In contrast to digital backpropagation (DBP), perturbation-based nonlinear compensation (PB-NLC) is a low-complexity alternative to mitigate fiber Kerr nonlinearity. In this letter, we experimentally demonstrate a novel receiver-side perturbation approach to cancel the self-phase modulation and cross-phase modulation for superchannel systems using three independent receivers. With the inverse perturbation theory, we develop a nonlinear compensation model that does not require knowing the transmitted symbols and therefore avoids the penalty from the estimation error. We implement the PB-NLC in a $3times 24.5$