首页 > 最新文献

2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)最新文献

英文 中文
Design of a topology optimal compliant microgripper using fat Bezier curves 基于胖Bezier曲线的柔性微夹持器拓扑优化设计
Nianfeng F. Wang, Xianmin Zhang
This paper presents the problem formulation and design of compliant microgripper. The microgripper includes a fixed jaw and a movable jaw for engaging opposite surfaces of the article. Actuation of the compliant mechanism drives the movable jaw toward or away from the fixed jaw to close or open the jaws relative to one another. The travel path of the movable jaw is generally at right angles to the gripping surface of the jaw so that the jaws remain parallel to each other as they move toward and away from each other. The automated synthesis of such microgripper is by a structural topology optimization approach. The problem of topology optimization of continuum structures is solved using a multiobjective genetic algorithm coupled with a geometric representation scheme using fat Bezier curve that efficiently defines the variable structural geometry. A graph-theoretic chromosome encoding together with compatible crossover and mutation operators are then applied to form an effective evolutionary optimization procedure. The solution framework is integrated with a non-linear finite element code for large-displacement analyses of the compliant structures, with the resulting optimal designs used to realize various microgripper configurations.
本文介绍了柔性微夹持器的问题表述和设计。所述微夹持器包括用于接合所述物品的相对表面的固定颚和活动颚。所述柔性机构的驱动使所述活动颚靠近或远离所述固定颚,以相对地关闭或打开所述颚。活动颚的运动路径通常与颚的夹持面成直角,使颚在彼此靠近或远离时保持平行。采用结构拓扑优化方法实现了微夹持器的自动化合成。采用多目标遗传算法结合有效定义可变结构几何形状的胖Bezier曲线几何表示方法求解连续体结构的拓扑优化问题。然后采用图论染色体编码和兼容的交叉和变异算子,形成有效的进化优化过程。将求解框架与柔性结构大位移分析的非线性有限元程序相结合,得到的优化设计用于实现各种微夹持器配置。
{"title":"Design of a topology optimal compliant microgripper using fat Bezier curves","authors":"Nianfeng F. Wang, Xianmin Zhang","doi":"10.1109/3M-NANO.2012.6472982","DOIUrl":"https://doi.org/10.1109/3M-NANO.2012.6472982","url":null,"abstract":"This paper presents the problem formulation and design of compliant microgripper. The microgripper includes a fixed jaw and a movable jaw for engaging opposite surfaces of the article. Actuation of the compliant mechanism drives the movable jaw toward or away from the fixed jaw to close or open the jaws relative to one another. The travel path of the movable jaw is generally at right angles to the gripping surface of the jaw so that the jaws remain parallel to each other as they move toward and away from each other. The automated synthesis of such microgripper is by a structural topology optimization approach. The problem of topology optimization of continuum structures is solved using a multiobjective genetic algorithm coupled with a geometric representation scheme using fat Bezier curve that efficiently defines the variable structural geometry. A graph-theoretic chromosome encoding together with compatible crossover and mutation operators are then applied to form an effective evolutionary optimization procedure. The solution framework is integrated with a non-linear finite element code for large-displacement analyses of the compliant structures, with the resulting optimal designs used to realize various microgripper configurations.","PeriodicalId":134364,"journal":{"name":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127418326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Development of a novel robotic catheter manipulating system 新型机器人导管操作系统的研制
Xu Ma, Shuxiang Guo, Nan Xiao, Jian Guo, S. Yoshida, T. Tamiya, M. Kawanishi
Manual operation of steerable catheter is inaccurate in minimally invasive surgery and requires dexterity for efficient manipulation of the catheter meanwhile exposes the surgeons to intense radiation. In this paper, our objective is to develop a remote control system that replaces the manipulation of surgeons with high accuracy. Increasing demands for flexibility and fast reactions in control method, fuzzy control can play an important role because the experience of experts can be combined in the fuzzy control rules to be implemented in the systems. We present a practical application of fuzzy PID controller for this developed system during the remote operations and compare with the traditional PID control experimentally. The feasibility and effectiveness of the control method are demonstrated. The performance using the fuzzy PID control is much better than using the conventional control method.
在微创手术中,手动操作可操纵导尿管是不准确的,需要灵巧的操作才能有效地操作导尿管,同时使外科医生暴露在强辐射下。在本文中,我们的目标是开发一种远程控制系统,以高精度取代外科医生的操作。由于控制方法对灵活性和快速反应的要求越来越高,模糊控制可以发挥重要作用,因为专家的经验可以结合在模糊控制规则中,以便在系统中实施。给出了模糊PID控制器在该系统远程操作中的实际应用,并与传统PID控制进行了实验比较。验证了该控制方法的可行性和有效性。采用模糊PID控制比采用常规控制方法的性能要好得多。
{"title":"Development of a novel robotic catheter manipulating system","authors":"Xu Ma, Shuxiang Guo, Nan Xiao, Jian Guo, S. Yoshida, T. Tamiya, M. Kawanishi","doi":"10.4018/ijimr.2012040105","DOIUrl":"https://doi.org/10.4018/ijimr.2012040105","url":null,"abstract":"Manual operation of steerable catheter is inaccurate in minimally invasive surgery and requires dexterity for efficient manipulation of the catheter meanwhile exposes the surgeons to intense radiation. In this paper, our objective is to develop a remote control system that replaces the manipulation of surgeons with high accuracy. Increasing demands for flexibility and fast reactions in control method, fuzzy control can play an important role because the experience of experts can be combined in the fuzzy control rules to be implemented in the systems. We present a practical application of fuzzy PID controller for this developed system during the remote operations and compare with the traditional PID control experimentally. The feasibility and effectiveness of the control method are demonstrated. The performance using the fuzzy PID control is much better than using the conventional control method.","PeriodicalId":134364,"journal":{"name":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122595462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
期刊
2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1