首页 > 最新文献

IEEE Transactions on Control Systems Technology最新文献

英文 中文
A Distributed NSB Algorithm for Formation Path Following 用于编队路径跟踪的分布式 NSB 算法
IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-26 DOI: 10.1109/tcst.2024.3443703
Josef Matouš, Kristin Y. Pettersen, Damiano Varagnolo, Claudio Paliotta
{"title":"A Distributed NSB Algorithm for Formation Path Following","authors":"Josef Matouš, Kristin Y. Pettersen, Damiano Varagnolo, Claudio Paliotta","doi":"10.1109/tcst.2024.3443703","DOIUrl":"https://doi.org/10.1109/tcst.2024.3443703","url":null,"abstract":"","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"5 1 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial: Special section on Resilient Control of Cyber-Physical Power and Energy Systems 客座编辑:网络物理电力和能源系统的弹性控制》专栏
IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-20 DOI: 10.1109/TCST.2024.3403515
Veronica Adetola;Thomas Edgar;Sai Pushpak Nandanoori;Quanyan Zhu;Craig Rieger;Masoud Abbaszadeh
Our power and energy systems are becoming more and more integrated and interconnected. The increasing integration of edge devices and dependence on cyber infrastructure provides both the potential for benefits and risks. The integration enables more dynamic and flexible control paradigms while at the same time increasing the cyberattack surface and uncertainty of behavior. Control methodology in this new world must be designed for resilience and must have the ability to withstand, react, and respond to both physical faults and cyber-induced threats [1]. Understanding system resilience under adverse conditions requires studying control performance and how cyber infrastructure can integrate with and support the overall resilience of the system.
我们的电力和能源系统正变得越来越集成和互联。边缘设备的集成度越来越高,对网络基础设施的依赖性也越来越大,这既带来了潜在的好处,也带来了风险。集成使控制模式更加动态和灵活,同时也增加了网络攻击面和行为的不确定性。在这个新世界中,控制方法的设计必须具有弹性,必须有能力承受、反应和应对物理故障和网络诱发的威胁[1]。要了解系统在不利条件下的恢复能力,就必须研究控制性能以及网络基础设施如何与系统的整体恢复能力相结合并为其提供支持。
{"title":"Guest Editorial: Special section on Resilient Control of Cyber-Physical Power and Energy Systems","authors":"Veronica Adetola;Thomas Edgar;Sai Pushpak Nandanoori;Quanyan Zhu;Craig Rieger;Masoud Abbaszadeh","doi":"10.1109/TCST.2024.3403515","DOIUrl":"https://doi.org/10.1109/TCST.2024.3403515","url":null,"abstract":"Our power and energy systems are becoming more and more integrated and interconnected. The increasing integration of edge devices and dependence on cyber infrastructure provides both the potential for benefits and risks. The integration enables more dynamic and flexible control paradigms while at the same time increasing the cyberattack surface and uncertainty of behavior. Control methodology in this new world must be designed for resilience and must have the ability to withstand, react, and respond to both physical faults and cyber-induced threats \u0000<xref>[1]</xref>\u0000. Understanding system resilience under adverse conditions requires studying control performance and how cyber infrastructure can integrate with and support the overall resilience of the system.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 5","pages":"1688-1691"},"PeriodicalIF":4.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640172","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Control Co-Design of Hydrokinetic Turbines Considering Dynamic–Hydrodynamic Coupling 考虑动态-水动力耦合的水动力涡轮机控制协同设计
IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-16 DOI: 10.1109/tcst.2024.3440249
Boxi Jiang, Mohammad Reza Amini, Yingqian Liao, Kartik Naik, Joaquim R. R. A. Martins, Jing Sun
{"title":"Control Co-Design of Hydrokinetic Turbines Considering Dynamic–Hydrodynamic Coupling","authors":"Boxi Jiang, Mohammad Reza Amini, Yingqian Liao, Kartik Naik, Joaquim R. R. A. Martins, Jing Sun","doi":"10.1109/tcst.2024.3440249","DOIUrl":"https://doi.org/10.1109/tcst.2024.3440249","url":null,"abstract":"","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"6 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decentralized Voltage Control of Boost Converters in DC Microgrids: Feasibility Guarantees 直流微电网中升压转换器的分散电压控制:可行性保证
IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-15 DOI: 10.1109/tcst.2024.3440228
Morteza Nazari Monfared, Yu Kawano, Michele Cucuzzella
{"title":"Decentralized Voltage Control of Boost Converters in DC Microgrids: Feasibility Guarantees","authors":"Morteza Nazari Monfared, Yu Kawano, Michele Cucuzzella","doi":"10.1109/tcst.2024.3440228","DOIUrl":"https://doi.org/10.1109/tcst.2024.3440228","url":null,"abstract":"","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"167 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning-Based NMPC Adaptation for Autonomous Driving Using Parallelized Digital Twin 利用并行化数字孪生系统为自动驾驶提供基于学习的 NMPC 适应性
IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-14 DOI: 10.1109/tcst.2024.3437163
Jean Pierre Allamaa, Panagiotis Patrinos, Herman Van der Auweraer, Tong Duy Son
{"title":"Learning-Based NMPC Adaptation for Autonomous Driving Using Parallelized Digital Twin","authors":"Jean Pierre Allamaa, Panagiotis Patrinos, Herman Van der Auweraer, Tong Duy Son","doi":"10.1109/tcst.2024.3437163","DOIUrl":"https://doi.org/10.1109/tcst.2024.3437163","url":null,"abstract":"","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"8 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum-Inspired Reinforcement Learning for Quantum Control 量子控制的量子强化学习
IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-14 DOI: 10.1109/tcst.2024.3437142
Haixu Yu, Xudong Zhao, Chunlin Chen
{"title":"Quantum-Inspired Reinforcement Learning for Quantum Control","authors":"Haixu Yu, Xudong Zhao, Chunlin Chen","doi":"10.1109/tcst.2024.3437142","DOIUrl":"https://doi.org/10.1109/tcst.2024.3437142","url":null,"abstract":"","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"56 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decentralized, Safe, Multiagent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning 通过过滤强化学习实现不确定性条件下无人机的分散、安全、多代理运动规划
IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-06 DOI: 10.1109/TCST.2024.3433229
Abraham P. Vinod;Sleiman Safaoui;Tyler H. Summers;Nobuyuki Yoshikawa;Stefano Di Cairano
We propose a decentralized, multiagent motion planner that guarantees the probabilistic safety of a team subject to stochastic uncertainty in the agent model and environment. Our scalable approach generates safe motion plans in real-time using off-the-shelf, single-agent reinforcement learning (RL) rendered safe using distributionally robust, convex optimization and buffered Voronoi cells. We guarantee the recursive feasibility of the mean trajectories and mitigate the conservativeness using a temporal discounting of safety. We show in simulation that our approach generates safe and high-performant trajectories as compared to existing approaches, and further validate these observations in physical experiments using drones.
我们提出了一种分散式多代理运动规划器,它能保证团队在代理模型和环境随机不确定性条件下的概率安全。我们的可扩展方法使用现成的单个代理强化学习(RL)实时生成安全的运动计划,并通过分布稳健的凸优化和缓冲 Voronoi 单元实现安全。我们保证了平均轨迹的递归可行性,并利用安全的时间折扣减轻了保守性。我们在模拟中表明,与现有方法相比,我们的方法能生成安全且性能高的轨迹,并在使用无人机进行的物理实验中进一步验证了这些观察结果。
{"title":"Decentralized, Safe, Multiagent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning","authors":"Abraham P. Vinod;Sleiman Safaoui;Tyler H. Summers;Nobuyuki Yoshikawa;Stefano Di Cairano","doi":"10.1109/TCST.2024.3433229","DOIUrl":"10.1109/TCST.2024.3433229","url":null,"abstract":"We propose a decentralized, multiagent motion planner that guarantees the probabilistic safety of a team subject to stochastic uncertainty in the agent model and environment. Our scalable approach generates safe motion plans in real-time using off-the-shelf, single-agent reinforcement learning (RL) rendered safe using distributionally robust, convex optimization and buffered Voronoi cells. We guarantee the recursive feasibility of the mean trajectories and mitigate the conservativeness using a temporal discounting of safety. We show in simulation that our approach generates safe and high-performant trajectories as compared to existing approaches, and further validate these observations in physical experiments using drones.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2492-2499"},"PeriodicalIF":4.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic Time-Optimal Trajectory Planning for Connected and Automated Vehicles in Mixed-Traffic Merging Scenarios 混合交通并线场景中互联车辆和自动驾驶车辆的随机时间最优轨迹规划
IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-02 DOI: 10.1109/tcst.2024.3433206
Viet-Anh Le, Behdad Chalaki, Filippos N. Tzortzoglou, Andreas A. Malikopoulos
{"title":"Stochastic Time-Optimal Trajectory Planning for Connected and Automated Vehicles in Mixed-Traffic Merging Scenarios","authors":"Viet-Anh Le, Behdad Chalaki, Filippos N. Tzortzoglou, Andreas A. Malikopoulos","doi":"10.1109/tcst.2024.3433206","DOIUrl":"https://doi.org/10.1109/tcst.2024.3433206","url":null,"abstract":"","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"215 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Synchronverter-Based Magnitude Phase-Locked Loop 基于同步器的幅度锁相环
IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-01 DOI: 10.1109/tcst.2024.3433228
Pietro Lorenzetti, Florian Reissner, George Weiss
{"title":"A Synchronverter-Based Magnitude Phase-Locked Loop","authors":"Pietro Lorenzetti, Florian Reissner, George Weiss","doi":"10.1109/tcst.2024.3433228","DOIUrl":"https://doi.org/10.1109/tcst.2024.3433228","url":null,"abstract":"","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"43 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water Age Control for Water Distribution Networks via Safe Reinforcement Learning 通过安全强化学习实现输水管网的水龄控制
IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-01 DOI: 10.1109/TCST.2024.3426300
Jorge Val Ledesma;Rafał Wisniewski;Carsten S. Kallesøe;Agisilaos Tsouvalas
Reinforcement learning (RL) is a widely used control technique that finds an optimal policy using the feedback of its actions. The search for the optimal policy requires that the system explores a broad region of the state space. This search puts at risk the safe operation, since some of the explored regions might be near the physical system limits. Implementing learning methods in industrial applications is limited because of its uncertain behavior when finding an optimal policy. This work proposes an RL control algorithm with a filter that supervises the safety of the exploration based on a nominal model. The performance of this safety filter is increased by modeling the uncertainty with a Gaussian process (GP) regression. This method is applied to the optimization of the management of a water distribution network (WDN) with an elevated reservoir; the management objectives are to regulate the tank filling while maintaining an adequate water turnover. The proposed method is validated in a laboratory setup that emulates the hydraulic features of a WDN.
强化学习(RL)是一种广泛使用的控制技术,它能利用行动反馈找到最优策略。寻找最优策略要求系统探索状态空间的广阔区域。这种搜索会给安全运行带来风险,因为所探索的某些区域可能接近系统的物理极限。由于在寻找最优策略时存在不确定性,因此在工业应用中实施学习方法受到了限制。这项工作提出了一种带有滤波器的 RL 控制算法,该滤波器可根据标称模型对探索的安全性进行监督。通过高斯过程(GP)回归对不确定性进行建模,提高了安全过滤器的性能。该方法被应用于带有高架水库的配水管网(WDN)的优化管理;管理目标是调节水箱注水,同时保持足够的水周转率。所提出的方法在模拟 WDN 水力特征的实验室装置中得到了验证。
{"title":"Water Age Control for Water Distribution Networks via Safe Reinforcement Learning","authors":"Jorge Val Ledesma;Rafał Wisniewski;Carsten S. Kallesøe;Agisilaos Tsouvalas","doi":"10.1109/TCST.2024.3426300","DOIUrl":"https://doi.org/10.1109/TCST.2024.3426300","url":null,"abstract":"Reinforcement learning (RL) is a widely used control technique that finds an optimal policy using the feedback of its actions. The search for the optimal policy requires that the system explores a broad region of the state space. This search puts at risk the safe operation, since some of the explored regions might be near the physical system limits. Implementing learning methods in industrial applications is limited because of its uncertain behavior when finding an optimal policy. This work proposes an RL control algorithm with a filter that supervises the safety of the exploration based on a nominal model. The performance of this safety filter is increased by modeling the uncertainty with a Gaussian process (GP) regression. This method is applied to the optimization of the management of a water distribution network (WDN) with an elevated reservoir; the management objectives are to regulate the tank filling while maintaining an adequate water turnover. The proposed method is validated in a laboratory setup that emulates the hydraulic features of a WDN.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2332-2343"},"PeriodicalIF":4.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Control Systems Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1