Pub Date : 2021-10-06DOI: 10.1177/25165984211045244
V. Jain, D. Patel, J. Ramkumar, B. Bhattacharyya, B. Doloi, B. Sarkar, Prabhat Ranjan, Sarath Sankar E. S., A. D. Jayal
This article on ‘Micro-machining: An Overview (Part II)’ is in continuation to ‘Micro-machining: An Overview (Part I)’ published in this journal (Journal of Micromanufacturing). It consists of four parts, namely, electrochemical micro-texturing, electrochemical spark micro-machining, molecular dynamics simulation and sustainability issues of micro-machining processes. Electrochemical micro-texturing (ECMTex) deals with various techniques developed for micro-texturing on different types of workpiece-surfaces, namely, flat, curved and free-form surfaces. Here, basically two categories of techniques have been reviewed, namely, with mask and without mask. It also deals with ‘single point tool micro-texturing’ which turns out to be a single-step technique requiring minimum time, but the accuracy and repeatability obtained after micro-texturing need to be critically analysed. For mass production, one needs to go for sinking kind of ECMTex processes. Electrochemical spark micro-machining (ECSMM) is an interesting hybrid (ECM+EDM) process which can be applied for electrically conducting as well as electrically non-conducting materials. However, the work reported in this article deals only with the electrically non-conducting materials for which this process was initially developed. This process has a lot of potential for theoretical work to be done. In this article, two theories of sparking/discharging have been briefly mentioned: single bubble discharging/sparking and single surface discharging. It also dicusses its applications for different types of electrically non-conducting materials. Molecular dynamics simulation (MDS) of micro-/nano-machining processes is very important, but it is very cumbersome to understand at atomic/molecular scale. In these processes, the material behaviour at micro-/nano-level machining is completely different as compared to bulk-machining (macro-machining) processes. Hence, some fundamentals of MDS have been discussed. It just gives the idea of available techniques, softwares and models for different types of processes. However, there is the need of further research work to be done for clearly understanding the MDS of micro-/nano-machining. In the end, the sustainability of micro-machining issues have been discussed, mainly based on the energy consumption per unit mass of production. It is concluded that the advanced micro-manufacturing processes are highly energy-intensive processes, and they need further studies to be done for making them more suitable from sustainability point of view. At the end of each section, some potential areas of research for enhancing the accuracy and repeatability, and minimising the production time of each process have been discussed.
这篇关于“微加工:概述(第二部分)”的文章是发表在该杂志(journal of Micromanufacturing)上的“微加工:概述(第一部分)”的延续。由电化学微织构、电化学火花微加工、分子动力学仿真和微加工过程的可持续性问题四个部分组成。电化学微织构(ECMTex)处理的是在不同类型的工件表面,即平面、曲面和自由曲面上进行微织构的各种技术。在这里,基本上回顾了两类技术,即带口罩和不带口罩。它还处理了“单点工具微纹理”,这是一种需要最少时间的单步技术,但微纹理后获得的精度和可重复性需要严格分析。对于大规模生产,需要采用下沉式ECMTex工艺。电化学火花微加工(ECSMM)是一种有趣的混合(ECM+EDM)加工工艺,既可以用于导电材料,也可以用于导电材料。然而,本文报道的工作仅涉及该工艺最初开发的非导电材料。这一过程有很多潜在的理论工作要做。本文简要介绍了两种放电理论:单泡放电和单表面放电。讨论了其在不同类型的非导电材料中的应用。微纳米加工过程的分子动力学模拟(MDS)是非常重要的,但在原子/分子尺度上理解非常麻烦。在这些过程中,材料在微/纳米级加工的行为是完全不同的,相比于大块加工(宏加工)过程。因此,讨论了MDS的一些基本原理。它只是给出了不同类型过程的可用技术、软件和模型的概念。然而,为了更清楚地了解微纳加工的MDS,还需要进一步的研究工作。最后,对微加工的可持续性问题进行了讨论,主要基于单位批量生产的能耗。结论认为,先进微制造工艺是高能耗工艺,需要进一步研究以使其更适合可持续发展。在每个部分的最后,讨论了一些潜在的研究领域,以提高准确性和可重复性,并最大限度地减少每个过程的生产时间。
{"title":"Micro-machining: An overview (Part II)","authors":"V. Jain, D. Patel, J. Ramkumar, B. Bhattacharyya, B. Doloi, B. Sarkar, Prabhat Ranjan, Sarath Sankar E. S., A. D. Jayal","doi":"10.1177/25165984211045244","DOIUrl":"https://doi.org/10.1177/25165984211045244","url":null,"abstract":"This article on ‘Micro-machining: An Overview (Part II)’ is in continuation to ‘Micro-machining: An Overview (Part I)’ published in this journal (Journal of Micromanufacturing). It consists of four parts, namely, electrochemical micro-texturing, electrochemical spark micro-machining, molecular dynamics simulation and sustainability issues of micro-machining processes. Electrochemical micro-texturing (ECMTex) deals with various techniques developed for micro-texturing on different types of workpiece-surfaces, namely, flat, curved and free-form surfaces. Here, basically two categories of techniques have been reviewed, namely, with mask and without mask. It also deals with ‘single point tool micro-texturing’ which turns out to be a single-step technique requiring minimum time, but the accuracy and repeatability obtained after micro-texturing need to be critically analysed. For mass production, one needs to go for sinking kind of ECMTex processes. Electrochemical spark micro-machining (ECSMM) is an interesting hybrid (ECM+EDM) process which can be applied for electrically conducting as well as electrically non-conducting materials. However, the work reported in this article deals only with the electrically non-conducting materials for which this process was initially developed. This process has a lot of potential for theoretical work to be done. In this article, two theories of sparking/discharging have been briefly mentioned: single bubble discharging/sparking and single surface discharging. It also dicusses its applications for different types of electrically non-conducting materials. Molecular dynamics simulation (MDS) of micro-/nano-machining processes is very important, but it is very cumbersome to understand at atomic/molecular scale. In these processes, the material behaviour at micro-/nano-level machining is completely different as compared to bulk-machining (macro-machining) processes. Hence, some fundamentals of MDS have been discussed. It just gives the idea of available techniques, softwares and models for different types of processes. However, there is the need of further research work to be done for clearly understanding the MDS of micro-/nano-machining. In the end, the sustainability of micro-machining issues have been discussed, mainly based on the energy consumption per unit mass of production. It is concluded that the advanced micro-manufacturing processes are highly energy-intensive processes, and they need further studies to be done for making them more suitable from sustainability point of view. At the end of each section, some potential areas of research for enhancing the accuracy and repeatability, and minimising the production time of each process have been discussed.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126741632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-04DOI: 10.1177/25165984211047525
S. Yadav, C. Paul, A. Rai, A. N. Jinoop, S. K. Nayak, R. Singh, K. Bindra
Laser additive manufacturing using directed energy deposition (LAM-DED) technique is one of the recent techniques for fabricating engineering components directly from 3D CAD model data using high power lasers. In this respect, LAM-DED of copper (Cu) and stainless steel (SS) is an enduring research area. However, LAM-DED of Cu is challenging due to higher thermal conductivity, lower absorption to infrared radiation and oxide formation tendency. The present work reports an experimental investigation to evaluate the effect of process parameters on the track geometry, contact angle, inter-diffusion and micro-hardness of Cu tracks deposited on SS 304L substrate using LAM-DED. Analysis of variance is used to estimate the contribution percentage of process parameters on the track geometry. Further, Cu bulk structures are deposited at an identified combination of process parameters and they are subjected to optical microscopy for microstructural characterisation. Further, finite-element-based numerical simulation is performed to understand the temperature distribution during the processing of Cu bulk structures on SS304L and the temperature results are co-related with the microstructural transformation during the processing. This investigation paves a way to understand the effect of processing parameters for building Cu bulk structures on SS Substrate using LAM-DED.
{"title":"Parametric studies on laser additive manufacturing of copper on stainless steel","authors":"S. Yadav, C. Paul, A. Rai, A. N. Jinoop, S. K. Nayak, R. Singh, K. Bindra","doi":"10.1177/25165984211047525","DOIUrl":"https://doi.org/10.1177/25165984211047525","url":null,"abstract":"Laser additive manufacturing using directed energy deposition (LAM-DED) technique is one of the recent techniques for fabricating engineering components directly from 3D CAD model data using high power lasers. In this respect, LAM-DED of copper (Cu) and stainless steel (SS) is an enduring research area. However, LAM-DED of Cu is challenging due to higher thermal conductivity, lower absorption to infrared radiation and oxide formation tendency. The present work reports an experimental investigation to evaluate the effect of process parameters on the track geometry, contact angle, inter-diffusion and micro-hardness of Cu tracks deposited on SS 304L substrate using LAM-DED. Analysis of variance is used to estimate the contribution percentage of process parameters on the track geometry. Further, Cu bulk structures are deposited at an identified combination of process parameters and they are subjected to optical microscopy for microstructural characterisation. Further, finite-element-based numerical simulation is performed to understand the temperature distribution during the processing of Cu bulk structures on SS304L and the temperature results are co-related with the microstructural transformation during the processing. This investigation paves a way to understand the effect of processing parameters for building Cu bulk structures on SS Substrate using LAM-DED.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131521991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-04DOI: 10.1177/25165984211048121
Akash Saini, A. D. Jayal
This article presents a novel model to study the influence of surface textured cutting tools in near-micromachining conditions. The model utilizes the Challen and Oxley’s asperity deformation model (Van Luttervelt et al., CIRP Ann Manuf Technol, 1998, vol. 47, pp. 587–626; Arrazola et al., CIRP Ann Manuf Technol, 2013, vol. 62, pp. 695–718) paired with an approach to a priori estimate of the interfacial film formation at the tool–chip interface. The procedure considers the chemical effect of the environment, along with the mechanical aspects of the surface texture of the cutting tool’s rake surface. Model performance, in terms of predicting machining forces and coefficient of friction, was validated with existing experimental data (Anand et al., Proceedings of the international conference on advancements and futuristic trends in mechanical and materials engineering, 5–7 October 2012, pp. 661–666). The outcome trend of the proposed model approximately matches with the experimental results. Further, the model tries to explain the impact of cutting tool’s surface roughness on overall tool–chip friction while performing intermittent cutting in the near-micromachining regime.
本文提出了一种新的模型来研究近微加工条件下刀具表面织构的影响。该模型采用了Challen和Oxley的粗糙变形模型(Van lutvelt et al., CIRP Ann manufacturing technology, 1998, vol. 47, pp. 587-626;Arrazola et al., CIRP Ann Manuf technology, 2013, vol. 62, pp. 695-718)结合了一种先验估计工具-芯片界面膜形成的方法。该程序考虑了环境的化学效应,以及刀具耙面表面纹理的机械方面。在预测加工力和摩擦系数方面,模型性能用现有的实验数据进行了验证(Anand等人,机械和材料工程的进步和未来趋势国际会议论集,2012年10月5日至7日,第661-666页)。该模型的结果趋势与实验结果基本吻合。此外,该模型试图解释在近微加工状态下进行间歇切削时,刀具表面粗糙度对刀具-切屑整体摩擦的影响。
{"title":"A numerical model for tool–chip friction in intermittent orthogonal machining","authors":"Akash Saini, A. D. Jayal","doi":"10.1177/25165984211048121","DOIUrl":"https://doi.org/10.1177/25165984211048121","url":null,"abstract":"This article presents a novel model to study the influence of surface textured cutting tools in near-micromachining conditions. The model utilizes the Challen and Oxley’s asperity deformation model (Van Luttervelt et al., CIRP Ann Manuf Technol, 1998, vol. 47, pp. 587–626; Arrazola et al., CIRP Ann Manuf Technol, 2013, vol. 62, pp. 695–718) paired with an approach to a priori estimate of the interfacial film formation at the tool–chip interface. The procedure considers the chemical effect of the environment, along with the mechanical aspects of the surface texture of the cutting tool’s rake surface. Model performance, in terms of predicting machining forces and coefficient of friction, was validated with existing experimental data (Anand et al., Proceedings of the international conference on advancements and futuristic trends in mechanical and materials engineering, 5–7 October 2012, pp. 661–666). The outcome trend of the proposed model approximately matches with the experimental results. Further, the model tries to explain the impact of cutting tool’s surface roughness on overall tool–chip friction while performing intermittent cutting in the near-micromachining regime.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114798839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-31DOI: 10.1177/25165984211038882
H. Yadav, Manjesh Kumar, Abhinav Kumar, M. Das
Nowadays, the surface quality of the material is crucial for industry and science. With the development of micro-electronics and optics, the demand for surface quality has become more and more rigorous, making optical surface polishing more and more critical. Plasma polishing technology is conceived as an essential tool for removing surface and subsurface damages from traditional polishing processes. The plasma processing technology is based on plasma chemical reactions and removes atomic-level materials. Plasma polishing can easily nano-finish hard-brittle materials such as ceramics, glass, crystal, fused silica, quartz, Safire, etc. The optical substrate with micro-level and nano-level surface roughness precision is in demand with the advancement in optics fabrication. The mechanical properties of super-finished optics materials are being used to fulfill the requirement of modern optics. This article discusses the processing of different types of freeform, complex and aspheric optical materials by the plasma polishing process used mainly by the optical industry. The plasma polishing devices developed in the last decade are thoroughly reviewed for their working principles, characteristics and applications. This article also examines the impact of various process parameters such as discharge power, rate of gas flow, mixed gas flow ratio and pressure on the plasma polishing process.
{"title":"Plasma polishing processes applied on optical materials: A review","authors":"H. Yadav, Manjesh Kumar, Abhinav Kumar, M. Das","doi":"10.1177/25165984211038882","DOIUrl":"https://doi.org/10.1177/25165984211038882","url":null,"abstract":"Nowadays, the surface quality of the material is crucial for industry and science. With the development of micro-electronics and optics, the demand for surface quality has become more and more rigorous, making optical surface polishing more and more critical. Plasma polishing technology is conceived as an essential tool for removing surface and subsurface damages from traditional polishing processes. The plasma processing technology is based on plasma chemical reactions and removes atomic-level materials. Plasma polishing can easily nano-finish hard-brittle materials such as ceramics, glass, crystal, fused silica, quartz, Safire, etc. The optical substrate with micro-level and nano-level surface roughness precision is in demand with the advancement in optics fabrication. The mechanical properties of super-finished optics materials are being used to fulfill the requirement of modern optics. This article discusses the processing of different types of freeform, complex and aspheric optical materials by the plasma polishing process used mainly by the optical industry. The plasma polishing devices developed in the last decade are thoroughly reviewed for their working principles, characteristics and applications. This article also examines the impact of various process parameters such as discharge power, rate of gas flow, mixed gas flow ratio and pressure on the plasma polishing process.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"243 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122157553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-26DOI: 10.1177/25165984211036312
A. N. Jinoop, S. K. Nayak, S. Yadav, C. Paul, R. Singh, J. G. Kumar, K. Bindra
This article systematically analyzes the effect of scan pattern on the geometry and material properties of wall structures built using laser-directed energy deposition (LDED)-based additive manufacturing. Hastelloy-X (Hast-X), a nickel superalloy, is deposited using an indigenously developed 2-kW fiber laser–based LDED system. The wall structures are built using unidirectional and bidirectional scan patterns with the same LDED process parameters and effect of scan pattern on the geometry, microstructural and mechanical characteristics of Hast-X wall structures built using LDED. The wall width is higher for samples deposited with the bidirectional pattern at the starting and ending points as compared to walls built with the unidirectional pattern. Further, the range of width value is higher for walls built with bidirectional strategy as compared to walls built with unidirectional strategy. Wall height is more uniform with unidirectional deposition at the central region, with the range and standard deviation for walls built using bidirectional deposition at 3 and 2.5 times more than unidirectional deposition, respectively. The deposition rate for bidirectional deposition is two times that of unidirectional deposition. The microstructure of the built walls is cellular/dendritic, with bidirectional deposition showing a finer grain structure. Elemental mapping shows the presence of elemental segregation of Mo, C and Si, confirming the formation of Mo-rich carbides. Micro-hardness and ball indentation studies reveal higher mechanical strength for samples built using the bidirectional pattern, with unidirectional samples showing strength lower than the conventional wrought Hast-X samples (197 HV). This study paves a way to understand the effect of scan pattern on LDED built wall structures for building intricate thin-walled components.
{"title":"Effect of scan pattern on Hastelloy-X wall structures built by laser-directed energy deposition-based additive manufacturing","authors":"A. N. Jinoop, S. K. Nayak, S. Yadav, C. Paul, R. Singh, J. G. Kumar, K. Bindra","doi":"10.1177/25165984211036312","DOIUrl":"https://doi.org/10.1177/25165984211036312","url":null,"abstract":"This article systematically analyzes the effect of scan pattern on the geometry and material properties of wall structures built using laser-directed energy deposition (LDED)-based additive manufacturing. Hastelloy-X (Hast-X), a nickel superalloy, is deposited using an indigenously developed 2-kW fiber laser–based LDED system. The wall structures are built using unidirectional and bidirectional scan patterns with the same LDED process parameters and effect of scan pattern on the geometry, microstructural and mechanical characteristics of Hast-X wall structures built using LDED. The wall width is higher for samples deposited with the bidirectional pattern at the starting and ending points as compared to walls built with the unidirectional pattern. Further, the range of width value is higher for walls built with bidirectional strategy as compared to walls built with unidirectional strategy. Wall height is more uniform with unidirectional deposition at the central region, with the range and standard deviation for walls built using bidirectional deposition at 3 and 2.5 times more than unidirectional deposition, respectively. The deposition rate for bidirectional deposition is two times that of unidirectional deposition. The microstructure of the built walls is cellular/dendritic, with bidirectional deposition showing a finer grain structure. Elemental mapping shows the presence of elemental segregation of Mo, C and Si, confirming the formation of Mo-rich carbides. Micro-hardness and ball indentation studies reveal higher mechanical strength for samples built using the bidirectional pattern, with unidirectional samples showing strength lower than the conventional wrought Hast-X samples (197 HV). This study paves a way to understand the effect of scan pattern on LDED built wall structures for building intricate thin-walled components.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116173009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-23DOI: 10.1177/25165984211038878
Yogendra Kumar, Harpreet Singh
Chemomechanical magnetorheological finishing (CMMRF) has emerged as a nanofinishing method that combines the characteristics of chemical mechanical polishing (CMP) and magneto-rheological finishing (MRF). The CMMRF process was designed to take into account both the chemical and mechanical effects that occur during the finishing process. In the field of material processing science, this article delves into the fundamentals of the CMMRF method. The potential research patterns linked to CMMRF are assessed and their benefits are determined. Furthermore, the challenges of improving CMMRF process capabilities, as well as the wide futuristic opportunities of the research sector, are emphasised, along with meeting all industrial needs. The findings of this analysis paper will also aid researchers in the field of advanced finishing in identifying process realisation for better results.
{"title":"Chemomechanical magnetorheological finishing: Process mechanism, research trends, challenges and opportunities in surface finishing","authors":"Yogendra Kumar, Harpreet Singh","doi":"10.1177/25165984211038878","DOIUrl":"https://doi.org/10.1177/25165984211038878","url":null,"abstract":"Chemomechanical magnetorheological finishing (CMMRF) has emerged as a nanofinishing method that combines the characteristics of chemical mechanical polishing (CMP) and magneto-rheological finishing (MRF). The CMMRF process was designed to take into account both the chemical and mechanical effects that occur during the finishing process. In the field of material processing science, this article delves into the fundamentals of the CMMRF method. The potential research patterns linked to CMMRF are assessed and their benefits are determined. Furthermore, the challenges of improving CMMRF process capabilities, as well as the wide futuristic opportunities of the research sector, are emphasised, along with meeting all industrial needs. The findings of this analysis paper will also aid researchers in the field of advanced finishing in identifying process realisation for better results.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"43 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132968654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-18DOI: 10.1177/25165984211038861
A. Rathi, S. I. Kundalwal
In this study, the tensile properties of two-phase and three-phase graphene/ZrO2-hybrid poly (methyl methacrylate) (PMMA) nanocomposites are investigated by developing finite element model using ANSYS. Primarily, the effective elastic properties of two- and three-phase graphene/ZrO2-hybrid PMMA nanocomposites (GRPCs) are estimated by developing mechanics of material (MOM) model. Results indicated that the effective elastic properties of GRPCs increase with an increase in the volume fraction of graphene. Also, the stiffness of GRPCs is increased by 78.12% with increasing in the volume fraction of graphene from 0.1 to 0.5 Vf. The incorporation of an additional ZrO2 interphase significantly improved the mechanical performance of resulting GRPCs.
{"title":"Micromechanical analysis of effective mechanical properties of graphene/ZrO2-hybrid poly (methyl methacrylate) nanocomposites","authors":"A. Rathi, S. I. Kundalwal","doi":"10.1177/25165984211038861","DOIUrl":"https://doi.org/10.1177/25165984211038861","url":null,"abstract":"In this study, the tensile properties of two-phase and three-phase graphene/ZrO2-hybrid poly (methyl methacrylate) (PMMA) nanocomposites are investigated by developing finite element model using ANSYS. Primarily, the effective elastic properties of two- and three-phase graphene/ZrO2-hybrid PMMA nanocomposites (GRPCs) are estimated by developing mechanics of material (MOM) model. Results indicated that the effective elastic properties of GRPCs increase with an increase in the volume fraction of graphene. Also, the stiffness of GRPCs is increased by 78.12% with increasing in the volume fraction of graphene from 0.1 to 0.5 Vf. The incorporation of an additional ZrO2 interphase significantly improved the mechanical performance of resulting GRPCs.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127926689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-11DOI: 10.1177/25165984211036871
S. K. Nayak, S. Mishra, C. Paul, K. Bindra
Laser Powder Bed Fusion (LPBF) is one of the revolutionary technologies that can fabricate complex-shaped components by selective melting of the pre-placed powder layer, using high-power laser as directed by the input digital files. Generally, research on the LPBF process is called out for layer thickness (LT) up to 50 µm and smaller beam diameter (≤100 µm), but it has lower productivity. In LPBF, higher productivity can be achieved with higher LT (>50 µm), but it consists of various process instabilities. In the present work, parametric studies are performed by laying Ni-Cr-Fe-Nb-Mo single tracks, using LPBF at higher LT. The process parameters such as laser power (P), scan speed (v), and LT are varied among 150–450 W, 0.04–0.1 m s−1, and 80–160 µm, respectively, at three levels each. For the range of parameters under investigation, the maximum track width of 610 µm and aspect ratio of 7.63 are achieved at a P of 450 W and v of 0.04 m s−1 at 80 µm LT. It is observed that an increase in the energy density and layer thickness resulted in the reduction of track width and aspect ratio due to material vaporization occurring from poor heat conductivity due to unconventionally high powder layer thickness. It is also observed that the build rate increases with an increase in P, v, and LT. As single tracks are basic building blocks, the obtained results can provide an insight into the effect of process parameters on LPBF-built single tracks at higher LT for building engineering components of required width with higher build rate. Furthermore, the track dilution is also found to increase with the increase in P and decrease in v.
激光粉末床熔融(LPBF)是一种革命性的技术,它可以通过使用高功率激光根据输入的数字文件的指示,选择性地熔化预先放置的粉末层来制造复杂形状的部件。一般来说,LPBF工艺的研究要求层厚(LT)达到50µm,光束直径更小(≤100µm),但其生产率较低。在LPBF中,更高的LT (bbb50µm)可以实现更高的生产率,但它包含各种工艺不稳定性。在本工作中,参数化研究是通过在更高的ltf下使用LPBF铺设Ni-Cr-Fe-Nb-Mo单轨来进行的。激光功率(P),扫描速度(v)和LT等工艺参数分别在150-450 W, 0.04-0.1 m s - 1和80-160µm之间变化。在所研究的参数范围内,当P为450 W, v为0.04 m s - 1时,在80 μ m lt下,最大轨道宽度为610 μ m,长径比为7.63。我们观察到,能量密度和层厚度的增加导致轨道宽度和长径比减小,这是由于非常规的高粉末层厚度导致的导热性差导致的材料汽化。还观察到,构建速率随着P、v和LT的增加而增加。由于单轨是基本的构建模块,所获得的结果可以深入了解工艺参数对高LT下lpbf构建的单轨的影响,从而以更高的构建速率构建所需宽度的工程部件。径迹稀释随P的增大而增大,随v的减小而减小。
{"title":"Effect of higher layer thickness on laser powder bed fusion built single tracks of Ni-Cr-Fe-Nb-Mo alloy","authors":"S. K. Nayak, S. Mishra, C. Paul, K. Bindra","doi":"10.1177/25165984211036871","DOIUrl":"https://doi.org/10.1177/25165984211036871","url":null,"abstract":"Laser Powder Bed Fusion (LPBF) is one of the revolutionary technologies that can fabricate complex-shaped components by selective melting of the pre-placed powder layer, using high-power laser as directed by the input digital files. Generally, research on the LPBF process is called out for layer thickness (LT) up to 50 µm and smaller beam diameter (≤100 µm), but it has lower productivity. In LPBF, higher productivity can be achieved with higher LT (>50 µm), but it consists of various process instabilities. In the present work, parametric studies are performed by laying Ni-Cr-Fe-Nb-Mo single tracks, using LPBF at higher LT. The process parameters such as laser power (P), scan speed (v), and LT are varied among 150–450 W, 0.04–0.1 m s−1, and 80–160 µm, respectively, at three levels each. For the range of parameters under investigation, the maximum track width of 610 µm and aspect ratio of 7.63 are achieved at a P of 450 W and v of 0.04 m s−1 at 80 µm LT. It is observed that an increase in the energy density and layer thickness resulted in the reduction of track width and aspect ratio due to material vaporization occurring from poor heat conductivity due to unconventionally high powder layer thickness. It is also observed that the build rate increases with an increase in P, v, and LT. As single tracks are basic building blocks, the obtained results can provide an insight into the effect of process parameters on LPBF-built single tracks at higher LT for building engineering components of required width with higher build rate. Furthermore, the track dilution is also found to increase with the increase in P and decrease in v.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129993550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-11DOI: 10.1177/25165984211035504
Talwinder Singh Bedi, A. Rana
Modern technology requires producing of a sustainable product with a high surface accuracy. In applications where the surface quality is highly considerable in various internal cylindrical components requires technology to manufacture an ultrafine surface finish. There is, in general, a probability of inducing errors into products by the traditional finishing processes (such as grinding/honing), which lead to failure. Preferably with some evidence in the main text. Further, the advanced finishing processes are developed, where the finishing forces can be controlled by varying the power output. Instead of a solid abrasive tool, the smart polishing fluid is used, which gets activated under the magnetic fields. In this manuscript, the material removal under different internal surface finishing processes is elaborated, which helps in improving the surface quality of various industrial components. Also, the surface quality produced on various industrial components after traditional as well as advanced finishing processes are discussed.
{"title":"Surface finishing requirements on various internal cylindrical components: A review","authors":"Talwinder Singh Bedi, A. Rana","doi":"10.1177/25165984211035504","DOIUrl":"https://doi.org/10.1177/25165984211035504","url":null,"abstract":"Modern technology requires producing of a sustainable product with a high surface accuracy. In applications where the surface quality is highly considerable in various internal cylindrical components requires technology to manufacture an ultrafine surface finish. There is, in general, a probability of inducing errors into products by the traditional finishing processes (such as grinding/honing), which lead to failure. Preferably with some evidence in the main text. Further, the advanced finishing processes are developed, where the finishing forces can be controlled by varying the power output. Instead of a solid abrasive tool, the smart polishing fluid is used, which gets activated under the magnetic fields. In this manuscript, the material removal under different internal surface finishing processes is elaborated, which helps in improving the surface quality of various industrial components. Also, the surface quality produced on various industrial components after traditional as well as advanced finishing processes are discussed.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134513354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-06DOI: 10.1177/25165984211033422
Varun Sharma, R. Shukla, C. Mukherjee, P. Tiwari, A. K. Sinha
Metal-assisted chemical etching (MaCEtch) has recently emerged as a promising technique to etch anisotropic nano- and microstructures in silicon by metal catalysts. It is an economical wet chemical etching method, which can be a good alternative to deep-reactive ion etching (DRIE) process in terms of verticality and etch depth. In the present study, gold is used as a metal catalyst and deposited using physical vapour deposition. It has already been demonstrated that (100) p-type Si wafer can be etched with vertical and smooth side walls. Effects of varying concentrations of etchant constituents and various other parameters, that is, porosity of deposited Au, surface contaminants, oxide formation, metal catalyst, etching time, role of surface tension of additives on the etch depth and surface defects are studied and discussed in detail. By increasing the hydrofluoric acid (HF) concentration from 7.5 M to 10 M, lateral etching is reduced and the microstructure’s width is increased from 17 µm to 18 µm. Porous defects are suppressed by decreasing the hydrogen peroxide (H2O2) concentration from 1.5 M to 1 M. On increasing the etching time from 30 min to 60 min, the microstructures are over-etched laterally. Smoother side walls are fabricated by using the low-surface-tension additive ethanol. The maximum etch depth of 2.6 µm is achieved for Au catalyst in 30 min. The results are encouraging and useful for the development of vertical comb-drives and Micro-Electro-Mechanical Systems (MEMS).
{"title":"Study of metal-assisted chemical etching of silicon as an alternative to dry etching for the development of vertical comb-drives","authors":"Varun Sharma, R. Shukla, C. Mukherjee, P. Tiwari, A. K. Sinha","doi":"10.1177/25165984211033422","DOIUrl":"https://doi.org/10.1177/25165984211033422","url":null,"abstract":"Metal-assisted chemical etching (MaCEtch) has recently emerged as a promising technique to etch anisotropic nano- and microstructures in silicon by metal catalysts. It is an economical wet chemical etching method, which can be a good alternative to deep-reactive ion etching (DRIE) process in terms of verticality and etch depth. In the present study, gold is used as a metal catalyst and deposited using physical vapour deposition. It has already been demonstrated that (100) p-type Si wafer can be etched with vertical and smooth side walls. Effects of varying concentrations of etchant constituents and various other parameters, that is, porosity of deposited Au, surface contaminants, oxide formation, metal catalyst, etching time, role of surface tension of additives on the etch depth and surface defects are studied and discussed in detail. By increasing the hydrofluoric acid (HF) concentration from 7.5 M to 10 M, lateral etching is reduced and the microstructure’s width is increased from 17 µm to 18 µm. Porous defects are suppressed by decreasing the hydrogen peroxide (H2O2) concentration from 1.5 M to 1 M. On increasing the etching time from 30 min to 60 min, the microstructures are over-etched laterally. Smoother side walls are fabricated by using the low-surface-tension additive ethanol. The maximum etch depth of 2.6 µm is achieved for Au catalyst in 30 min. The results are encouraging and useful for the development of vertical comb-drives and Micro-Electro-Mechanical Systems (MEMS).","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129652602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}