Pub Date : 2025-02-26eCollection Date: 2025-01-01DOI: 10.1155/ijbm/5811057
Nour Sh El-Gendy, M Shaaban Sadek, Hussein N Nassar, Ahmad Mustafa
The present work conducts a detailed technoeconomic analysis of an environmentally friendly zero-waste biorefinery process to valorize marine Ulva fasciata macroalgae into different sustainable value-added products. The proposed sequential fully integrated process yielded 34.89% mineral-rich water extract (MRWE), 2.61 ± 0.5% chlorophyll, 0.41 ± 0.05% carotenoids, 12.55 ± 1.6% starch, 3.27 ± 0.7% lipids, 22.24 ± 1.8% ulvan, 13.37 ± 1.5% proteins, and 10.66 ± 0.9% cellulose. The Aspen Plus software, utilizing the nonrandom two-liquid (NRTL) model, was applied for process design, simulation, and technoeconomic analysis. Key findings include a positive net present value (NPV) of $49,755,544.90, a high return on investment (ROI) of 485%, and an internal rate of return (IRR) of 17%. The anticipated payback period is 7 years, indicating a quick recovery of the initial investment. These findings confirm that Ulva fasciata is a promising resource in the biorefinery industry, providing a viable and eco-friendly alternative for the production of bio-based products and a new market for seaweed-based products.
{"title":"Eco-Friendly Extraction of Sustainable and Valorized Value-Added Products From <i>Ulva fasciata</i> Macroalgae: A Holistic Technoeconomic Analysis.","authors":"Nour Sh El-Gendy, M Shaaban Sadek, Hussein N Nassar, Ahmad Mustafa","doi":"10.1155/ijbm/5811057","DOIUrl":"https://doi.org/10.1155/ijbm/5811057","url":null,"abstract":"<p><p>The present work conducts a detailed technoeconomic analysis of an environmentally friendly zero-waste biorefinery process to valorize marine <i>Ulva fasciata</i> macroalgae into different sustainable value-added products. The proposed sequential fully integrated process yielded 34.89% mineral-rich water extract (MRWE), 2.61 ± 0.5% chlorophyll, 0.41 ± 0.05% carotenoids, 12.55 ± 1.6% starch, 3.27 ± 0.7% lipids, 22.24 ± 1.8% ulvan, 13.37 ± 1.5% proteins, and 10.66 ± 0.9% cellulose. The Aspen Plus software, utilizing the nonrandom two-liquid (NRTL) model, was applied for process design, simulation, and technoeconomic analysis. Key findings include a positive net present value (NPV) of $49,755,544.90, a high return on investment (ROI) of 485%, and an internal rate of return (IRR) of 17%. The anticipated payback period is 7 years, indicating a quick recovery of the initial investment. These findings confirm that <i>Ulva fasciata</i> is a promising resource in the biorefinery industry, providing a viable and eco-friendly alternative for the production of bio-based products and a new market for seaweed-based products.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"5811057"},"PeriodicalIF":3.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986915/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143993759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, green synthesis methods for producing nanomaterials have gained significant interest due to their environmentally friendly nature and wide-ranging applications. The present study addresses a novel green synthesis of graphene quantum dots (GQDs) using leaves of Withania somnifera. The size, morphology, and stability of the green-synthesized GQDs were characterized using TEM, UV-Visible spectroscopy, Fluorescence spectrophotometer, XRD, and DLS. The bio-functional properties of the GQDs were investigated, with a focus on their antidiabetic and antioxidant capabilities. Their antidiabetic activity was assessed by examining their ability to inhibit α-amylase and α-glucosidase enzymes, which play a crucial role in glucose metabolism. Additionally, their antioxidant properties were evaluated using DPPH● scavenging assays, highlighting their effectiveness in neutralizing free radicals. The findings revealed that the synthesized GQDs outperformed the original leaf extract in both antioxidant activity and enzyme inhibition. The study revealed that the leaf extract exhibited higher IC50 values for inhibiting DPPH (78.508 ± 5.71), α-amylase (161.909 ± 6.188), and α-glucosidase (133.345 ± 7.328) compared to synthesized GQDs, which showed lower IC50 values of 72.74 ± 5.9, 137.966 ± 6.95, and 122.084 ± 5.478, respectively. The findings indicate that Withania somnifera derived GQDs hold significant potential for medical applications, warranting further investigation into their therapeutic efficacy. This study offers a comprehensive analysis of the fundamental biological properties of GQDs, addressing the dual challenges of antidiabetic and antioxidant activity.
{"title":"Green Synthesis of Red Fluorescent Graphene Quantum Dots Using <i>Withania somnifera</i> Leaves: Exploring Antidiabetic and Antioxidant Potential.","authors":"Sudhir Kumar Kataria, Pooja Kadyan, Jaya Saini, Mohit Saharan, Ponnusamy Thillai Arasu","doi":"10.1155/ijbm/5841012","DOIUrl":"10.1155/ijbm/5841012","url":null,"abstract":"<p><p>In recent years, green synthesis methods for producing nanomaterials have gained significant interest due to their environmentally friendly nature and wide-ranging applications. The present study addresses a novel green synthesis of graphene quantum dots (GQDs) using leaves of <i>Withania somnifera.</i> The size, morphology, and stability of the green-synthesized GQDs were characterized using TEM, UV-Visible spectroscopy, Fluorescence spectrophotometer, XRD, and DLS. The bio-functional properties of the GQDs were investigated, with a focus on their antidiabetic and antioxidant capabilities. Their antidiabetic activity was assessed by examining their ability to inhibit α-amylase and α-glucosidase enzymes, which play a crucial role in glucose metabolism. Additionally, their antioxidant properties were evaluated using DPPH● scavenging assays, highlighting their effectiveness in neutralizing free radicals. The findings revealed that the synthesized GQDs outperformed the original leaf extract in both antioxidant activity and enzyme inhibition. The study revealed that the leaf extract exhibited higher IC<sub>50</sub> values for inhibiting DPPH (78.508 ± 5.71), α-amylase (161.909 ± 6.188), and α-glucosidase (133.345 ± 7.328) compared to synthesized GQDs, which showed lower IC<sub>50</sub> values of 72.74 ± 5.9, 137.966 ± 6.95, and 122.084 ± 5.478, respectively. The findings indicate that <i>Withania somnifera</i> derived GQDs hold significant potential for medical applications, warranting further investigation into their therapeutic efficacy. This study offers a comprehensive analysis of the fundamental biological properties of GQDs, addressing the dual challenges of antidiabetic and antioxidant activity.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"5841012"},"PeriodicalIF":3.0,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06eCollection Date: 2025-01-01DOI: 10.1155/ijbm/5583605
K Boimau, J Bale, N P G Suardana, I P Lokantara, D G H Adoe, Y Pell
The physical and tensile analysis of NaOH-treated Borassus fibers is carried out to expand and open up further possibilities for their use as reinforcement in composites. This study will describe the NaOH treatment procedure on fibers utilizing the batch reactor approach, as the soaking method is typically used in this case. The physical analysis shows that the wettability behavior effect of NaOH was led by using 5%, 10%, and 15% of NaOH solutions. The result of each treatment using NaOH was then characterized by using SEM-EDX to show the morphology and mechanical properties of the material before and after alkali treatment. Otherwise, FTIR was used to identify the functional group before and after alkali treatment. The tensile properties of the Borassus fibers (raw and treated) were also discussed. The wettability test was carried out by using the contact angle measurement technique. All samples (natural and treated fibers) showed a contact angle of less than 90°, which is associated with the hydrophilic surface properties. This result indicated that this treated fiber has polar properties. The increase of NaOH percentage in the treated samples caused a decrease in the contact angle. This phenomenon was related to the SEM image of natural and treated fibers. SEM result shows the cleaning effect of nonpolar components from the fiber surface and the roughening of the surface during the NaOH treatment. The result of FTIR indicates that several functional group components, such as impurities, lignin, and hemicellulose, were leaching out from row fibers after alkali treatment. The mechanical test results indicate improved tensile properties due to the NaOH treatment. Moreover, the samples from the fiber treated with 10% NaOH indicated the highest tensile strength.
{"title":"Effect of Surface Treatment on Physical and Tensile Properties of Borassus Fruit Fibers.","authors":"K Boimau, J Bale, N P G Suardana, I P Lokantara, D G H Adoe, Y Pell","doi":"10.1155/ijbm/5583605","DOIUrl":"10.1155/ijbm/5583605","url":null,"abstract":"<p><p>The physical and tensile analysis of NaOH-treated Borassus fibers is carried out to expand and open up further possibilities for their use as reinforcement in composites. This study will describe the NaOH treatment procedure on fibers utilizing the batch reactor approach, as the soaking method is typically used in this case. The physical analysis shows that the wettability behavior effect of NaOH was led by using 5%, 10%, and 15% of NaOH solutions. The result of each treatment using NaOH was then characterized by using SEM-EDX to show the morphology and mechanical properties of the material before and after alkali treatment. Otherwise, FTIR was used to identify the functional group before and after alkali treatment. The tensile properties of the Borassus fibers (raw and treated) were also discussed. The wettability test was carried out by using the contact angle measurement technique. All samples (natural and treated fibers) showed a contact angle of less than 90°, which is associated with the hydrophilic surface properties. This result indicated that this treated fiber has polar properties. The increase of NaOH percentage in the treated samples caused a decrease in the contact angle. This phenomenon was related to the SEM image of natural and treated fibers. SEM result shows the cleaning effect of nonpolar components from the fiber surface and the roughening of the surface during the NaOH treatment. The result of FTIR indicates that several functional group components, such as impurities, lignin, and hemicellulose, were leaching out from row fibers after alkali treatment. The mechanical test results indicate improved tensile properties due to the NaOH treatment. Moreover, the samples from the fiber treated with 10% NaOH indicated the highest tensile strength.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"5583605"},"PeriodicalIF":3.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825201/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to evaluate the impact of different manipulation methods and storage environments on the microstructural, chemical, and mechanical properties of calcium-enriched mixture (CEM) cement. Four sample groups were examined, including nondried (ND-I) and dried (D-I) groups placed directly in an incubator, dried samples stored in phosphate-buffered saline (PBS) (D-P), and dried samples stored in distilled water (D-W). Various analyses, including Vickers microhardness, compressive strength, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) were conducted after incubating the samples for 7 days. The data were analyzed by Shapiro-Wilk, Levene, independent t, one-way ANOVA, and Tukey HSD tests. Key findings include the ND-I group exhibited a significantly longer setting time but the lowest microhardness and compressive strength. D-P showed the highest microhardness, while D-W displayed the highest compressive strength. FTIR analysis revealed vibration modes related to (PO4)3- ions and Si compounds in all groups, with dried groups showing more vibrations of (PO4)3- ions and OH groups, and D-P and D-W groups displayed vibration modes of (CO3)2- ions. XRD analysis indicated increased tri/dicalcium silicate reflections in CEM groups exposed to PBS or distilled water. D-I and D-W groups presented hexagonal or rectangular cubic and needle-like crystals, while D-P showed a homogeneous globular structure covered with fine crystals. The order of the weight percentage of major elemental constituents of D-P group was oxygen, calcium, phosphorus, zirconium, barium, carbon, silicon, and sulfur. Incremental placement, drying each increment, and exposing CEM to PBS/tissue fluids result in a faster set and more tolerant cement with a more uniform microstructure. The formation of hydroxyapatite can occur on the surface of the set cement.
{"title":"Effect of Manipulation Methods and Storage Environments on the Microstructural, Chemical, and Mechanical Properties of Calcium-Enriched Mixture Cement.","authors":"Leyla Roghanizadeh, Hassan Torabzadeh, Ardavan Parhizkar, Alireza Akbarzadeh Baghban, Saeed Asgary","doi":"10.1155/ijbm/5560351","DOIUrl":"10.1155/ijbm/5560351","url":null,"abstract":"<p><p>This study aimed to evaluate the impact of different manipulation methods and storage environments on the microstructural, chemical, and mechanical properties of calcium-enriched mixture (CEM) cement. Four sample groups were examined, including nondried (ND-I) and dried (D-I) groups placed directly in an incubator, dried samples stored in phosphate-buffered saline (PBS) (D-P), and dried samples stored in distilled water (D-W). Various analyses, including Vickers microhardness, compressive strength, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) were conducted after incubating the samples for 7 days. The data were analyzed by Shapiro-Wilk, Levene, independent <i>t</i>, one-way ANOVA, and Tukey HSD tests. Key findings include the ND-I group exhibited a significantly longer setting time but the lowest microhardness and compressive strength. D-P showed the highest microhardness, while D-W displayed the highest compressive strength. FTIR analysis revealed vibration modes related to (PO4)<sup>3-</sup> ions and Si compounds in all groups, with dried groups showing more vibrations of (PO4)<sup>3-</sup> ions and OH groups, and D-P and D-W groups displayed vibration modes of (CO3)<sup>2-</sup> ions. XRD analysis indicated increased tri/dicalcium silicate reflections in CEM groups exposed to PBS or distilled water. D-I and D-W groups presented hexagonal or rectangular cubic and needle-like crystals, while D-P showed a homogeneous globular structure covered with fine crystals. The order of the weight percentage of major elemental constituents of D-P group was oxygen, calcium, phosphorus, zirconium, barium, carbon, silicon, and sulfur. Incremental placement, drying each increment, and exposing CEM to PBS/tissue fluids result in a faster set and more tolerant cement with a more uniform microstructure. The formation of hydroxyapatite can occur on the surface of the set cement.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"5560351"},"PeriodicalIF":3.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High-energy nonthermal processes (irradiation) are an interesting technique for depolymerization. Gum tragacanth (GT) is a heteropolysaccharide composed of various sugars that are beneficial in the food and pharmaceutical industries. This study investigated the effects of different gamma irradiation doses (2.5, 5, 10, 20, 100, 500, 1,000, and 2000 kGy) on GT properties, considering both structural and physicochemical changes. The results confirmed that gamma irradiation influenced depolymerization with increases in monosaccharides (L-arabinose, D-galactose, D-glucose, D-xylose, L-fucose, L-rhamnose) and the percentage of degradation. Fourier transform infrared (FTIR) spectroscopy analysis indicated that structural changes occurred, with more free O-H and C-O bonding, including the carboxylic group (COOH) in the degraded molecules after irradiation. The changes in physicochemical properties were lower viscosity and a color change under gamma irradiation. The property changes in the GT were clearly related to an increased dose of gamma rays. In summary, there was comprehensive GT degradation following exposure using different increasing doses of gamma radiation, with some concomitant property changes in the GT.
{"title":"Effect of Gamma Irradiation on Depolymerization and Property Changes of Gum Tragacanth.","authors":"Boontiwa Ninchan, Parimitta Chauywongyart, Teerawat Utapong, Nuatawan Thamrongsiripak","doi":"10.1155/ijbm/8875341","DOIUrl":"10.1155/ijbm/8875341","url":null,"abstract":"<p><p>High-energy nonthermal processes (irradiation) are an interesting technique for depolymerization. Gum tragacanth (GT) is a heteropolysaccharide composed of various sugars that are beneficial in the food and pharmaceutical industries. This study investigated the effects of different gamma irradiation doses (2.5, 5, 10, 20, 100, 500, 1,000, and 2000 kGy) on GT properties, considering both structural and physicochemical changes. The results confirmed that gamma irradiation influenced depolymerization with increases in monosaccharides (L-arabinose, D-galactose, D-glucose, D-xylose, L-fucose, L-rhamnose) and the percentage of degradation. Fourier transform infrared (FTIR) spectroscopy analysis indicated that structural changes occurred, with more free O-H and C-O bonding, including the carboxylic group (COOH) in the degraded molecules after irradiation. The changes in physicochemical properties were lower viscosity and a color change under gamma irradiation. The property changes in the GT were clearly related to an increased dose of gamma rays. In summary, there was comprehensive GT degradation following exposure using different increasing doses of gamma radiation, with some concomitant property changes in the GT.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"8875341"},"PeriodicalIF":3.0,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142800669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13eCollection Date: 2024-01-01DOI: 10.1155/2024/8213995
Gaofeng Liu, Li Zhou, Chen Li, Junying Cao, Yong Zhang, Sujuan Cui, Yan Liu, Yanbin Xu, Yongjie Zang, Meiming Yang, Qingyuan Li
Objective: To investigate the effect of the titanium mesh on flail chest and bone healing from clinical and animal experiments. Methods: Clinical experiment: 24 patients with flail chests in our hospital from January 2020 to January 2023 were prospectively selected and divided into control and titanium mesh groups according to different treatment plans and basic data-matching principles, with 12 cases in each group. The control group was treated with conservative external fixation, and the titanium mesh group was treated with titanium mesh fixation. The clinical efficacy index, visual analog scale and blood gas indexes and hemodynamic indexes of the two groups of patients were recorded. Chest CT and pulmonary function and life quality were examined after operation. Animal experiment: The flail chest sheep were treated conservatively with a titanium mesh, and the expression of bone-healing-related proteins was detected. Results: The mechanical ventilation time, drain indwelling time, ICU observation time, and hospital time in the titanium mesh group were significantly shorter than those in the control group (p < 0.05). The PaO2, CVP, FVC, FEV1, MVV, and life quality of the titanium mesh group were significantly better than those of the control group after operation, and the visual analog scale, PaCO2, CI, ELWI, and the proportions of atelectasis, thoracocyllosis, and consolidation tardive after operation were significantly lower than those of the control group (p < 0.05). The expressions of BMP2, IGF-1, VEGF, and PDGFD in the rib tissue of titanium mesh sheep were higher than those of control sheep at 4 weeks after operation (p < 0.05). Conclusion: Titanium mesh is a safe and effective treatment for flail chest, which can improve pain, blood gas, hemodynamic indexes, and pulmonary function and promote fracture healing.
{"title":"Application of Titanium Mesh in the Early Treatment of Flail Chest.","authors":"Gaofeng Liu, Li Zhou, Chen Li, Junying Cao, Yong Zhang, Sujuan Cui, Yan Liu, Yanbin Xu, Yongjie Zang, Meiming Yang, Qingyuan Li","doi":"10.1155/2024/8213995","DOIUrl":"10.1155/2024/8213995","url":null,"abstract":"<p><p><b>Objective:</b> To investigate the effect of the titanium mesh on flail chest and bone healing from clinical and animal experiments. <b>Methods:</b> Clinical experiment: 24 patients with flail chests in our hospital from January 2020 to January 2023 were prospectively selected and divided into control and titanium mesh groups according to different treatment plans and basic data-matching principles, with 12 cases in each group. The control group was treated with conservative external fixation, and the titanium mesh group was treated with titanium mesh fixation. The clinical efficacy index, visual analog scale and blood gas indexes and hemodynamic indexes of the two groups of patients were recorded. Chest CT and pulmonary function and life quality were examined after operation. Animal experiment: The flail chest sheep were treated conservatively with a titanium mesh, and the expression of bone-healing-related proteins was detected. <b>Results:</b> The mechanical ventilation time, drain indwelling time, ICU observation time, and hospital time in the titanium mesh group were significantly shorter than those in the control group (<i>p</i> < 0.05). The PaO<sub>2</sub>, CVP, FVC, FEV1, MVV, and life quality of the titanium mesh group were significantly better than those of the control group after operation, and the visual analog scale, PaCO<sub>2</sub>, CI, ELWI, and the proportions of atelectasis, thoracocyllosis, and consolidation tardive after operation were significantly lower than those of the control group (<i>p</i> < 0.05). The expressions of BMP2, IGF-1, VEGF, and PDGFD in the rib tissue of titanium mesh sheep were higher than those of control sheep at 4 weeks after operation (<i>p</i> < 0.05). <b>Conclusion:</b> Titanium mesh is a safe and effective treatment for flail chest, which can improve pain, blood gas, hemodynamic indexes, and pulmonary function and promote fracture healing.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"8213995"},"PeriodicalIF":3.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06eCollection Date: 2024-01-01DOI: 10.1155/2024/2167066
Ana Elisa Vilicev Italiano, Ricardo Luis Tranquilin, Danny Omar Mendoza Marin, Márcio Luiz Dos Santos, Luís Geraldo Vaz
Bone loss in the alveolar ridge is a factor widely studied by dentists in implant surgeries, as it poses a major challenge for aesthetic and functional recovery in patients with large maxillary bone defects. Synthetic biomaterials function as grafts designed to replace and remodel bone tissue. Calcium phosphate is a biomaterial that has good properties such as biocompatibility and bioactivity, making it a reference in bone replacement treatments. A synthetic biomaterial such as calcium phosphate can be obtained by various synthesis techniques. The microwave hydrothermal method (HTMO) is a pathway that allows changes in synthesis parameters and significantly increases the transmission efficiency of materials such as synthetic calcium phosphate derivatives. The study proposes obtaining a biomaterial for bone grafting based on calcium phosphate by the microwave HTMO and evaluating its microstructural and physicochemical characteristics. The parameters tested in this process were temperature and reaction time. The calcium phosphate particulates were obtained by the microwave HTMO at temperatures of 110°C and 130°C for 60 min and calcined at 300°C, 500°C, and 700°C. Microstructural and physicochemical characterization analyses were carried out using scanning electron microscopy, Fourier transform infrared, and X-ray diffraction. The results obtained showed the presence of more than one calcium phosphate biological interest phase, as hydroxyapatite (HA), tricalcium phosphate (β-TCP), and octacalcium phosphate (OCP), highlighting with increasing calcination temperature, the β-TCP phase becomes evident. The proposed synthesis method was efficient in obtaining a biomaterial with suitable physical and chemical characteristics, with an association of crystalline phases of biological interest related to the increase in synthesis temperature and calcination temperature.
{"title":"Synthesis of Calcium Phosphate by Microwave Hydrothermal Method: Physicochemical and Morphological Characterization.","authors":"Ana Elisa Vilicev Italiano, Ricardo Luis Tranquilin, Danny Omar Mendoza Marin, Márcio Luiz Dos Santos, Luís Geraldo Vaz","doi":"10.1155/2024/2167066","DOIUrl":"10.1155/2024/2167066","url":null,"abstract":"<p><p>Bone loss in the alveolar ridge is a factor widely studied by dentists in implant surgeries, as it poses a major challenge for aesthetic and functional recovery in patients with large maxillary bone defects. Synthetic biomaterials function as grafts designed to replace and remodel bone tissue. Calcium phosphate is a biomaterial that has good properties such as biocompatibility and bioactivity, making it a reference in bone replacement treatments. A synthetic biomaterial such as calcium phosphate can be obtained by various synthesis techniques. The microwave hydrothermal method (HTMO) is a pathway that allows changes in synthesis parameters and significantly increases the transmission efficiency of materials such as synthetic calcium phosphate derivatives. The study proposes obtaining a biomaterial for bone grafting based on calcium phosphate by the microwave HTMO and evaluating its microstructural and physicochemical characteristics. The parameters tested in this process were temperature and reaction time. The calcium phosphate particulates were obtained by the microwave HTMO at temperatures of 110°C and 130°C for 60 min and calcined at 300°C, 500°C, and 700°C. Microstructural and physicochemical characterization analyses were carried out using scanning electron microscopy, Fourier transform infrared, and X-ray diffraction. The results obtained showed the presence of more than one calcium phosphate biological interest phase, as hydroxyapatite (HA), tricalcium phosphate (<i>β</i>-TCP), and octacalcium phosphate (OCP), highlighting with increasing calcination temperature, the <i>β</i>-TCP phase becomes evident. The proposed synthesis method was efficient in obtaining a biomaterial with suitable physical and chemical characteristics, with an association of crystalline phases of biological interest related to the increase in synthesis temperature and calcination temperature.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"2167066"},"PeriodicalIF":3.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30eCollection Date: 2024-01-01DOI: 10.1155/2024/8286525
Amir Hossein Haghighi, Abolfazl Ghaderian, Esmaeil Mirzaei
One of the most important advantages and applications of coated nanoparticles in biological applications is their use in isolating different types of cells to diagnose and treat all types of diseases. Therefore, in this research work, the possibility of isolation and enrichment of B cells using magnetic iron oxide nanoparticles have been investigated. In this regard, magnetic nanoparticles are first coated with (3-aminopropyl)triethoxysilane to make them hydrophilic and prevent their clumping, then reacted with and rendered biocompatible by FITC anti-human CD20 antibody. These nanoparticles containing antibodies have been used to isolate B cells from the lymphatic cells. Transmission electron microscopy (TEM) and vibrating-sample magnetometry (VSM) tests were used to check the magnetic properties and coating of nanoparticles. The flow cytometry and fluorescent microscopy tests are used to check antibody binding to nanoparticles. Moreover, flow cytometry tests were used to check the extent of cell separation. Results show that nanoparticles reacted with 450 μL of antibody (T450) performed better than other nanoparticles in isolating B cells.
涂层纳米粒子在生物应用中最重要的优势和应用之一是用于分离不同类型的细胞,以诊断和治疗各种疾病。因此,在这项研究工作中,研究了使用磁性氧化铁纳米粒子分离和富集 B 细胞的可能性。为此,首先在磁性纳米粒子上涂覆(3-氨基丙基)三乙氧基硅烷,使其具有亲水性并防止结块,然后与 FITC 抗人 CD20 抗体反应并使其具有生物相容性。这些含有抗体的纳米颗粒已被用于从淋巴细胞中分离 B 细胞。透射电子显微镜(TEM)和振动样品磁力计(VSM)测试用于检测纳米粒子的磁性和涂层。流式细胞仪和荧光显微镜测试用于检查抗体与纳米颗粒的结合情况。此外,还使用流式细胞仪检测细胞分离的程度。结果表明,与 450 μL 抗体(T450)反应的纳米粒子在分离 B 细胞方面的表现优于其他纳米粒子。
{"title":"Isolation of B Cells Using Silane-Coated Magnetic Nanoparticles.","authors":"Amir Hossein Haghighi, Abolfazl Ghaderian, Esmaeil Mirzaei","doi":"10.1155/2024/8286525","DOIUrl":"https://doi.org/10.1155/2024/8286525","url":null,"abstract":"<p><p>One of the most important advantages and applications of coated nanoparticles in biological applications is their use in isolating different types of cells to diagnose and treat all types of diseases. Therefore, in this research work, the possibility of isolation and enrichment of B cells using magnetic iron oxide nanoparticles have been investigated. In this regard, magnetic nanoparticles are first coated with (3-aminopropyl)triethoxysilane to make them hydrophilic and prevent their clumping, then reacted with and rendered biocompatible by FITC anti-human CD20 antibody. These nanoparticles containing antibodies have been used to isolate B cells from the lymphatic cells. Transmission electron microscopy (TEM) and vibrating-sample magnetometry (VSM) tests were used to check the magnetic properties and coating of nanoparticles. The flow cytometry and fluorescent microscopy tests are used to check antibody binding to nanoparticles. Moreover, flow cytometry tests were used to check the extent of cell separation. Results show that nanoparticles reacted with 450 <i>μ</i>L of antibody (T450) performed better than other nanoparticles in isolating B cells.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"8286525"},"PeriodicalIF":3.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540882/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: The absence of a barrier in an open root apex makes endodontic treatment challenging as root-filling material can easily reach the surrounding tissue. The aim of the study was to compare the apical microleakage associated with mineral trioxide aggregate (MTA), biodentine, custom-made gutta-percha with MTA plus and custom-made gutta-percha with Adseal in immature permanent teeth by dye penetration method. Methods: Apical 2 mm of 60 single-rooted mandibular premolar teeth was resected to create divergent open apices and 10 teeth each were filled with Biodentine plug, MTA plug, custom-made gutta-percha with MTA plus sealer and custom-made gutta-percha with Adseal sealer. Ten teeth each acted as positive and negative controls. All the samples were stored at 37°C at 100% humidity for 5 weeks and then immersed in 2% Rhodamine B dye for 24 h. Transverse sectioning was done apically at 1 mm and 3 mm to evaluate dye penetration under a fluorescence microscope using ImageJ software. Results: There was a significantly greater microleakage at 1 mm cross section compared to 3 mm (p < 0.0001). At 1 mm cross section, the apical microleakage was the highest for the MTA plug with a mean leakage percentage of 48.08 ± 16.38, a mean depth of leakage of 0.46 ± 0.10 mm and a mean area of leakage of 1.35 ± 0.74 mm2, compared to other groups, and the difference was statistically significant. However, at a 3 mm cross section, MTA plus sealer with gutta-percha demonstrated the highest mean leakage percentage (25.01 ± 7.77) compared to other groups and the difference was statistically significant (p = 0.03). Conclusion: It can be concluded that the 3-mm-thick apical plug provided better sealing of the open apex compared to the 1 mm apical plug and there was no significant difference in microleakage among the Biodentine plug, MTA plug and Adseal sealer with gutta-percha plug at 3 mm cross section.
{"title":"Evaluation of Microleakage of Orthograde Root-Filling Materials in Immature Permanent Teeth: An In Vitro Study.","authors":"Upma Das, Vanita Gautam, Snigdha Shubham, Shristi Raut","doi":"10.1155/2024/8867854","DOIUrl":"10.1155/2024/8867854","url":null,"abstract":"<p><p><b>Introduction:</b> The absence of a barrier in an open root apex makes endodontic treatment challenging as root-filling material can easily reach the surrounding tissue. The aim of the study was to compare the apical microleakage associated with mineral trioxide aggregate (MTA), biodentine, custom-made gutta-percha with MTA plus and custom-made gutta-percha with Adseal in immature permanent teeth by dye penetration method. <b>Methods:</b> Apical 2 mm of 60 single-rooted mandibular premolar teeth was resected to create divergent open apices and 10 teeth each were filled with Biodentine plug, MTA plug, custom-made gutta-percha with MTA plus sealer and custom-made gutta-percha with Adseal sealer. Ten teeth each acted as positive and negative controls. All the samples were stored at 37°C at 100% humidity for 5 weeks and then immersed in 2% Rhodamine B dye for 24 h. Transverse sectioning was done apically at 1 mm and 3 mm to evaluate dye penetration under a fluorescence microscope using ImageJ software. <b>Results:</b> There was a significantly greater microleakage at 1 mm cross section compared to 3 mm (<i>p</i> < 0.0001). At 1 mm cross section, the apical microleakage was the highest for the MTA plug with a mean leakage percentage of 48.08 ± 16.38, a mean depth of leakage of 0.46 ± 0.10 mm and a mean area of leakage of 1.35 ± 0.74 mm<sup>2</sup>, compared to other groups, and the difference was statistically significant. However, at a 3 mm cross section, MTA plus sealer with gutta-percha demonstrated the highest mean leakage percentage (25.01 ± 7.77) compared to other groups and the difference was statistically significant (<i>p</i> = 0.03). <b>Conclusion:</b> It can be concluded that the 3-mm-thick apical plug provided better sealing of the open apex compared to the 1 mm apical plug and there was no significant difference in microleakage among the Biodentine plug, MTA plug and Adseal sealer with gutta-percha plug at 3 mm cross section.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"8867854"},"PeriodicalIF":3.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537741/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21eCollection Date: 2024-01-01DOI: 10.1155/2024/1710628
Bontu Teshome, Berhanu Assefa, Kenatu Angassa
Biomass waste energy recovery is a significant method for recycling energy from waste and capturing it for use in renewable energy sources. The abundance of brewing byproducts, such as brewery spent grain (BSG) and brewery wastewater sludge (BWWS), as well as their high carbon concentrations gives these wastes energy potential. With 20% molasses utilized as a binding agent to maximize the high caloric value of the briquette, this study sought to examine the quality of mixed briquettes made from BSG and BWWS. In order to make composite briquettes with a maximum caloric content of 19.94 MJ/kg, the ideal conditions were chosen, which included a temperature of 350°C, a production period of 60 min, and a 75% BSG mixing ratio. It can be compared to sawdust briquettes, which have a calorific value of 22.88 MJ/kg, by looking at the calorific value of densified with pressure 100 bar for mixed carbonized briquettes vs mixed noncarbonized briquettes (21.13 MJ/kg). The value of R2 was 0.9607 and indicated that 96.07% of the total validation in the calorific value correlation between experimental and predicted values. The finding of the study showed that the efficiency of the quadratic model in fitting the data would be higher under the conditions of the experiment. Based on ISO 17225-6 fuel quality classes and specifications for graded nonwoody pellets, the study concluded that using BSG and BWWS as alternative energy sources meets those requirements.
{"title":"Production of Composite Briquette Fuel from Brewery Wastewater Sludge and Spent Grains.","authors":"Bontu Teshome, Berhanu Assefa, Kenatu Angassa","doi":"10.1155/2024/1710628","DOIUrl":"https://doi.org/10.1155/2024/1710628","url":null,"abstract":"<p><p>Biomass waste energy recovery is a significant method for recycling energy from waste and capturing it for use in renewable energy sources. The abundance of brewing byproducts, such as brewery spent grain (BSG) and brewery wastewater sludge (BWWS), as well as their high carbon concentrations gives these wastes energy potential. With 20% molasses utilized as a binding agent to maximize the high caloric value of the briquette, this study sought to examine the quality of mixed briquettes made from BSG and BWWS. In order to make composite briquettes with a maximum caloric content of 19.94 MJ/kg, the ideal conditions were chosen, which included a temperature of 350°C, a production period of 60 min, and a 75% BSG mixing ratio. It can be compared to sawdust briquettes, which have a calorific value of 22.88 MJ/kg, by looking at the calorific value of densified with pressure 100 bar for mixed carbonized briquettes vs mixed noncarbonized briquettes (21.13 MJ/kg). The value of <i>R</i> <sup>2</sup> was 0.9607 and indicated that 96.07% of the total validation in the calorific value correlation between experimental and predicted values. The finding of the study showed that the efficiency of the quadratic model in fitting the data would be higher under the conditions of the experiment. Based on ISO 17225-6 fuel quality classes and specifications for graded nonwoody pellets, the study concluded that using BSG and BWWS as alternative energy sources meets those requirements.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"1710628"},"PeriodicalIF":3.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}