Pub Date : 2025-09-19DOI: 10.1109/TOH.2025.3585659
Emma Treadway;Kristian Journet;Andrew Deering;Cora Lewis;Noelle Poquiz
In [1], Fig. 5 shows that the code was inadvertently plotted IT on the graphs labeled Percent Correct and vice-versa (with IT multiplied by 100 rather than the fraction of correct responses) for subplots (b)–(d). None of the statistics or other analyses were affected. It was simply a transcription error in generating the plots for this specific figure, with incorrect data assigned to each plot window in MATLAB. In the figure, you will note that effectively the top and bottom data in each subplot are swapped as shown.
{"title":"Correction to “Effects of Wall and Freespace Damping Levels on Virtual Wall Stiffness Classification”","authors":"Emma Treadway;Kristian Journet;Andrew Deering;Cora Lewis;Noelle Poquiz","doi":"10.1109/TOH.2025.3585659","DOIUrl":"https://doi.org/10.1109/TOH.2025.3585659","url":null,"abstract":"In [1], Fig. 5 shows that the code was inadvertently plotted IT on the graphs labeled Percent Correct and vice-versa (with IT multiplied by 100 rather than the fraction of correct responses) for subplots (b)–(d). None of the statistics or other analyses were affected. It was simply a transcription error in generating the plots for this specific figure, with incorrect data assigned to each plot window in MATLAB. In the figure, you will note that effectively the top and bottom data in each subplot are swapped as shown.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 3","pages":"815-815"},"PeriodicalIF":2.8,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11174045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145090156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-19DOI: 10.1109/TOH.2025.3605032
J. Edward Colgate;Lynette A. Jones;Hong Z. Tan
{"title":"Twenty Years of World Haptics: Retrospective and Future Directions","authors":"J. Edward Colgate;Lynette A. Jones;Hong Z. Tan","doi":"10.1109/TOH.2025.3605032","DOIUrl":"https://doi.org/10.1109/TOH.2025.3605032","url":null,"abstract":"","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 3","pages":"452-455"},"PeriodicalIF":2.8,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11174044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145100485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-15DOI: 10.1109/TOH.2025.3609959
Jake D. Little;Jennifer L. Tennison;Jenna L. Gorlewicz
Haptic wearables provide an intuitive human-machine interface to convey information through the sense of touch, which may have promising applications in guided breathing. In this paper, we detail the design and evaluation of three wearable prototypes (Vibration, Skin Drag, and Tapping) capable of administering discrete (individual, separate pulses and stimuli). and continuous (overlapping or uninterrupted stimuli) forms of linear haptic cycles with inspiration from slow, deep guided breathing. Characterization was performed to quantify and validate the performance of six haptic stimuli (discrete/continuous vibration, skin drag, and tapping). Devices were quantified with key metrics that described the applied stimuli and the dynamics of the wearable. A human subjects study (N = 25), composed of two-cycle tracking tasks, was conducted to determine device performance and user aptitude. Results indicated consistent directional recognition across all six stimuli, but discrete stimuli performed better in spatial localization tasks. Although outperformed in tracking/localization tasks, continuous stimuli, especially skin drag, were described as the most apt and intuitive pairing to guided breathing. Findings highlight the potential of these linear haptic stimuli in a number of applications, including guided breathing, navigation, virtual immersion, and communication.
{"title":"Drawing the Line: Wearable Linear Haptics Motivated by Guided Breathing","authors":"Jake D. Little;Jennifer L. Tennison;Jenna L. Gorlewicz","doi":"10.1109/TOH.2025.3609959","DOIUrl":"10.1109/TOH.2025.3609959","url":null,"abstract":"Haptic wearables provide an intuitive human-machine interface to convey information through the sense of touch, which may have promising applications in guided breathing. In this paper, we detail the design and evaluation of three wearable prototypes (Vibration, Skin Drag, and Tapping) capable of administering discrete (individual, separate pulses and stimuli). and continuous (overlapping or uninterrupted stimuli) forms of linear haptic cycles with inspiration from slow, deep guided breathing. Characterization was performed to quantify and validate the performance of six haptic stimuli (discrete/continuous vibration, skin drag, and tapping). Devices were quantified with key metrics that described the applied stimuli and the dynamics of the wearable. A human subjects study (N = 25), composed of two-cycle tracking tasks, was conducted to determine device performance and user aptitude. Results indicated consistent directional recognition across all six stimuli, but discrete stimuli performed better in spatial localization tasks. Although outperformed in tracking/localization tasks, continuous stimuli, especially skin drag, were described as the most apt and intuitive pairing to guided breathing. Findings highlight the potential of these linear haptic stimuli in a number of applications, including guided breathing, navigation, virtual immersion, and communication.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 4","pages":"888-900"},"PeriodicalIF":2.8,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145069429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-29DOI: 10.1109/TOH.2025.3604476
Debadutta Subudhi;K. K. Deepak;Manivannan Muniyandi
Palpation of arteries holds significant physiological importance. Existing pulse actuator designs intended to replicate the haptic sensations of palpation primarily focus on normal force interactions, often overlooking the shear forces generated by oscillations of the arterial wall during blood flow. This study aims to evaluate the normal, longitudinal, and transverse forces exerted by arteries through both theoretical and experimental analyses during palpation. The experimental validation features a pulse actuator-sensor system. The actuator component is a hydroelectromagnetic actuator, while the haptic sensing is performed by the Subblescope. The Subblescope measures arterial force feedback from both soft and hard artery models, as well as from the radial pulse in 18 human subjects. Mathematical analysis establishes the operational range of the sensor-actuator system as 0.005 N to 2.5 N. The force feedback from the simulation has been used for designing the total force generation by the actuator. The reactive force along the Z-axis varies between 19.3 mN to 500 mN, while the transverse and longitudinal forces along the Y and X axes range from 6.9 mN to 88.01 mN and 5.46 mN to 87.85 mN, respectively. The pulse-force map of the hard artery reveals higher three-dimensional force interactions compared to the soft artery. The hydroelectromagnetic actuator effectively generates both normal and shear forces during pulsatile flow. Future work will focus on developing training modules that replicate pulse haptics associated with various physiological conditions such as diabetes.
{"title":"Haptics of Pulse Palpation: Simulation and Validation Through Novel Sensor-Actuator System","authors":"Debadutta Subudhi;K. K. Deepak;Manivannan Muniyandi","doi":"10.1109/TOH.2025.3604476","DOIUrl":"10.1109/TOH.2025.3604476","url":null,"abstract":"Palpation of arteries holds significant physiological importance. Existing pulse actuator designs intended to replicate the haptic sensations of palpation primarily focus on normal force interactions, often overlooking the shear forces generated by oscillations of the arterial wall during blood flow. This study aims to evaluate the normal, longitudinal, and transverse forces exerted by arteries through both theoretical and experimental analyses during palpation. The experimental validation features a pulse actuator-sensor system. The actuator component is a hydroelectromagnetic actuator, while the haptic sensing is performed by the Subblescope. The Subblescope measures arterial force feedback from both soft and hard artery models, as well as from the radial pulse in 18 human subjects. Mathematical analysis establishes the operational range of the sensor-actuator system as 0.005 N to 2.5 N. The force feedback from the simulation has been used for designing the total force generation by the actuator. The reactive force along the Z-axis varies between 19.3 mN to 500 mN, while the transverse and longitudinal forces along the Y and X axes range from 6.9 mN to 88.01 mN and 5.46 mN to 87.85 mN, respectively. The pulse-force map of the hard artery reveals higher three-dimensional force interactions compared to the soft artery. The hydroelectromagnetic actuator effectively generates both normal and shear forces during pulsatile flow. Future work will focus on developing training modules that replicate pulse haptics associated with various physiological conditions such as diabetes.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 4","pages":"876-887"},"PeriodicalIF":2.8,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144952146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-14DOI: 10.1109/TOH.2025.3598859
Michael Fennel;Markus Walker;Dominik Pikos;Uwe D. Hanebeck
Research in virtual reality and haptic technologies has consistently aimed to enhance immersion. While advanced head-mounted displays are now commercially available, kinesthetic haptic interfaces still face challenges such as limited workspaces, insufficient degrees of freedom, and kinematics not matching the human arm. In this paper, we present HapticGiant, a novel large-scale kinesthetic haptic interface designed to match the properties of the human arm as closely as possible and to facilitate natural user locomotion while providing full haptic feedback. The interface incorporates a novel admittance-type force control scheme, leveraging hierarchical optimization to render both arbitrary serial kinematic chains and Cartesian admittances. Notably, the proposed control scheme natively accounts for system limitations, including joint and Cartesian constraints, as well as singularities. Experimental results demonstrate the effectiveness of HapticGiant and its control scheme, paving the way for highly immersive virtual reality applications.
{"title":"HapticGiant: A Novel Very Large Kinesthetic Haptic Interface With Hierarchical Force Control","authors":"Michael Fennel;Markus Walker;Dominik Pikos;Uwe D. Hanebeck","doi":"10.1109/TOH.2025.3598859","DOIUrl":"10.1109/TOH.2025.3598859","url":null,"abstract":"Research in virtual reality and haptic technologies has consistently aimed to enhance immersion. While advanced head-mounted displays are now commercially available, kinesthetic haptic interfaces still face challenges such as limited workspaces, insufficient degrees of freedom, and kinematics not matching the human arm. In this paper, we present HapticGiant, a novel large-scale kinesthetic haptic interface designed to match the properties of the human arm as closely as possible and to facilitate natural user locomotion while providing full haptic feedback. The interface incorporates a novel admittance-type force control scheme, leveraging hierarchical optimization to render both arbitrary serial kinematic chains and Cartesian admittances. Notably, the proposed control scheme natively accounts for system limitations, including joint and Cartesian constraints, as well as singularities. Experimental results demonstrate the effectiveness of HapticGiant and its control scheme, paving the way for highly immersive virtual reality applications.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 4","pages":"862-875"},"PeriodicalIF":2.8,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144855099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The haptic communication of languages by engaging wearable displays has recently attracted much attention because of the continuous technological improvements (e.g., miniaturized hardware, and software). Currently, one of the primary research goals towards the haptic communication of language is to develop training protocols that reduce the time of learning by making the learning experience less cumbersome. This study provides a novel training protocol by separating learning into two sections, that is, offline, and online training. During offline training, the technique is based on visual learning, i.e., the spatial-temporal information of the haptic patterns is obtained by sight without stimulating the skin. During online training, the technique is based on kinesthetic learning, i.e., the knowledge of the patterns is obtained by hands-on experience. The learning of English letters is used to illustrate the proposed technique. The results show that the proposed two-section protocol lowers the time of online learning in the state-of-the-art methods.
{"title":"Towards Tactile Communication of English Language: A Visual Handbook Enhances Letter Learning","authors":"Tawanda Denzel Nyasulu;Shengzhi Du;Nico Steyn;Qingxue Liu;Syeda Nadiah Fatima Nahri;Hui Yu","doi":"10.1109/TOH.2025.3596843","DOIUrl":"10.1109/TOH.2025.3596843","url":null,"abstract":"The haptic communication of languages by engaging wearable displays has recently attracted much attention because of the continuous technological improvements (e.g., miniaturized hardware, and software). Currently, one of the primary research goals towards the haptic communication of language is to develop training protocols that reduce the time of learning by making the learning experience less cumbersome. This study provides a novel training protocol by separating learning into two sections, that is, offline, and online training. During offline training, the technique is based on visual learning, i.e., the spatial-temporal information of the haptic patterns is obtained by sight without stimulating the skin. During online training, the technique is based on kinesthetic learning, i.e., the knowledge of the patterns is obtained by hands-on experience. The learning of English letters is used to illustrate the proposed technique. The results show that the proposed two-section protocol lowers the time of online learning in the state-of-the-art methods.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 3","pages":"809-814"},"PeriodicalIF":2.8,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144834983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-08DOI: 10.1109/TOH.2025.3597265
Maijie Xiang;Jonathan J. Bernstein;David B. Miller;Robert D. White
Current Braille readers are costly, limited to one or two rows of text, and there are no affordable tactile displays for images. To address this, we have developed a low-cost, electronically refreshable vibrotactile display prototype inspired by capacitive micromachined ultrasound transducers (CMUT). The design utilizes a printed circuit board (PCB) as the substrate and bottom electrode array, combined with a metalized Kapton film as the vibrating membrane and punched foam tape as a spacer. The current prototype demonstrates a 2x3 array of tactels (a tactile pixel) with 3.0 mm spacing. The system was modeled using finite element analysis (FEA) and characterized using laser vibrometry. Vibration amplitudes of 1.0 μm to 7.0 μm peak-to-peak were achieved using a peak-to-peak drive voltage of 600V at 200 to 300 Hz. Distinct patterns in the shape of Braille characters have been generated. A human subject study was conducted with 10 unskilled participants each conducting 20 trials on a discrimination task. Eight of the ten participants achieved an accuracy greater than 70% indicating that the patterns can be discriminated (N = 200, p = 0.0027). The prototype demonstrates the feasibility of this approach and is scalable to large area displays at low cost.
{"title":"PCB-Based Miniature Vibro-Tactile Display for the Visually Impaired","authors":"Maijie Xiang;Jonathan J. Bernstein;David B. Miller;Robert D. White","doi":"10.1109/TOH.2025.3597265","DOIUrl":"10.1109/TOH.2025.3597265","url":null,"abstract":"Current Braille readers are costly, limited to one or two rows of text, and there are no affordable tactile displays for images. To address this, we have developed a low-cost, electronically refreshable vibrotactile display prototype inspired by capacitive micromachined ultrasound transducers (CMUT). The design utilizes a printed circuit board (PCB) as the substrate and bottom electrode array, combined with a metalized Kapton film as the vibrating membrane and punched foam tape as a spacer. The current prototype demonstrates a 2x3 array of tactels (a tactile pixel) with 3.0 mm spacing. The system was modeled using finite element analysis (FEA) and characterized using laser vibrometry. Vibration amplitudes of 1.0 μm to 7.0 μm peak-to-peak were achieved using a peak-to-peak drive voltage of 600V at 200 to 300 Hz. Distinct patterns in the shape of Braille characters have been generated. A human subject study was conducted with 10 unskilled participants each conducting 20 trials on a discrimination task. Eight of the ten participants achieved an accuracy greater than 70% indicating that the patterns can be discriminated (N = 200, p = 0.0027). The prototype demonstrates the feasibility of this approach and is scalable to large area displays at low cost.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 3","pages":"742-750"},"PeriodicalIF":2.8,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144803994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-08DOI: 10.1109/TOH.2025.3597076
Lauren E. Horde;Logan D. Clark;Sara L. Riggs
While vibrotactile displays continue to gain popularity, it remains that the phenomenon of tactile change blindness negatively impacts the human ability to detect changes between and within tactile signals. This paper surveys the research literature on tactile change detection and blindness under various parameters, including the number of tactors used, the intensity and length of the stimulus, and whether distractors between stimuli (i.e., transients) were used during experimentation, among others. The goal of this survey is to summarize what has been done in an attempt to better understand the parameters that exacerbate tactile change blindness and identify potential areas of future research. When such an understanding is reached, the design of haptic and multimodal displays may ideally be improved.
{"title":"A Survey on Tactile Change Blindness","authors":"Lauren E. Horde;Logan D. Clark;Sara L. Riggs","doi":"10.1109/TOH.2025.3597076","DOIUrl":"10.1109/TOH.2025.3597076","url":null,"abstract":"While vibrotactile displays continue to gain popularity, it remains that the phenomenon of tactile change blindness negatively impacts the human ability to detect changes between and within tactile signals. This paper surveys the research literature on tactile change detection and blindness under various parameters, including the number of tactors used, the intensity and length of the stimulus, and whether distractors between stimuli (i.e., transients) were used during experimentation, among others. The goal of this survey is to summarize what has been done in an attempt to better understand the parameters that exacerbate tactile change blindness and identify potential areas of future research. When such an understanding is reached, the design of haptic and multimodal displays may ideally be improved.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 4","pages":"825-837"},"PeriodicalIF":2.8,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144803993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-04DOI: 10.1109/TOH.2025.3595445
Mohammad Sohorab Hossain;Vesna D. Novak
Exercises involving two participants are increasingly popular in applications such as motor rehabilitation, but it is still unclear how such exercises can be most effectively designed. This study examines the effects of two promising design elements of dyadic exercises (gamification and haptic coupling) on motor learning, motivation, and muscle activation. 62 healthy adult dyads were divided into four groups where gamification and haptic coupling were either present or absent, then went through an established protocol of learning two-dimensional tracking motions in the intermittent presence of a force field. 36 of these dyads completed an extended protocol where gamification was either added or removed after the main protocol, allowing a crossover study of its effects. Results showed that haptic coupling had no significant effects, matching some previous studies. On the other hand, gamification did improve intrinsic motivation and reduce forearm electromyograms, though the reduction in forearm electromyograms may be due to a biased sample. Overall, haptic coupling does not appear to be a high priority for future applied studies of dyadic exercises, especially since all previous coupling studies were performed with minimalistic visuals. On the other hand, gamification continues to hold promise for applications such as motor rehabilitation.
{"title":"Combining Gamification and Haptic Coupling in a Two-Dimensional Tracking Task Performed by Human Dyads","authors":"Mohammad Sohorab Hossain;Vesna D. Novak","doi":"10.1109/TOH.2025.3595445","DOIUrl":"10.1109/TOH.2025.3595445","url":null,"abstract":"Exercises involving two participants are increasingly popular in applications such as motor rehabilitation, but it is still unclear how such exercises can be most effectively designed. This study examines the effects of two promising design elements of dyadic exercises (gamification and haptic coupling) on motor learning, motivation, and muscle activation. 62 healthy adult dyads were divided into four groups where gamification and haptic coupling were either present or absent, then went through an established protocol of learning two-dimensional tracking motions in the intermittent presence of a force field. 36 of these dyads completed an extended protocol where gamification was either added or removed after the main protocol, allowing a crossover study of its effects. Results showed that haptic coupling had no significant effects, matching some previous studies. On the other hand, gamification did improve intrinsic motivation and reduce forearm electromyograms, though the reduction in forearm electromyograms may be due to a biased sample. Overall, haptic coupling does not appear to be a high priority for future applied studies of dyadic exercises, especially since all previous coupling studies were performed with minimalistic visuals. On the other hand, gamification continues to hold promise for applications such as motor rehabilitation.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 3","pages":"732-741"},"PeriodicalIF":2.8,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144784222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study proposes a method to present pure low-frequency vibration sensations to the face that cannot be presented by small commercially available vibrators. The core innovation lies in utilizing an amplitude modulation technique with a carrier frequency of approximately 200 Hz. Due to the absence of Pacinian corpuscles in the facial region—receptors responsible for detecting high-frequency vibrations around 200 Hz—only the original low-frequency signal is perceived. Three experiments were conducted. Experiments 1 and 2 were performed on the forehead to confirm that the proposed amplitude modulation method could produce the desired low-frequency perception and to evaluate the subjective quality of the vibration. The results suggested that the proposed method could produce the perception of desired pure low-frequency vibration when applied to the forehead. In Experiment 3, the proposed method was applied to the whole face, and its range of applicability was explored. The results indicated that the original low-frequency vibration was clearly perceptible around the eyes, cheeks, and lower lip area.
{"title":"Presentation of Low-Frequency Vibration to the Face Using Amplitude Modulation","authors":"Yuma Akiba;Shota Nakayama;Keigo Ushiyama;Izumi Mizoguchi;Hiroyuki Kajimoto","doi":"10.1109/TOH.2025.3594480","DOIUrl":"10.1109/TOH.2025.3594480","url":null,"abstract":"This study proposes a method to present pure low-frequency vibration sensations to the face that cannot be presented by small commercially available vibrators. The core innovation lies in utilizing an amplitude modulation technique with a carrier frequency of approximately 200 Hz. Due to the absence of Pacinian corpuscles in the facial region—receptors responsible for detecting high-frequency vibrations around 200 Hz—only the original low-frequency signal is perceived. Three experiments were conducted. Experiments 1 and 2 were performed on the forehead to confirm that the proposed amplitude modulation method could produce the desired low-frequency perception and to evaluate the subjective quality of the vibration. The results suggested that the proposed method could produce the perception of desired pure low-frequency vibration when applied to the forehead. In Experiment 3, the proposed method was applied to the whole face, and its range of applicability was explored. The results indicated that the original low-frequency vibration was clearly perceptible around the eyes, cheeks, and lower lip area.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 3","pages":"710-721"},"PeriodicalIF":2.8,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144759921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}