The use of the plasma-enhanced atomic layer deposition (ALD) technique for the deposition of HfO2-based ferroelectrics has received attention in recent years primarily due to wake-up free operation. However, these studies have primarily focused on metal-ferroelectric-metal (MFM) structures. In this work, we investigate the characteristics of ferroelectric field-effect transistors (FEFETs) in which the ferroelectric Hf0.5Zr0.5O2 (HZO) gate stack is deposited using the plasma-enhanced atomic layer deposition (PEALD) technique. We observe that PEALD FEFET requires a higher write voltage for the same memory window compared to an equivalent FEFET with thermal ALD (THALD)-grown HZO. The increase in write voltage in PEALD FEFET occurs primarily due to the increase of the interfacial oxide layer using the plasma process. In addition, we observe that the SiO2 interfacial layer underneath the ferroelectric (FE) HZO layer eliminates the wake-up behavior in both THALD and PEALD FEFETs.
{"title":"Plasma-Enhanced Atomic Layer Deposition-Based Ferroelectric Field-Effect Transistors","authors":"Chinsung Park;Prasanna Venkat Ravindran;Dipjyoti Das;Priyankka Gundlapudi Ravikumar;Chengyang Zhang;Nashrah Afroze;Lance Fernandes;Yu Hsin Kuo;Jae Hur;Hang Chen;Mengkun Tian;Winston Chern;Shimeng Yu;Asif Islam Khan","doi":"10.1109/JEDS.2024.3434598","DOIUrl":"10.1109/JEDS.2024.3434598","url":null,"abstract":"The use of the plasma-enhanced atomic layer deposition (ALD) technique for the deposition of HfO2-based ferroelectrics has received attention in recent years primarily due to wake-up free operation. However, these studies have primarily focused on metal-ferroelectric-metal (MFM) structures. In this work, we investigate the characteristics of ferroelectric field-effect transistors (FEFETs) in which the ferroelectric Hf0.5Zr0.5O2 (HZO) gate stack is deposited using the plasma-enhanced atomic layer deposition (PEALD) technique. We observe that PEALD FEFET requires a higher write voltage for the same memory window compared to an equivalent FEFET with thermal ALD (THALD)-grown HZO. The increase in write voltage in PEALD FEFET occurs primarily due to the increase of the interfacial oxide layer using the plasma process. In addition, we observe that the SiO2 interfacial layer underneath the ferroelectric (FE) HZO layer eliminates the wake-up behavior in both THALD and PEALD FEFETs.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10612817","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a high-performance and low-HCI (Hot carrier injection) degradation LDMOS (Lateral double diffused metal oxide semiconductor) device is introduced. It consists of an additional mini LOCOS (Local oxidation of silicon) field plate combined with a mini STI (Shallow trench isolation) field plate without an additional complex fabrication process. A series of devices have been fabricated, and the field plate corner profile is optimized. The proposed hybrid FP(Field plate) can effectively reduce the electric field peak, and the BV (Breakdown voltage) achieves as high as 78.9V while the ${R}_{{on}{,}{sp}}$