Hippolyte Lerogeron, Pierre Boivin, Vincent Faucher, Julien Favier
This article is dedicated to the development of a model to simulate fast transient compressible flows on solid structures using immersed boundary method (IBM) and a lattice Boltzmann solver. Ultimately, the proposed model aims at providing an efficient algorithm to simulate strongly-coupled fluid-structure interactions (FSI). Within this goal, it is necessary to propose a precise and robust numerical framework and validate it on stationary solid cases first, which is the scope of the present study. Classical FSI methods, such as body-fitted approaches, are facing challenges with moving or complex geometries in realistic conditions, requiring computationally expensive re-meshing operations. IBM offers an alternative by treating the solid structure geometry independently from the fluid mesh. This study focuses on the extension of the IBM to compressible flows, and a particular attention is given to the enforcement of various thermal boundary conditions. A hybrid approach, combining diffuse forcing for Dirichlet-type boundary conditions and ghost-nodes forcing for Neumann-type boundary conditions is introduced. Finally, a simplified model, relying only on diffuse IBM forcing, is investigated to treat specific cases where the fluid solid interface is considered as adiabatic. The accuracy of the method is validated through various test cases of increasing complexity.
{"title":"A Numerical Framework for Fast Transient Compressible Flows Using Lattice Boltzmann and Immersed Boundary Methods","authors":"Hippolyte Lerogeron, Pierre Boivin, Vincent Faucher, Julien Favier","doi":"10.1002/nme.7647","DOIUrl":"https://doi.org/10.1002/nme.7647","url":null,"abstract":"<p>This article is dedicated to the development of a model to simulate fast transient compressible flows on solid structures using immersed boundary method (IBM) and a lattice Boltzmann solver. Ultimately, the proposed model aims at providing an efficient algorithm to simulate strongly-coupled fluid-structure interactions (FSI). Within this goal, it is necessary to propose a precise and robust numerical framework and validate it on stationary solid cases first, which is the scope of the present study. Classical FSI methods, such as body-fitted approaches, are facing challenges with moving or complex geometries in realistic conditions, requiring computationally expensive re-meshing operations. IBM offers an alternative by treating the solid structure geometry independently from the fluid mesh. This study focuses on the extension of the IBM to compressible flows, and a particular attention is given to the enforcement of various thermal boundary conditions. A hybrid approach, combining diffuse forcing for Dirichlet-type boundary conditions and ghost-nodes forcing for Neumann-type boundary conditions is introduced. Finally, a simplified model, relying only on diffuse IBM forcing, is investigated to treat specific cases where the fluid solid interface is considered as adiabatic. The accuracy of the method is validated through various test cases of increasing complexity.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7647","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Westermann, Oleg Davydov, Andriy Sokolov, Stefan Turek
We study the behavior of the meshless finite difference method based on radial basis functions applied to the stationary incompressible Stokes equations in two spatial dimensions, with the velocity and the pressure discretized on their own node sets. We demonstrate that the main condition for the stability of the numerical solution is that the distribution of the pressure nodes has to be coarser than that of the velocity both globally and locally in the domain, and there is no need for any more complex assumptions similar to the Ladyzhenskaya-Babuška-Brezzi condition in the finite element method. Optimal stability is achieved when the relative local density of the velocity to pressure nodes is about 4:1. The convergence rates of the method correspond to the convergence rates of numerical differentiation for both low and higher order discretizations. The method works well on both mesh-based and irregular nodes, such as those generated by random or quasi-random numbers and on nodes with varying density. There is no need for special staggered arrangements, which suggests that node generation algorithms may produce just one node set and obtain the other by either refinement or coarsening. Numerical results for the benchmark Driven Cavity Problem confirm the robustness and high accuracy of the method, in particular resolving a cascade of multiple Moffatt Eddies at the tip of the wedge by using nodes obtained from the quasi-random Halton sequence.
{"title":"Stability and Accuracy of a Meshless Finite Difference Method for the Stokes Equations","authors":"Alexander Westermann, Oleg Davydov, Andriy Sokolov, Stefan Turek","doi":"10.1002/nme.70000","DOIUrl":"https://doi.org/10.1002/nme.70000","url":null,"abstract":"<p>We study the behavior of the meshless finite difference method based on radial basis functions applied to the stationary incompressible Stokes equations in two spatial dimensions, with the velocity and the pressure discretized on their own node sets. We demonstrate that the main condition for the stability of the numerical solution is that the distribution of the pressure nodes has to be coarser than that of the velocity both globally and locally in the domain, and there is no need for any more complex assumptions similar to the Ladyzhenskaya-Babuška-Brezzi condition in the finite element method. Optimal stability is achieved when the relative local density of the velocity to pressure nodes is about 4:1. The convergence rates of the method correspond to the convergence rates of numerical differentiation for both low and higher order discretizations. The method works well on both mesh-based and irregular nodes, such as those generated by random or quasi-random numbers and on nodes with varying density. There is no need for special staggered arrangements, which suggests that node generation algorithms may produce just one node set and obtain the other by either refinement or coarsening. Numerical results for the benchmark Driven Cavity Problem confirm the robustness and high accuracy of the method, in particular resolving a cascade of multiple Moffatt Eddies at the tip of the wedge by using nodes obtained from the quasi-random Halton sequence.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}