Pub Date : 2024-09-26DOI: 10.1109/LPT.2024.3468647
Haoyun Zhang;Xuecheng Wu;Weiqi Jiang;Shining Zhu;Fengqiu Wang
Electro-optic frequency combs, generated by cascaded intensity and phase modulators, are known for their frequency agility. However, frequency detuning induced pulse distortion significantly hinders their applicability in asynchronous optical sampling. In this letter, we propose a scheme where a motor-driven optical delay line between the phase and intensity modulators serves as an effective pulse-duration compensation mechanism. A 10 GHz flat-topped optical frequency comb (OFC) at a central wavelength of 1552 nm is first optimized to output a 7.2 ps pulse. It is seen that the temporal pulses experience dramatic distortion and elongation (up to 130 ps) when frequency offset is present. Interestingly, the output pulse duration is periodically modulated by the frequency offset, and the associated period is inversely proportional to a system delay time ( $tau $