Pub Date : 2024-03-10DOI: 10.1109/TOH.2024.3399394
Elisabet Henell;Judith Weda;Sophia Cedermalm;Linnéa Eklöv;Märta Håkansson;Jesper Nordström;Märit Reibring;Jonas Stålhand;Nils-Krister Persson;Angelika Mader;Jan B.F. van Erp;Edwin W.H. Jager
To design complex wearable haptic interfaces using pressure, we have to explore how we can use pressure stimuli to theirfull potential. Haptic illusions, such as apparent motion and apparent location, can be a part of this. If these illusions can be evoked with pressure, haptic patterns can increase in complexity without increasing the number of actuators or combining different types of actuators. We did two psychophysical experiments with pressure stimuli on the forearm using a pneumatic sleeve with multiple, individually controlled McKibben actuators. In Experiment 1, we found that spatial integration of two simultaneously presented stimuli occurred for distances up to 61 mm. In Experiment 2, we found that apparent motion can be elicited with distinct pressure stimuli over a range of temporal parameters. These results clearly show spatio-temporal integration in the somatosensory system for pressure stimuli. We discuss these findings in relation to effects found for vibration and the mechanoreceptors in the glabrous skin.
{"title":"Pressure Stimuli and Spatiotemporal Illusions on the Forearm","authors":"Elisabet Henell;Judith Weda;Sophia Cedermalm;Linnéa Eklöv;Märta Håkansson;Jesper Nordström;Märit Reibring;Jonas Stålhand;Nils-Krister Persson;Angelika Mader;Jan B.F. van Erp;Edwin W.H. Jager","doi":"10.1109/TOH.2024.3399394","DOIUrl":"10.1109/TOH.2024.3399394","url":null,"abstract":"To design complex wearable haptic interfaces using pressure, we have to explore how we can use pressure stimuli to theirfull potential. Haptic illusions, such as apparent motion and apparent location, can be a part of this. If these illusions can be evoked with pressure, haptic patterns can increase in complexity without increasing the number of actuators or combining different types of actuators. We did two psychophysical experiments with pressure stimuli on the forearm using a pneumatic sleeve with multiple, individually controlled McKibben actuators. In Experiment 1, we found that spatial integration of two simultaneously presented stimuli occurred for distances up to 61 mm. In Experiment 2, we found that apparent motion can be elicited with distinct pressure stimuli over a range of temporal parameters. These results clearly show spatio-temporal integration in the somatosensory system for pressure stimuli. We discuss these findings in relation to effects found for vibration and the mechanoreceptors in the glabrous skin.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"742-752"},"PeriodicalIF":2.4,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10528915","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140903992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A method of providing localised haptic feedback at precise locations on the body, utilising a lightweight textile garment is presented in this short paper. The textile comprises of subtly integrated actuator yarns (HaptiYarns) which are controlled by electropneumatic circuitry. Each yarn has two functional layers, an inner porous textile layer with limited extensibility and a second, durable outer layer made from an extensible elastomer. The HaptiYarns can provide radial forces and a maximum radial displacement of 28.09 ± 0.14 mm. It was found that the intrinsic addition of graphite powder (5% by weight), during elastomer preparation, offered better resistance to layer delamination and increased the ability of the yarn to withstand higher internal air pressures by 48%. Both the graphite-filled composite and the graphite free yarns demonstrated high durability, withstanding cyclic testing of >7500 cycles while having no significant impact on the force feedback. Finally, a wearable prototype knitted textile garment is presented with eight HaptiYarns subtly integrated within it and connected to a virtual reality (VR) program providing an immersive haptic experience. These yarns offer the potential to transform everyday clothing into wearable haptic devices with potential to revolutionise healthcare, VR-based training, gaming, and entertainment sectors.
{"title":"HaptiYarn: Development of an Actuator Yarn That Can Transform Everyday Textiles Into Haptic Devices","authors":"Pasindu Lugoda;Richard Arm;Angus Wooler;Lincoln Barnes;Ahmed Tamkin Butt;Carlos Oliveira;Arash Shahidi;William Navaraj","doi":"10.1109/TOH.2024.3371831","DOIUrl":"10.1109/TOH.2024.3371831","url":null,"abstract":"A method of providing localised haptic feedback at precise locations on the body, utilising a lightweight textile garment is presented in this short paper. The textile comprises of subtly integrated actuator yarns (HaptiYarns) which are controlled by electropneumatic circuitry. Each yarn has two functional layers, an inner porous textile layer with limited extensibility and a second, durable outer layer made from an extensible elastomer. The HaptiYarns can provide radial forces and a maximum radial displacement of 28.09 ± 0.14 mm. It was found that the intrinsic addition of graphite powder (5% by weight), during elastomer preparation, offered better resistance to layer delamination and increased the ability of the yarn to withstand higher internal air pressures by 48%. Both the graphite-filled composite and the graphite free yarns demonstrated high durability, withstanding cyclic testing of >7500 cycles while having no significant impact on the force feedback. Finally, a wearable prototype knitted textile garment is presented with eight HaptiYarns subtly integrated within it and connected to a virtual reality (VR) program providing an immersive haptic experience. These yarns offer the potential to transform everyday clothing into wearable haptic devices with potential to revolutionise healthcare, VR-based training, gaming, and entertainment sectors.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"964-969"},"PeriodicalIF":2.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10458354","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1109/TOH.2024.3371389
Leonam Pecly;Keyvan Hashtrudi-Zaad
In this paper, we propose three methods to compute low-latency analog position where two of them fuse encoder and rate gyro signals. While one method is based on gyro with bias correction using encoder information, the other one is encoder-referenced combined with a resettable integrator to minimize the staircase form of encoder signals. Experiments on a one degree-of-freedom haptic simulation system have shown that a low-latency analog position with an accuracy over 98% compared to the sampled encoder signal can be obtained. The analog position signals are then utilized to produce analog viscoelastic virtual environments to assess and benchmark the proposed methods through uncoupled stability and perceived fidelity tests. The results have shown that a virtual stiffness range larger than 400% can be obtained with enhanced fidelity compared to common digital implementations.
{"title":"Analog Position Estimation for Enhanced Stability and Fidelity of Haptic Systems","authors":"Leonam Pecly;Keyvan Hashtrudi-Zaad","doi":"10.1109/TOH.2024.3371389","DOIUrl":"10.1109/TOH.2024.3371389","url":null,"abstract":"In this paper, we propose three methods to compute low-latency analog position where two of them fuse encoder and rate gyro signals. While one method is based on gyro with bias correction using encoder information, the other one is encoder-referenced combined with a resettable integrator to minimize the staircase form of encoder signals. Experiments on a one degree-of-freedom haptic simulation system have shown that a low-latency analog position with an accuracy over 98% compared to the sampled encoder signal can be obtained. The analog position signals are then utilized to produce analog viscoelastic virtual environments to assess and benchmark the proposed methods through uncoupled stability and perceived fidelity tests. The results have shown that a virtual stiffness range larger than 400% can be obtained with enhanced fidelity compared to common digital implementations.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"676-688"},"PeriodicalIF":2.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1109/TOH.2024.3371092
Bing Wu;Qian Liu
The past decade has witnessed the development of tactile sensors, which have been increasingly considered as an essential equipment in robotics, especially the dexterous manipulation and collaborative human-robot interactions. There are two major types of tactile sensors, i.e., the vision-based and taxel-based sensors. The latter is capable of achieving lower integration complexity with existing robotic systems, but unable to provide high-resolution (HR) tactile information as that of the vision-based counterpart due to the manufacturing limitations. Therefore, we propose a novel tactile pattern super-resolution (SR) scheme for taxel-based sensors, which is a data-driven scheme enabling customized selection on the number of applied “tapping” actions to achieve improvable performance from single tapping SR (STSR) to the multi-tapping SR (MTSR). In addition, we develop a new dataset for the proposed tactile SR scheme. In order to obtain scalable resolutions (e.g. ×4, ×10, ×20, etc.) of ground-truth HR tactile patterns, we propose a novel tactile point spread function (PSF) scheme to generate HR tactile patterns by leveraging the low-resolution (LR) data gathered directly from the taxel-based sensor and the depth information of contact surfaces. This is in strong contrast to the conventional ground-truth generation approach with overlapped multi-sampling and registration strategy, which can only provide a fixed resolution. Experimental results confirm the efficiency of the proposed scheme.
{"title":"Integrating Point Spread Function Into Taxel-Based Tactile Pattern Super Resolution","authors":"Bing Wu;Qian Liu","doi":"10.1109/TOH.2024.3371092","DOIUrl":"10.1109/TOH.2024.3371092","url":null,"abstract":"The past decade has witnessed the development of tactile sensors, which have been increasingly considered as an essential equipment in robotics, especially the dexterous manipulation and collaborative human-robot interactions. There are two major types of tactile sensors, i.e., the vision-based and taxel-based sensors. The latter is capable of achieving lower integration complexity with existing robotic systems, but unable to provide high-resolution (HR) tactile information as that of the vision-based counterpart due to the manufacturing limitations. Therefore, we propose a novel tactile pattern super-resolution (SR) scheme for taxel-based sensors, which is a data-driven scheme enabling customized selection on the number of applied “tapping” actions to achieve improvable performance from single tapping SR (STSR) to the multi-tapping SR (MTSR). In addition, we develop a new dataset for the proposed tactile SR scheme. In order to obtain scalable resolutions (e.g. ×4, ×10, ×20, etc.) of ground-truth HR tactile patterns, we propose a novel tactile point spread function (PSF) scheme to generate HR tactile patterns by leveraging the low-resolution (LR) data gathered directly from the taxel-based sensor and the depth information of contact surfaces. This is in strong contrast to the conventional ground-truth generation approach with overlapped multi-sampling and registration strategy, which can only provide a fixed resolution. Experimental results confirm the efficiency of the proposed scheme.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"637-649"},"PeriodicalIF":2.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139989845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noisy vibrotactile signals transmitted during tactile explorations of an object provide precious information on the nature of its surface. Understanding the link between signal properties and how they are interpreted by the tactile sensory system remains challenging. In this paper, we investigated human perception of broadband, stationary vibrations recorded during exploration of textures and reproduced using a vibrotactile actuator. Since intensity is a well-established perceptual attribute, we here focused on the relevance of the spectral content. The stimuli were first equalized in perceived intensity and subsequently used to identify the most salient spectral features using dissimilarity estimations between pairs of successive vibration. Based on dimensionally reduced spectral representations, models of dissimilarity ratings showed that the balance between low and high frequencies was the most important cue. Formal validation of this result was achieved through a Mushra experiment, in which participants assessed the fidelity of resynthesized vibrations with various distorted frequency balances. These findings offer valuable insights into human vibrotactile perception and establish a computational framework for analyzing vibrations as humans do. Moreover, they pave the way for signal synthesis and compression based on sparse representations, holding significance for applications involving complex vibratory feedback.
{"title":"The High/Low Frequency Balance Drives Tactile Perception of Noisy Vibrations","authors":"Corentin Bernard;Etienne Thoret;Nicolas Huloux;Sølvi Ystad","doi":"10.1109/TOH.2024.3371264","DOIUrl":"10.1109/TOH.2024.3371264","url":null,"abstract":"Noisy vibrotactile signals transmitted during tactile explorations of an object provide precious information on the nature of its surface. Understanding the link between signal properties and how they are interpreted by the tactile sensory system remains challenging. In this paper, we investigated human perception of broadband, stationary vibrations recorded during exploration of textures and reproduced using a vibrotactile actuator. Since intensity is a well-established perceptual attribute, we here focused on the relevance of the spectral content. The stimuli were first equalized in perceived intensity and subsequently used to identify the most salient spectral features using dissimilarity estimations between pairs of successive vibration. Based on dimensionally reduced spectral representations, models of dissimilarity ratings showed that the balance between low and high frequencies was the most important cue. Formal validation of this result was achieved through a Mushra experiment, in which participants assessed the fidelity of resynthesized vibrations with various distorted frequency balances. These findings offer valuable insights into human vibrotactile perception and establish a computational framework for analyzing vibrations as humans do. Moreover, they pave the way for signal synthesis and compression based on sparse representations, holding significance for applications involving complex vibratory feedback.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"614-624"},"PeriodicalIF":2.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139989846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27DOI: 10.1109/TOH.2024.3370111
Samuel Verret;Thierry Laliberté;Raphaël Cloutier;Clément Gosselin
This paper explores the design and experimental validation of a three-degree-of-freedom variable inertia generator. An inertia generator is a handheld haptic device that renders a prescribed inertia. In the mechanism proposed in this paper, three-dimensional torque feedback is achieved by accelerating three pairs of flywheels mounted on orthogonal axes. While the primary objective of this work is to design an inertia generator, this study also includes developing other functionalities for the device that exploit its torque generation capabilities. These include the ability to generate a predefined torque profile and to simulate a viscous environment through damping, which are both utilized to assess the device's performance. The device proved to accurately render the necessary torques for every functionality while presenting some limitations for damping and rendering an inertia smaller than the device's inherent inertia.
{"title":"Synthesis, Dynamic Modeling, Prototyping and Control of a Handheld Rotational Inertia Generator","authors":"Samuel Verret;Thierry Laliberté;Raphaël Cloutier;Clément Gosselin","doi":"10.1109/TOH.2024.3370111","DOIUrl":"10.1109/TOH.2024.3370111","url":null,"abstract":"This paper explores the design and experimental validation of a three-degree-of-freedom variable inertia generator. An inertia generator is a handheld haptic device that renders a prescribed inertia. In the mechanism proposed in this paper, three-dimensional torque feedback is achieved by accelerating three pairs of flywheels mounted on orthogonal axes. While the primary objective of this work is to design an inertia generator, this study also includes developing other functionalities for the device that exploit its torque generation capabilities. These include the ability to generate a predefined torque profile and to simulate a viscous environment through damping, which are both utilized to assess the device's performance. The device proved to accurately render the necessary torques for every functionality while presenting some limitations for damping and rendering an inertia smaller than the device's inherent inertia.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"591-603"},"PeriodicalIF":2.4,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27DOI: 10.1109/TOH.2024.3370835
Judith Weda;Angelika Mader;Hamid Souri;Edwin Dertien;Jan van Erp
Electroactive textile (EAT) has the potential to apply pressure stimuli to the skin, e.g. in the form of a squeeze on the arm. To present a perceivable haptic sensation we need to know the perception threshold for such stimuli. We designed a set-up based on motorized ribbons around the arm with five different widths (range 3 – 49 mm) for psychophysical studies. We investigated the perception threshold of force pressure and ribbon reduction in two studies, using two methods (PSI and 1up/3down staircase), comparing sex, the left and right arm, the lower and upper arm, and stimulated surface area with a total of 57 participants. We found that larger stimulation surfaces require less pressure to reach the perception threshold (0.151 N per cm $^{2}$