 wt% from Organosolv lignin and Kraft lignin, respectively. Formation of BCD-oligomers strongly depends on temperature and residence times within the reactor.
{"title":"Production of Bio-Phenols for Industrial Application: Scale-Up of the Base-Catalyzed Depolymerization of Lignin","authors":"Björn Rößiger, R. Röver, Gerd Unkelbach, Daniela Pufky-Heinrich","doi":"10.4236/GSC.2017.73015","DOIUrl":"https://doi.org/10.4236/GSC.2017.73015","url":null,"abstract":"Objective of this study was the investigation on the up-scaling of base-catalyzed depolymerization (BCD) of lignin to pilot plant dimension. The cleavage process was carried out in dilute alkaline solution at temperatures up to 340°C and a pressure of 25 MPa in a continuously operated tubular flow reactor with throughputs up to 20 kg/h. Investigations included the proof of the feasibility of the scale-up as well as a parameter study on the cleavage of hardwood Organosolv lignin and softwood Kraft lignin within the established pilot plant. Yields and molecular compositions of the isolated product fractions BCD-oil (liquid phenolic fraction) and BCD-oligomers (solid phenolic fraction) are similar to those described in technical lab scale, showing a good scalability. Here, BCD-oils rich in phenolic monomers such as guaiacol, catechol and/or syringol were obtained with a content of up to 13.3 wt% and 14.5 wt% from Organosolv lignin and Kraft lignin, respectively. Formation of BCD-oligomers strongly depends on temperature and residence times within the reactor.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":"54 1","pages":"193-202"},"PeriodicalIF":0.0,"publicationDate":"2017-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79032134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaotian Han, Nicole Rusconi, P. Ali, Kevin Pagkatipunan, Feng Chen
Sustainable development using wastes as resources is a new paradigm. Chicken manure contains rich amounts of nitrogen and phosphorus and has been used as crop fertilizer. However, little is known about whether nutrients of chicken manure are suitable and efficient to support the rapid growth of microalgae. In this study, we explore the possibility of using nutrient extracted from chicken manure to grow microalgae. We used an algal strain Scenedesmus sp. HTB1, which is an oleaginous species with high CO2 tolerance capability. The growth performance of HTB1 on various media amended with nutrient extracted from three different chicken manure sources was monitored and compared to the growth rate of HTB1 grown in the standard medium BG11. Meanwhile, the changes of total nitrogen (N) and phosphorus (P), both organic and inorganic, were measured during the growth period. Culture media enriched with the nutrient extracted from two chicken manure sources outperformed the standard culture medium BG11 in terms of algal biomass production. When cultivated with manure nutrient, HTB1 utilized inorganic N efficiently, but consumed very little organic N during the experimental growth period. However, HTB1 was able to utilize both organic and inorganic phosphorus. We demonstrate that nutrient extracted from chicken manure support rapid growth and high biomass yield in microalgae Scenedesmus obliquus HTB1. Therefore chicken manure holds great promise to be used as a cost-effective and efficient fertilizer for large-scale production of microalgae.
{"title":"Nutrients Extracted from Chicken Manure Accelerate Growth of Microalga Scenedesmus obliquus HTB1","authors":"Xiaotian Han, Nicole Rusconi, P. Ali, Kevin Pagkatipunan, Feng Chen","doi":"10.4236/GSC.2017.72009","DOIUrl":"https://doi.org/10.4236/GSC.2017.72009","url":null,"abstract":"Sustainable development using wastes as resources is a new paradigm. Chicken \u0000manure contains rich amounts of nitrogen and phosphorus and has been \u0000used as crop fertilizer. However, little is known about whether nutrients of \u0000chicken manure are suitable and efficient to support the rapid growth of microalgae. \u0000In this study, we explore the possibility of using nutrient extracted \u0000from chicken manure to grow microalgae. We used an algal strain Scenedesmus sp. HTB1, which is an oleaginous species with high CO2 tolerance capability. \u0000The growth performance of HTB1 on various media amended with nutrient \u0000extracted from three different chicken manure sources was monitored \u0000and compared to the growth rate of HTB1 grown in the standard medium \u0000BG11. Meanwhile, the changes of total nitrogen (N) and phosphorus (P), both \u0000organic and inorganic, were measured during the growth period. Culture media \u0000enriched with the nutrient extracted from two chicken manure sources \u0000outperformed the standard culture medium BG11 in terms of algal biomass \u0000production. When cultivated with manure nutrient, HTB1 utilized inorganic \u0000N efficiently, but consumed very little organic N during the experimental \u0000growth period. However, HTB1 was able to utilize both organic and inorganic \u0000phosphorus. We demonstrate that nutrient extracted from chicken manure \u0000support rapid growth and high biomass yield in microalgae Scenedesmus obliquus HTB1. Therefore chicken manure holds great promise to be used as a \u0000cost-effective and efficient fertilizer for large-scale production of microalgae.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":"16 1","pages":"101-113"},"PeriodicalIF":0.0,"publicationDate":"2017-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72626774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}