Pub Date : 2025-08-18DOI: 10.1109/TNS.2025.3594609
Gian-Franco Dalla betta
{"title":"Editorial Introducing New Associate Editors","authors":"Gian-Franco Dalla betta","doi":"10.1109/TNS.2025.3594609","DOIUrl":"https://doi.org/10.1109/TNS.2025.3594609","url":null,"abstract":"","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 8","pages":"2860-2860"},"PeriodicalIF":1.9,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11129018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144868440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-18DOI: 10.1109/TNS.2025.3592046
Dan Fleetwood
{"title":"List of Reviewers RADECS 2024 Special Issue","authors":"Dan Fleetwood","doi":"10.1109/TNS.2025.3592046","DOIUrl":"https://doi.org/10.1109/TNS.2025.3592046","url":null,"abstract":"","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 8","pages":"2262-2263"},"PeriodicalIF":1.9,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11128996","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144867944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-18DOI: 10.1109/TNS.2025.3595639
{"title":"IEEE Transactions on Nuclear Science information for authors","authors":"","doi":"10.1109/TNS.2025.3595639","DOIUrl":"https://doi.org/10.1109/TNS.2025.3595639","url":null,"abstract":"","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 8","pages":"C3-C3"},"PeriodicalIF":1.9,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11129024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144868363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MPT2321 is a 32-channel application-specific integrated circuit (ASIC) for silicon photomultiplier (SiPM), featuring high signal-to-noise ratio (SNR) and energy resolution, along with outstanding timing performance. Particularly for single-photon signals, the chip maintains a considerably high SNR. This article describes the fundamental architecture and key performance parameters of the chip. A series of measurements was conducted to evaluate the charge and time detection performance. First, the timing jitters of the analog and analog–digital mixed parts of the chip were measured by external charge injection. Then, a single photon spectrum was acquired by irradiating the SiPM (Hamamatsu S15639-1325PS, $1.3times 1.1$ mm, and pixel pitch of $25~mu $ m) with a high-precision pulsed laser, revealing clearly distinguishable peaks. Meanwhile, factors affecting timing jitter were also analyzed. Additionally, by utilizing light emitting diode (LED) emission, the single-photon spectra of different single-photon avalanche diode (SPAD) sizes (25, 35, and $40~mu $ m) were presented. Finally, the energy resolution was measured to be 8.7% $pm ~0.1$ % full width at half maximum (FWHM) at 511 keV using SiPM (Hamamatsu S14160-6050HS, $6times 6$ mm) coupled with lutetium yttrium oxyorthosilicate (LYSO) crystals ($4times 4times 20$ mm). With time walk correction, a coincidence time resolution (CTR) of $289~pm ~6$ ps (FWHM) was achieved. Based on the results of these performance measurements, MPT2321 has been verified to be a qualified candidate for applications in several fields.
{"title":"Performance of a SiPM Readout ASIC Chip MPT2321","authors":"Qin Jiang;Yan Huang;Rong Zhou;Zhonghai Wang;Wei Shen","doi":"10.1109/TNS.2025.3598055","DOIUrl":"https://doi.org/10.1109/TNS.2025.3598055","url":null,"abstract":"MPT2321 is a 32-channel application-specific integrated circuit (ASIC) for silicon photomultiplier (SiPM), featuring high signal-to-noise ratio (SNR) and energy resolution, along with outstanding timing performance. Particularly for single-photon signals, the chip maintains a considerably high SNR. This article describes the fundamental architecture and key performance parameters of the chip. A series of measurements was conducted to evaluate the charge and time detection performance. First, the timing jitters of the analog and analog–digital mixed parts of the chip were measured by external charge injection. Then, a single photon spectrum was acquired by irradiating the SiPM (Hamamatsu S15639-1325PS, <inline-formula> <tex-math>$1.3times 1.1$ </tex-math></inline-formula> mm, and pixel pitch of <inline-formula> <tex-math>$25~mu $ </tex-math></inline-formula>m) with a high-precision pulsed laser, revealing clearly distinguishable peaks. Meanwhile, factors affecting timing jitter were also analyzed. Additionally, by utilizing light emitting diode (LED) emission, the single-photon spectra of different single-photon avalanche diode (SPAD) sizes (25, 35, and <inline-formula> <tex-math>$40~mu $ </tex-math></inline-formula>m) were presented. Finally, the energy resolution was measured to be 8.7% <inline-formula> <tex-math>$pm ~0.1$ </tex-math></inline-formula>% full width at half maximum (FWHM) at 511 keV using SiPM (Hamamatsu S14160-6050HS, <inline-formula> <tex-math>$6times 6$ </tex-math></inline-formula> mm) coupled with lutetium yttrium oxyorthosilicate (LYSO) crystals (<inline-formula> <tex-math>$4times 4times 20$ </tex-math></inline-formula> mm). With time walk correction, a coincidence time resolution (CTR) of <inline-formula> <tex-math>$289~pm ~6$ </tex-math></inline-formula> ps (FWHM) was achieved. Based on the results of these performance measurements, MPT2321 has been verified to be a qualified candidate for applications in several fields.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 9","pages":"3094-3101"},"PeriodicalIF":1.9,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145090095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neutrons have extensive applications across a wide range of fields. Diamond, with its excellent physical properties, holds great promise for neutron detection. However, the probability of thermal neutron interaction with diamond is relatively low, leading to the common use of 6LiF as a conversion layer. Beyond the inherent properties of the conversion layer, the detection efficiency of a detector is influenced not only by the spatial collection of secondary particles but also by the electrical characteristics of the device. Theoretical simulations can extract important parameters of the device and reveal significant physical processes. This article establishes a simulation framework using technology computer-aided design (TCAD), stopping and range of ions in matter (SRIM), and Garfield++. The simulation process involves using Sentaurus TCAD software to model the electrical characteristics of diamond detectors, employing SRIM to accurately simulate the deposition energy interaction of charged secondary particles with diamonds, and leveraging Garfield++ to generate detector signals accurately using electrical characteristics and nuclear reaction data. By simulating the signals of both planar and trench-type microstructure detectors, the research explores the impacts of various factors, including the applied voltage, the energy of secondary particles, and the angle of incidence on the dynamic response process. The proposed coupled simulation method plays a key role in the fabrication and experimental design of thermal neutron detectors, providing crucial insights and guidance to optimize detector performance and design readout circuits.
{"title":"A Novel Method for Simulating Transient Signals in Diamond Thermal Neutron Detectors","authors":"Hongyun Wang;Xiaochuan Xia;Yuhao Xie;Yang Liu;Xin Tan;Zeqi Huang;Jiale Zhang;Wei Jiang;Ruirui Fan;Hongwei Liang","doi":"10.1109/TNS.2025.3597369","DOIUrl":"https://doi.org/10.1109/TNS.2025.3597369","url":null,"abstract":"Neutrons have extensive applications across a wide range of fields. Diamond, with its excellent physical properties, holds great promise for neutron detection. However, the probability of thermal neutron interaction with diamond is relatively low, leading to the common use of <sup>6</sup>LiF as a conversion layer. Beyond the inherent properties of the conversion layer, the detection efficiency of a detector is influenced not only by the spatial collection of secondary particles but also by the electrical characteristics of the device. Theoretical simulations can extract important parameters of the device and reveal significant physical processes. This article establishes a simulation framework using technology computer-aided design (TCAD), stopping and range of ions in matter (SRIM), and Garfield++. The simulation process involves using Sentaurus TCAD software to model the electrical characteristics of diamond detectors, employing SRIM to accurately simulate the deposition energy interaction of charged secondary particles with diamonds, and leveraging Garfield++ to generate detector signals accurately using electrical characteristics and nuclear reaction data. By simulating the signals of both planar and trench-type microstructure detectors, the research explores the impacts of various factors, including the applied voltage, the energy of secondary particles, and the angle of incidence on the dynamic response process. The proposed coupled simulation method plays a key role in the fabrication and experimental design of thermal neutron detectors, providing crucial insights and guidance to optimize detector performance and design readout circuits.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 9","pages":"2991-2996"},"PeriodicalIF":1.9,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145090102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-11DOI: 10.1109/TNS.2025.3597733
Honglin Zhao;Jian Yang;Guoqiang Zeng;Fuquan Chen;Chengshuai Tian;Chuanhao Hu
Position-sensitive scintillator detectors are critical components in coded-aperture imaging and Compton imaging systems. Improving the position resolution and energy resolution of the detector is crucial for system performance. Traditional position sensitive scintillator detectors are constrained by the size of photoelectric readout devices and the number of readout channels, making it difficult to achieve both high position resolution and energy resolution at a low cost. This study presents a novel gamma-ray imaging detector that overcomes the traditional trade-off between position resolution, energy resolution, and cost. Using a high-resolution cerium-doped gadolinium aluminum gallium garnet (GAGG:Ce) scintillator array ($0.5times 0.5times 5$ mm pixels) read out by a position-sensitive silicon photomultiplier (PS-SiPM) through its four anodes, we achieved direct position reconstruction without the use of a light-sharing technique. A 137Cs source was used to test the performance of this imaging detector. It demonstrated a clear segmentation of a $10times 10$ array with 7.2% [full-width-at-half-maximum (FWHM)] energy resolution for 662 keV, significantly simplifying the design of electronic readout systems.
{"title":"A Gamma-Ray Imaging Detector Using Position-Sensitive SiPM Coupled to GAGG:Ce Scintillator Array","authors":"Honglin Zhao;Jian Yang;Guoqiang Zeng;Fuquan Chen;Chengshuai Tian;Chuanhao Hu","doi":"10.1109/TNS.2025.3597733","DOIUrl":"https://doi.org/10.1109/TNS.2025.3597733","url":null,"abstract":"Position-sensitive scintillator detectors are critical components in coded-aperture imaging and Compton imaging systems. Improving the position resolution and energy resolution of the detector is crucial for system performance. Traditional position sensitive scintillator detectors are constrained by the size of photoelectric readout devices and the number of readout channels, making it difficult to achieve both high position resolution and energy resolution at a low cost. This study presents a novel gamma-ray imaging detector that overcomes the traditional trade-off between position resolution, energy resolution, and cost. Using a high-resolution cerium-doped gadolinium aluminum gallium garnet (GAGG:Ce) scintillator array (<inline-formula> <tex-math>$0.5times 0.5times 5$ </tex-math></inline-formula> mm pixels) read out by a position-sensitive silicon photomultiplier (PS-SiPM) through its four anodes, we achieved direct position reconstruction without the use of a light-sharing technique. A <sup>137</sup>Cs source was used to test the performance of this imaging detector. It demonstrated a clear segmentation of a <inline-formula> <tex-math>$10times 10$ </tex-math></inline-formula> array with 7.2% [full-width-at-half-maximum (FWHM)] energy resolution for 662 keV, significantly simplifying the design of electronic readout systems.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 9","pages":"3131-3137"},"PeriodicalIF":1.9,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145090096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-08DOI: 10.1109/TNS.2025.3596969
Xinyu Zhao;Weiran Chen;Venkata Dinavahi
Molten salt breeder reactors (MSBRs), which utilize molten fluoride salts as both fuel and coolant, are currently being researched and designed worldwide, offering inherent safety features, efficient fuel utilization, and the potential for thorium-based fuel cycles. Given the advanced development status of MSBRs, real-time emulation is essential for dynamic analysis studies, accommodating more detailed models and advanced control strategies. This article proposes a real-time digital-twin (RTDT) based on a hardware-in-the-loop (HIL) emulation on a field-programmable gate array (FPGA) for a multi-domain two-fluid MSBR model with a designed controller for validation and testing. A nonlinear explicit numerical solution with an appropriate step-size and ordinary differential equation (ODE) solver is carried out in a non-iterative fashion to achieve the required accuracy and real-time execution. The MSBR hardware emulation and closed-loop controller tests have been implemented on the parallel hardware architecture of the FPGA in real-time for dynamic analysis and performance evaluation. The FPGA-based hardware emulation has achieved an ultralow latency of $2.34~mu $ s, providing a remarkable 427-fold acceleration in faster-than-real-time (FTRT) performance. The designed controller performs well under transient and steady-state operating conditions, effectively stabilizing the MSBR system under perturbations, as validated on the RTDT.
{"title":"Real-Time Digital-Twin of Thorium-Based Molten Salt Breeder Reactor for Closed-Loop Controller Testing Applications","authors":"Xinyu Zhao;Weiran Chen;Venkata Dinavahi","doi":"10.1109/TNS.2025.3596969","DOIUrl":"https://doi.org/10.1109/TNS.2025.3596969","url":null,"abstract":"Molten salt breeder reactors (MSBRs), which utilize molten fluoride salts as both fuel and coolant, are currently being researched and designed worldwide, offering inherent safety features, efficient fuel utilization, and the potential for thorium-based fuel cycles. Given the advanced development status of MSBRs, real-time emulation is essential for dynamic analysis studies, accommodating more detailed models and advanced control strategies. This article proposes a real-time digital-twin (RTDT) based on a hardware-in-the-loop (HIL) emulation on a field-programmable gate array (FPGA) for a multi-domain two-fluid MSBR model with a designed controller for validation and testing. A nonlinear explicit numerical solution with an appropriate step-size and ordinary differential equation (ODE) solver is carried out in a non-iterative fashion to achieve the required accuracy and real-time execution. The MSBR hardware emulation and closed-loop controller tests have been implemented on the parallel hardware architecture of the FPGA in real-time for dynamic analysis and performance evaluation. The FPGA-based hardware emulation has achieved an ultralow latency of <inline-formula> <tex-math>$2.34~mu $ </tex-math></inline-formula>s, providing a remarkable 427-fold acceleration in faster-than-real-time (FTRT) performance. The designed controller performs well under transient and steady-state operating conditions, effectively stabilizing the MSBR system under perturbations, as validated on the RTDT.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 9","pages":"2997-3009"},"PeriodicalIF":1.9,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145090273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}