首页 > 最新文献

International Journal of Biomaterials最新文献

英文 中文
Addition of Bioactive Glass Decreases Setting Time and Improves Antibacterial Properties of Mineral Trioxide Aggregate. 添加生物活性玻璃可缩短三氧化二铝矿物骨料的凝结时间并改善其抗菌性能。
IF 3 Q3 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-07-23 eCollection Date: 2024-01-01 DOI: 10.1155/2024/4190647
Amin Salem Milani, Faezeh Hadinia, Yashar Rezaei, Mohammad Hossein Soroush Barhaghi, Kamal Attari, Ahmad Nouroloyouni

Objectives: This study aimed to assess the effect of addition of bioactive glass (BG) on the setting time and antibacterial activity of mineral trioxide aggregate (MTA) against Enterococcus faecalis (E. faecalis).

Materials and methods: In this in vitro study, BG was synthesized by the sol-gel technique and added to MTA powder in certain ratios. Three groups of specimens were fabricated from pure MTA, MTA mixed with 10wt% BG, and MTA mixed with 20wt% BG. The setting time of specimens was measured according to ISO9917-2007. Direct contact test was used to assess the antimicrobial activity of the three groups against E. faecalis. Data were analyzed by repeated measures ANOVA (alpha = 0.05).

Results: Addition of BG (in both concentrations) to MTA decreased its setting time and improved its antibacterial activity against E. faecalis (p < 0.05). By an increase in concentration of BG (20%), the antimicrobial activity further improved (p < 0.05).

Conclusion: Addition of BG to MTA in 10wt% and 20wt% concentrations decreased its setting time and improved its antibacterial activity against E. faecalis.

研究目的本研究旨在评估添加生物活性玻璃(BG)对三氧化物矿物质骨料(MTA)的凝结时间和粪肠球菌(E. faecalis)抗菌活性的影响:在这项体外研究中,采用溶胶-凝胶技术合成了 BG,并按一定比例添加到 MTA 粉末中。由纯 MTA、混合了 10wt% BG 的 MTA 和混合了 20wt% BG 的 MTA 制成了三组试样。根据 ISO9917-2007 测量了试样的凝固时间。直接接触试验用于评估三组材料对粪大肠杆菌的抗菌活性。数据采用重复测量方差分析(α = 0.05):结果:在 MTA 中添加 BG(两种浓度)可缩短其凝固时间并提高其对粪肠球菌的抗菌活性(p < 0.05)。随着 BG 浓度的增加(20%),抗菌活性进一步提高(p < 0.05):结论:在浓度为 10wt% 和 20wt% 的 MTA 中添加 BG 缩短了凝固时间,并提高了其对粪肠球菌的抗菌活性。
{"title":"Addition of Bioactive Glass Decreases Setting Time and Improves Antibacterial Properties of Mineral Trioxide Aggregate.","authors":"Amin Salem Milani, Faezeh Hadinia, Yashar Rezaei, Mohammad Hossein Soroush Barhaghi, Kamal Attari, Ahmad Nouroloyouni","doi":"10.1155/2024/4190647","DOIUrl":"https://doi.org/10.1155/2024/4190647","url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to assess the effect of addition of bioactive glass (BG) on the setting time and antibacterial activity of mineral trioxide aggregate (MTA) against Enterococcus faecalis (E. faecalis).</p><p><strong>Materials and methods: </strong>In this in vitro study, BG was synthesized by the sol-gel technique and added to MTA powder in certain ratios. Three groups of specimens were fabricated from pure MTA, MTA mixed with 10wt% BG, and MTA mixed with 20wt% BG. The setting time of specimens was measured according to ISO9917-2007. Direct contact test was used to assess the antimicrobial activity of the three groups against E. faecalis. Data were analyzed by repeated measures ANOVA (alpha = 0.05).</p><p><strong>Results: </strong>Addition of BG (in both concentrations) to MTA decreased its setting time and improved its antibacterial activity against E. faecalis (<i>p</i> < 0.05). By an increase in concentration of BG (20%), the antimicrobial activity further improved (<i>p</i> < 0.05).</p><p><strong>Conclusion: </strong>Addition of BG to MTA in 10wt% and 20wt% concentrations decreased its setting time and improved its antibacterial activity against E. faecalis.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"4190647"},"PeriodicalIF":3.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Prehydrated Porcine-Derived Acellular Dermal Matrix: A Histological and Clinical Evaluation. 一种新颖的预脱水猪肝细胞真皮基质:组织学和临床评估
IF 3 Q3 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-06-27 eCollection Date: 2024-01-01 DOI: 10.1155/2024/7322223
Andreas van Orten, Werner Goetz, Hakan Bilhan

It is well known that soft tissue quality and quantity around dental implants is of paramount importance for later peri-implant health. For this purpose, the clinical and histological outcomes of the peri-implant mucosa, following soft tissue augmentation for soft tissue improvement with a novel prehydrated porcine acellular dermal matrix graft (PPADMG) in conjunction with simultaneous implant placement, were evaluated in this case series. Twenty-two patients were included in the study. They underwent a late implant placement protocol combined with PPADMG for soft tissue augmentation. A punch biopsy was taken at the time of uncovery of the submerged healed implant after a mean of 157 days healing time. Supracrestal soft tissue height (STH) was measured at the time of implant placement and uncovery. All sites showed a clinical increase in STH. The histological structure of the biopsies resembled a similar structure as found in the healthy oral mucosa. No unexpected tissue reactions could be found. Within the limits of this clinical and histological study, it may be concluded that STH improvement with this novel porcine-derived acellular dermal matrix, in combination with simultaneous implant placement, is a viable option to create a peri-implant tissue thickness and stability.

众所周知,牙科种植体周围软组织的质量和数量对日后种植体周围的健康至关重要。为此,本病例系列评估了使用新型预水化猪无细胞真皮基质移植体(PPADMG)进行软组织增量以改善软组织并同时植入种植体后,种植体周围粘膜的临床和组织学效果。研究共纳入了 22 名患者。他们接受了晚期种植体植入方案,并结合 PPADMG 进行了软组织增量。在平均 157 天的愈合时间后,在水下愈合的种植体未恢复时进行了打孔活检。在植入种植体和拔出种植体时测量了胸骨上软组织高度(STH)。所有部位的 STH 都出现了临床增长。活组织切片的组织学结构与健康口腔粘膜的结构相似。没有发现意外的组织反应。在这项临床和组织学研究的范围内,可以得出这样的结论:使用这种新型的孔源性非细胞真皮基质,结合同时植入的种植体,可以改善 STH,从而增加种植体周围组织的厚度和稳定性。
{"title":"A Novel Prehydrated Porcine-Derived Acellular Dermal Matrix: A Histological and Clinical Evaluation.","authors":"Andreas van Orten, Werner Goetz, Hakan Bilhan","doi":"10.1155/2024/7322223","DOIUrl":"10.1155/2024/7322223","url":null,"abstract":"<p><p>It is well known that soft tissue quality and quantity around dental implants is of paramount importance for later peri-implant health. For this purpose, the clinical and histological outcomes of the peri-implant mucosa, following soft tissue augmentation for soft tissue improvement with a novel prehydrated porcine acellular dermal matrix graft (PPADMG) in conjunction with simultaneous implant placement, were evaluated in this case series. Twenty-two patients were included in the study. They underwent a late implant placement protocol combined with PPADMG for soft tissue augmentation. A punch biopsy was taken at the time of uncovery of the submerged healed implant after a mean of 157 days healing time. Supracrestal soft tissue height (STH) was measured at the time of implant placement and uncovery. All sites showed a clinical increase in STH. The histological structure of the biopsies resembled a similar structure as found in the healthy oral mucosa. No unexpected tissue reactions could be found. Within the limits of this clinical and histological study, it may be concluded that STH improvement with this novel porcine-derived acellular dermal matrix, in combination with simultaneous implant placement, is a viable option to create a peri-implant tissue thickness and stability.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"7322223"},"PeriodicalIF":3.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Thickness on the Mechanical Behaviors of 3D Printing Resins for Orthodontic Retainers. 厚度对用于正畸的 3D 打印树脂机械行为的影响
IF 3 Q3 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-06-25 eCollection Date: 2024-01-01 DOI: 10.1155/2024/7398478
Theerasak Nakornnoi, Patamaporn Bunjerdjin, Peerapong Santiwong, Kawin Sipiyaruk, Siew Peng Neoh, Rochaya Chintavalakorn

This study aimed to evaluate the mechanical behaviors of thermoformed and 3D-printed retainers with different thicknesses. Thermoformed retainers (Duran) and 3D-printed retainers (Dental LT Clear V2 and NextDent Ortho Flex) were fabricated at thicknesses of 0.5, 0.75, and 1 mm. Five samples of each material were subjected to compression, tensile, and flexural testing with the universal testing machine (Instron Ltd., Buckinghamshire, England). The results revealed that the mechanical behaviors were significantly influenced by thickness in each type of material. The increased thickness tended to increase strength and modulus in all three tests. However, Dental LT Clear V2 and Duran showed that flexural strength and modulus were inversely related to thickness. The compressive test revealed significantly greater compressive resistance in 3D-printed groups, except for the NextDent Ortho Flex at 0.5 mm. The tensile test showed that Dental LT Clear V2 at all thicknesses demonstrated significantly higher tensile strength and modulus, while NextDent Ortho Flex was significantly lowest at any thickness in tensile and flexural properties. In conclusion, the thickness significantly influenced the mechanical behaviors of the 3D-printed retainers. The 0.75 mm thickness of Dental LT Clear V2 could be considered as an alternative to fabricated retainers due to its similar mechanical properties compared with the thermoformed material.

本研究旨在评估不同厚度的热成型和三维打印固位体的机械性能。热成型固位体(Duran)和三维打印固位体(Dental LT Clear V2 和 NextDent Ortho Flex)的厚度分别为 0.5、0.75 和 1 毫米。使用万能试验机(Instron Ltd., Buckinghamshire, England)对每种材料的五个样品进行了压缩、拉伸和弯曲测试。结果表明,每种材料的机械性能都受到厚度的显著影响。在所有三项测试中,厚度增加往往会提高强度和模量。然而,牙科 LT Clear V2 和 Duran 显示,抗弯强度和模量与厚度成反比。抗压测试表明,除 0.5 毫米的 NextDent Ortho Flex 外,3D 打印组的抗压性能明显更强。拉伸测试表明,所有厚度的 Dental LT Clear V2 拉伸强度和模量都明显更高,而任何厚度的 NextDent Ortho Flex 拉伸和弯曲性能都明显最低。总之,厚度对 3D 打印固位体的机械性能有很大影响。与热成型材料相比,厚度为 0.75 毫米的 Dental LT Clear V2 具有相似的机械性能,因此可作为制造固位体的替代材料。
{"title":"The Influence of Thickness on the Mechanical Behaviors of 3D Printing Resins for Orthodontic Retainers.","authors":"Theerasak Nakornnoi, Patamaporn Bunjerdjin, Peerapong Santiwong, Kawin Sipiyaruk, Siew Peng Neoh, Rochaya Chintavalakorn","doi":"10.1155/2024/7398478","DOIUrl":"10.1155/2024/7398478","url":null,"abstract":"<p><p>This study aimed to evaluate the mechanical behaviors of thermoformed and 3D-printed retainers with different thicknesses. Thermoformed retainers (Duran) and 3D-printed retainers (Dental LT Clear V2 and NextDent Ortho Flex) were fabricated at thicknesses of 0.5, 0.75, and 1 mm. Five samples of each material were subjected to compression, tensile, and flexural testing with the universal testing machine (Instron Ltd., Buckinghamshire, England). The results revealed that the mechanical behaviors were significantly influenced by thickness in each type of material. The increased thickness tended to increase strength and modulus in all three tests. However, Dental LT Clear V2 and Duran showed that flexural strength and modulus were inversely related to thickness. The compressive test revealed significantly greater compressive resistance in 3D-printed groups, except for the NextDent Ortho Flex at 0.5 mm. The tensile test showed that Dental LT Clear V2 at all thicknesses demonstrated significantly higher tensile strength and modulus, while NextDent Ortho Flex was significantly lowest at any thickness in tensile and flexural properties. In conclusion, the thickness significantly influenced the mechanical behaviors of the 3D-printed retainers. The 0.75 mm thickness of Dental LT Clear V2 could be considered as an alternative to fabricated retainers due to its similar mechanical properties compared with the thermoformed material.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"7398478"},"PeriodicalIF":3.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Artificial Aging on the Physical and Mechanical Characteristics of Denture Base Materials Fabricated via 3D Printing. 人工老化对通过 3D 打印制作的义齿基底材料的物理和机械特性的影响。
IF 3 Q3 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-06-18 eCollection Date: 2024-01-01 DOI: 10.1155/2024/8060363
Ahmed Altarazi, Julfikar Haider, Abdulaziz Alhotan, Nick Silikas, Hugh Devlin

Three-dimensional (3D) printing is becoming more prevalent in the dental sector due to its potential to save time for dental practitioners, streamline fabrication processes, enhance precision and consistency in fabricating prosthetic models, and offer cost-effective solutions. However, the effect of aging in artificial saliva of this type of material has not been explored. To assess the physical and mechanical properties of the two types of 3D-printed materials before and after being subjected to artificial saliva, a total of 219 acrylic resin specimens were produced. These specimens were made with two types of 3D-printed materials, namely, NextDent (ND) and Formlabs (FLs), and a Schottlander heat-cured (HC) resin material that was used as a control. Water sorption and solubility specimens (n = 5) were tested after three months of storage in artificial saliva. Moreover, the Vickers hardness, Martens hardness, flexural strength/modulus, and impact strength were evaluated both under dry conditions and after three months of storage in artificial saliva. The degree of conversion (DC), elemental analysis, and filler content were also investigated. The ANOVA showed that 3D-printed resins had significantly greater sorption than the control group (p < 0.05). However, the flexural strength values of the 3D-printed materials were significantly greater (p < 0.05) than those of the heat-cured material. The DC of the 3D-printed resins was lower than that of the control group, but the difference was not significant (p > 0.05). The 3D-printed materials contained significantly more filler than the control (p < 0.05). Moreover, the artificial saliva had a significant effect on the Vickers hardness for all tested groups and on the Martens hardness for the control group only (p < 0.05). Compared with conventional heat-cured materials, 3D-printed denture base materials demonstrated relatively poorer performance in terms of sorption, solubility, and DC but exhibited either comparable or superior mechanical properties. The aging process also influenced the Vickers and Martens' hardness. The strength of the 3D-printed materials was in compliance with ISO recommendations, and the materials could be used alongside conventional heat-cured materials.

三维(3D)打印技术可以为牙科医生节省时间、简化制作流程、提高制作修复模型的精度和一致性,并提供具有成本效益的解决方案,因此在牙科领域正变得越来越普遍。然而,这类材料在人工唾液中的老化效应尚未得到研究。为了评估两种 3D 打印材料在人工唾液中老化前后的物理和机械性能,共制作了 219 个丙烯酸树脂试样。这些试样由两种 3D 打印材料制成,即 NextDent(ND)和 Formlabs(FLs),以及作为对照的 Schottlander 热固化(HC)树脂材料。在人工唾液中存放三个月后,对吸水性和溶解性试样(n = 5)进行了测试。此外,还对干燥条件下和在人工唾液中存放三个月后的维氏硬度、马氏硬度、抗弯强度/模量和冲击强度进行了评估。此外,还对转化率(DC)、元素分析和填料含量进行了研究。方差分析结果表明,三维打印树脂的吸附力明显高于对照组(p < 0.05)。不过,三维打印材料的抗弯强度值明显高于热固化材料(p < 0.05)。三维打印树脂的直流电低于对照组,但差异不显著(p > 0.05)。三维打印材料所含的填料明显多于对照组(p < 0.05)。此外,人工唾液对所有测试组的维氏硬度都有显著影响,仅对对照组的马氏硬度有显著影响(p < 0.05)。与传统的热固化材料相比,三维打印义齿基底材料在吸附性、溶解性和直流电方面的性能相对较差,但在机械性能方面却具有可比性或优越性。老化过程也会影响维氏硬度和马氏硬度。三维打印材料的强度符合 ISO 建议,可与传统热固化材料一起使用。
{"title":"Impact of Artificial Aging on the Physical and Mechanical Characteristics of Denture Base Materials Fabricated via 3D Printing.","authors":"Ahmed Altarazi, Julfikar Haider, Abdulaziz Alhotan, Nick Silikas, Hugh Devlin","doi":"10.1155/2024/8060363","DOIUrl":"10.1155/2024/8060363","url":null,"abstract":"<p><p>Three-dimensional (3D) printing is becoming more prevalent in the dental sector due to its potential to save time for dental practitioners, streamline fabrication processes, enhance precision and consistency in fabricating prosthetic models, and offer cost-effective solutions. However, the effect of aging in artificial saliva of this type of material has not been explored. To assess the physical and mechanical properties of the two types of 3D-printed materials before and after being subjected to artificial saliva, a total of 219 acrylic resin specimens were produced. These specimens were made with two types of 3D-printed materials, namely, NextDent (ND) and Formlabs (FLs), and a Schottlander heat-cured (HC) resin material that was used as a control. Water sorption and solubility specimens (<i>n</i> = 5) were tested after three months of storage in artificial saliva. Moreover, the Vickers hardness, Martens hardness, flexural strength/modulus, and impact strength were evaluated both under dry conditions and after three months of storage in artificial saliva. The degree of conversion (DC), elemental analysis, and filler content were also investigated. The ANOVA showed that 3D-printed resins had significantly greater sorption than the control group (<i>p</i> < 0.05). However, the flexural strength values of the 3D-printed materials were significantly greater (<i>p</i> < 0.05) than those of the heat-cured material. The DC of the 3D-printed resins was lower than that of the control group, but the difference was not significant (<i>p</i> > 0.05). The 3D-printed materials contained significantly more filler than the control (<i>p</i> < 0.05). Moreover, the artificial saliva had a significant effect on the Vickers hardness for all tested groups and on the Martens hardness for the control group only (<i>p</i> < 0.05). Compared with conventional heat-cured materials, 3D-printed denture base materials demonstrated relatively poorer performance in terms of sorption, solubility, and DC but exhibited either comparable or superior mechanical properties. The aging process also influenced the Vickers and Martens' hardness. The strength of the 3D-printed materials was in compliance with ISO recommendations, and the materials could be used alongside conventional heat-cured materials.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"8060363"},"PeriodicalIF":3.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticle-Based Rice Husk Liquid Smoke as Periodontitis Therapy through OPG, RANK, and RANKL Expression. 通过表达 OPG、RANK 和 RANKL,用纳米颗粒稻壳液体烟雾治疗牙周炎。
IF 3 Q3 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-06-14 eCollection Date: 2024-01-01 DOI: 10.1155/2024/5015893
Ira Arundina, Theresia Indah Budhy, Aqsa Sjuhada Oki, Meircurius Dwi Condro Surboyo, Arvind Babu Rajendra Santosh, Sidarningsih, Indeswati Diyatri, Tytania Rahmaputry, Arya Pradana, Mohammad Iqbal, Azzahra Salsabila Adira Moelyanto

Introduction: Periodontitis therapy employing nanomaterials with submicron sizes holds promise for enhancing osteogenesis and facilitating periodontal cell proliferation. This study aims to assess the potential of nanoparticle-based rice husk liquid smoke (n-RHLS) in an animal model of periodontitis by evaluating the expression of osteoprotegerin (OPG), receptor activator of nuclear factor-kβ (RANK), and receptor activator of nuclear factor-kβ ligand (RANKL).

Methods: Twenty-eight male Wistar rats were inoculated with 109 CFU/ml of Porphyromonas gingivalis in the sulcus mandibular incisor region to create periodontitis and subsequently treated with n-RHLS while the control with saline. Immunohistochemical staining was performed on the mandibular incisor to assess OPG, RANK, and RANKL expression 2 and 7 days after treatment.

Results: OPG expression exhibited a significant increase at both 2 and 7 days, while RANKL expression decreased notably after 7 days of treatment using n-RHLS (p < 0.05). In contrast, RANK expression did not show significant differences compared to the control groups (p > 0.05).

Conclusion: Nanostructured liquid smoke derived from rice husk nanoparticles (n-RHLS) demonstrates potential as a therapeutic agent for periodontitis, especially on OPG/RANK/RANKL expression, by modulating OPG and RANKL expression to support periodontal tissue health.

导言:采用亚微米级纳米材料治疗牙周炎有望增强骨生成并促进牙周细胞增殖。本研究旨在通过评估骨保护素(OPG)、核因子-kβ受体激活剂(RANK)和核因子-kβ受体激活剂配体(RANKL)的表达,评估基于纳米颗粒的稻壳液体烟雾(n-RHLS)在牙周炎动物模型中的潜力:将 109 CFU/ml 的牙龈卟啉单胞菌接种到 28 只雄性 Wistar 大鼠的下颌切牙沟区域,造成牙周炎,然后用 n-RHLS 治疗,用生理盐水对照。治疗后 2 天和 7 天,对下颌切牙进行免疫组化染色,以评估 OPG、RANK 和 RANKL 的表达:结果:OPG 的表达在治疗 2 天和 7 天后都有明显增加,而 RANKL 的表达在使用 n-RHLS 治疗 7 天后明显下降(p < 0.05)。相比之下,RANK 的表达与对照组相比没有明显差异(p > 0.05):结论:稻壳纳米颗粒衍生的纳米结构液态烟雾(n-RHLS)具有治疗牙周炎的潜力,尤其是通过调节OPG/RANK/RANKL的表达来支持牙周组织的健康。
{"title":"Nanoparticle-Based Rice Husk Liquid Smoke as Periodontitis Therapy through OPG, RANK, and RANKL Expression.","authors":"Ira Arundina, Theresia Indah Budhy, Aqsa Sjuhada Oki, Meircurius Dwi Condro Surboyo, Arvind Babu Rajendra Santosh, Sidarningsih, Indeswati Diyatri, Tytania Rahmaputry, Arya Pradana, Mohammad Iqbal, Azzahra Salsabila Adira Moelyanto","doi":"10.1155/2024/5015893","DOIUrl":"10.1155/2024/5015893","url":null,"abstract":"<p><strong>Introduction: </strong>Periodontitis therapy employing nanomaterials with submicron sizes holds promise for enhancing osteogenesis and facilitating periodontal cell proliferation. This study aims to assess the potential of nanoparticle-based rice husk liquid smoke (<i>n</i>-RHLS) in an animal model of periodontitis by evaluating the expression of osteoprotegerin (OPG), receptor activator of nuclear factor-k<i>β</i> (RANK), and receptor activator of nuclear factor-k<i>β</i> ligand (RANKL).</p><p><strong>Methods: </strong>Twenty-eight male Wistar rats were inoculated with 10<sup>9</sup> CFU/ml of <i>Porphyromonas gingivalis</i> in the sulcus mandibular incisor region to create periodontitis and subsequently treated with n-RHLS while the control with saline. Immunohistochemical staining was performed on the mandibular incisor to assess OPG, RANK, and RANKL expression 2 and 7 days after treatment.</p><p><strong>Results: </strong>OPG expression exhibited a significant increase at both 2 and 7 days, while RANKL expression decreased notably after 7 days of treatment using n-RHLS (<i>p</i> < 0.05). In contrast, RANK expression did not show significant differences compared to the control groups (<i>p</i> > 0.05).</p><p><strong>Conclusion: </strong>Nanostructured liquid smoke derived from rice husk nanoparticles (<i>n</i>-RHLS) demonstrates potential as a therapeutic agent for periodontitis, especially on OPG/RANK/RANKL expression, by modulating OPG and RANKL expression to support periodontal tissue health.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"5015893"},"PeriodicalIF":3.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alginate Nanoparticles Containing Cuminum cyminum and Zataria multiflora Essential Oils with Promising Anticancer and Antibacterial Effects. 含有孜然和多花蝙蝠葛精油的藻酸盐纳米粒子具有良好的抗癌和抗菌效果
IF 3.1 Q3 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-05-02 eCollection Date: 2024-01-01 DOI: 10.1155/2024/5556838
Mahmoud Osanloo, Razieh Ranjbar, Elham Zarenezhad

Cancer and bacterial infections are major global health concerns driving the need for innovative medicines. This study investigated alginate nanoparticles loaded with essential oils (EOs) from Cuminum cyminum and Zataria multiflora as potential drug delivery systems. The nanoparticles were comprehensively characterized using techniques such as gas chromatography-mass spectrometry (GC-MS), dynamic light scattering (DLS), zetasizer, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and ultraviolet-visible spectroscopy (UV-Vis). Their biological properties against two human skin cancer cell lines (A-375 and A-431) and three bacteria (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) were also evaluated. Alginate nanoparticles containing C. cyminum and Z. multiflora EOs exhibited sizes of 160 ± 8 nm and 151 ± 10 nm, respectively. Their zeta potentials and encapsulation efficiencies were -18 ± 1 mV and 79 ± 4%, as well as -27 ± 2 mV and 86 ± 5%, respectively. The IC50 values against the tested cell lines and bacteria revealed superior efficacy for nanoparticles containing Z. multiflora EO. Considering the proper efficacy of the proposed nanoparticles, the straightforward preparation method and low cost suggest their potential for further in vivo studies.

癌症和细菌感染是全球关注的主要健康问题,推动了对创新药物的需求。本研究探讨了藻酸盐纳米颗粒作为潜在的药物输送系统,其中装载了孜然和多花蓼的精油(EO)。研究采用气相色谱-质谱(GC-MS)、动态光散射(DLS)、zetasizer、衰减全反射-傅立叶变换红外光谱(ATR-FTIR)和紫外-可见光谱(UV-Vis)等技术对纳米颗粒进行了全面表征。此外,还评估了它们对两种人类皮肤癌细胞系(A-375 和 A-431)和三种细菌(大肠杆菌、铜绿假单胞菌和金黄色葡萄球菌)的生物特性。藻酸盐纳米颗粒含有西米露和多花植物萃取精华,尺寸分别为 160 ± 8 nm 和 151 ± 10 nm。它们的 zeta 电位和封装效率分别为 -18 ± 1 mV 和 79 ± 4%,以及 -27 ± 2 mV 和 86 ± 5%。对测试细胞系和细菌的 IC50 值显示,含有多花梓树环氧乙烷的纳米粒子具有卓越的功效。考虑到所提出的纳米颗粒具有适当的功效,其简单的制备方法和低廉的成本表明其具有进一步进行体内研究的潜力。
{"title":"Alginate Nanoparticles Containing <i>Cuminum cyminum</i> and <i>Zataria multiflora</i> Essential Oils with Promising Anticancer and Antibacterial Effects.","authors":"Mahmoud Osanloo, Razieh Ranjbar, Elham Zarenezhad","doi":"10.1155/2024/5556838","DOIUrl":"10.1155/2024/5556838","url":null,"abstract":"<p><p>Cancer and bacterial infections are major global health concerns driving the need for innovative medicines. This study investigated alginate nanoparticles loaded with essential oils (EOs) from <i>Cuminum cyminum</i> and <i>Zataria multiflora</i> as potential drug delivery systems. The nanoparticles were comprehensively characterized using techniques such as gas chromatography-mass spectrometry (GC-MS), dynamic light scattering (DLS), zetasizer, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and ultraviolet-visible spectroscopy (UV-Vis). Their biological properties against two human skin cancer cell lines (A-375 and A-431) and three bacteria (<i>Escherichia coli</i>, <i>Pseudomonas aeruginosa</i>, and <i>Staphylococcus aureus</i>) were also evaluated. Alginate nanoparticles containing <i>C. cyminum</i> and <i>Z. multiflora</i> EOs exhibited sizes of 160 ± 8 nm and 151 ± 10 nm, respectively. Their zeta potentials and encapsulation efficiencies were -18 ± 1 mV and 79 ± 4%, as well as -27 ± 2 mV and 86 ± 5%, respectively. The IC<sub>50</sub> values against the tested cell lines and bacteria revealed superior efficacy for nanoparticles containing <i>Z. multiflora</i> EO. Considering the proper efficacy of the proposed nanoparticles, the straightforward preparation method and low cost suggest their potential for further in vivo studies.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"5556838"},"PeriodicalIF":3.1,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Biocompatibility of Polyurethanes Apply in Medicine Using Oxygen Plasma and Its Negative Effect on Increased Bacterial Adhesion. 利用氧等离子体改善医用聚氨酯的生物相容性及其对增加细菌粘附性的负面影响
IF 3.1 Q3 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-02-23 eCollection Date: 2024-01-01 DOI: 10.1155/2024/5102603
Kamil Drożdż, Monika Gołda-Cępa, Paulina Chytrosz-Wróbel, Andrzej Kotarba, Monika Brzychczy-Włoch

Polyurethanes (PUs) are versatile polymers used in medical applications due to their high flexibility and fatigue resistance. PUs are widely used for synthetic blood vessels, wound dressings, cannulas, and urinary and cardiovascular catheters. Many scientific reports indicate that surface wettability is crucial for biocompatibility and bacterial adhesion. The use of oxygen plasma to modify PUs is advantageous because of its effectiveness in introducing oxygen-containing functional groups, thereby altering surface wettability. The purpose of this study was to investigate the effect of the modification of the oxygen plasma of polyurethane on its biocompatibility with lung tissue (A549 cell line) and the adhesion of Gram-positive bacteria (S. aureus and S. epidermidis). The results showed that the modification of polyurethane by oxygen plasma allowed the introduction of functional groups containing oxygen (-OH and -COOH), which significantly increased its hydrophilicity (change from 105° ± 2° to 9° ± 2°) of PUs. Surface analysis by atomic force microscopy (AFM) showed changes in PU topography (change in maximum height from ∼110.3 nm to ∼32.1 nm). Moreover, biocompatibility studies on A549 cells showed that on the PU-modified surface, the cells exhibited altered morphology (increases in cell surface area and length, and thus reduced circularity) without concomitant effects on cell viability. However, serial dilution and plate count and microscopic methods confirmed that plasma modification significantly increased the adhesion of S. aureus and S. epidermidis bacteria. This study indicate the important role of surface hydrophilicity in biocompatibility and bacterial adhesion, which is important in the design of new medical biomaterials.

聚氨酯(PU)具有高柔韧性和抗疲劳性,是一种用于医疗领域的多功能聚合物。聚氨酯被广泛用于合成血管、伤口敷料、插管、导尿管和心血管导管。许多科学报告表明,表面润湿性对生物相容性和细菌粘附性至关重要。使用氧等离子体改性聚氨酯的优势在于它能有效引入含氧官能团,从而改变表面润湿性。本研究的目的是研究氧等离子体对聚氨酯的改性对其与肺组织(A549 细胞系)的生物相容性和革兰氏阳性细菌(金黄色葡萄球菌和表皮葡萄球菌)的粘附性的影响。结果表明,通过氧等离子体对聚氨酯进行改性,可引入含氧(-OH 和 -COOH)的官能团,从而显著提高聚氨酯的亲水性(从 105° ± 2° 变为 9° ± 2°)。原子力显微镜(AFM)的表面分析表明,聚氨酯的形貌发生了变化(最大高度从 110.3 纳米变为 32.1 纳米)。此外,对 A549 细胞进行的生物相容性研究表明,在聚氨酯改性表面上,细胞的形态发生了改变(细胞表面积和长度增加,因而圆形度降低),但细胞活力没有受到影响。然而,连续稀释、平板计数和显微镜方法证实,等离子体改性显著增加了金黄色葡萄球菌和表皮葡萄球菌的粘附力。这项研究表明了表面亲水性在生物相容性和细菌粘附性中的重要作用,这对新型医用生物材料的设计非常重要。
{"title":"Improving Biocompatibility of Polyurethanes Apply in Medicine Using Oxygen Plasma and Its Negative Effect on Increased Bacterial Adhesion.","authors":"Kamil Drożdż, Monika Gołda-Cępa, Paulina Chytrosz-Wróbel, Andrzej Kotarba, Monika Brzychczy-Włoch","doi":"10.1155/2024/5102603","DOIUrl":"10.1155/2024/5102603","url":null,"abstract":"<p><p>Polyurethanes (PUs) are versatile polymers used in medical applications due to their high flexibility and fatigue resistance. PUs are widely used for synthetic blood vessels, wound dressings, cannulas, and urinary and cardiovascular catheters. Many scientific reports indicate that surface wettability is crucial for biocompatibility and bacterial adhesion. The use of oxygen plasma to modify PUs is advantageous because of its effectiveness in introducing oxygen-containing functional groups, thereby altering surface wettability. The purpose of this study was to investigate the effect of the modification of the oxygen plasma of polyurethane on its biocompatibility with lung tissue (A549 cell line) and the adhesion of Gram-positive bacteria (<i>S. aureus</i> and <i>S. epidermidis</i>). The results showed that the modification of polyurethane by oxygen plasma allowed the introduction of functional groups containing oxygen (-OH and -COOH), which significantly increased its hydrophilicity (change from 105° ± 2° to 9° ± 2°) of PUs. Surface analysis by atomic force microscopy (AFM) showed changes in PU topography (change in maximum height from ∼110.3 nm to ∼32.1 nm). Moreover, biocompatibility studies on A549 cells showed that on the PU-modified surface, the cells exhibited altered morphology (increases in cell surface area and length, and thus reduced circularity) without concomitant effects on cell viability. However, serial dilution and plate count and microscopic methods confirmed that plasma modification significantly increased the adhesion of <i>S. aureus</i> and <i>S. epidermidis</i> bacteria. This study indicate the important role of surface hydrophilicity in biocompatibility and bacterial adhesion, which is important in the design of new medical biomaterials.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"5102603"},"PeriodicalIF":3.1,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current Strategies for Tracheal Decellularization: A Systematic Review. 气管脱细胞的当前策略:系统回顾
IF 3.1 Q3 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-02-06 eCollection Date: 2024-01-01 DOI: 10.1155/2024/3355239
Dhihintia Jiwangga, Ferdiansyah Mahyudin, Gondo Mastutik, Juliana, Estya Nadya Meitavany

The process of decellularization is crucial for producing a substitute for the absent tracheal segment, and the choice of agents and methods significantly influences the outcomes. This paper aims to systematically review the efficacy of diverse tracheal decellularization agents and methods using the PRISMA flowchart. Inclusion criteria encompassed experimental studies published between 2018 and 2023, written in English, and detailing outcomes related to histopathological anatomy, DNA quantification, ECM evaluation, and biomechanical characteristics. Exclusion criteria involved studies related to 3D printing, biomaterials, and partial decellularization. A comprehensive search on PubMed, NCBI, and ScienceDirect yielded 17 relevant literatures. The integration of various agents and methods has proven effective in the process of tracheal decellularization, highlighting the distinct advantages and drawbacks associated with each agent and method.

脱细胞过程对于制作缺失气管段的替代物至关重要,而药剂和方法的选择对结果有很大影响。本文旨在利用PRISMA流程图系统回顾各种气管脱细胞制剂和方法的疗效。纳入标准包括 2018 年至 2023 年间发表的实验研究,以英文撰写,详细介绍了与组织病理学解剖、DNA 定量、ECM 评估和生物力学特征相关的结果。排除标准包括与 3D 打印、生物材料和部分脱细胞相关的研究。通过在 PubMed、NCBI 和 ScienceDirect 上进行全面搜索,共获得 17 篇相关文献。在气管脱细胞的过程中,各种药剂和方法的整合被证明是有效的,同时也突出了每种药剂和方法的明显优势和缺点。
{"title":"Current Strategies for Tracheal Decellularization: A Systematic Review.","authors":"Dhihintia Jiwangga, Ferdiansyah Mahyudin, Gondo Mastutik, Juliana, Estya Nadya Meitavany","doi":"10.1155/2024/3355239","DOIUrl":"10.1155/2024/3355239","url":null,"abstract":"<p><p>The process of decellularization is crucial for producing a substitute for the absent tracheal segment, and the choice of agents and methods significantly influences the outcomes. This paper aims to systematically review the efficacy of diverse tracheal decellularization agents and methods using the PRISMA flowchart. Inclusion criteria encompassed experimental studies published between 2018 and 2023, written in English, and detailing outcomes related to histopathological anatomy, DNA quantification, ECM evaluation, and biomechanical characteristics. Exclusion criteria involved studies related to 3D printing, biomaterials, and partial decellularization. A comprehensive search on PubMed, NCBI, and ScienceDirect yielded 17 relevant literatures. The integration of various agents and methods has proven effective in the process of tracheal decellularization, highlighting the distinct advantages and drawbacks associated with each agent and method.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"3355239"},"PeriodicalIF":3.1,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Roughness, Morphology, and Wettability Characteristics of Biopolymer Composite Coating on SS 316L for Biomedical Applications. 研究用于生物医学应用的 SS 316L 生物聚合物复合涂层的粗糙度、形态和润湿性特征。
IF 3 Q3 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-01-17 eCollection Date: 2024-01-01 DOI: 10.1155/2024/5568047
Hanaa A Al-Kaisy, Basma H Al-Tamimi, Qahtan A Hamad, Mayyadah S Abed

This project aims to create a 316L stainless steel coated with a biocomposite based on chitosan for use in the biomedical industry. To completely coat the material, the dip-coating technique was used to apply plain chitosan, chitosan nanosilver, chitosan biotin, and chitosan-nanosilver-biotin in that order. This coating's surface morphology was investigated with field emission scanning electron microscopy (FESEM). Surface roughness, average size distribution, and 2D and 3D surface tomography were all investigated using scanning probe microscopy and atomic force microscopy (SPM and AFM). The Fourier transform infrared (FTIR) spectroscopy technique was used to quantify changes in functional groups. To evaluate the coated samples' wettability, contact angle measurements were also performed. The chitosan (CS) + nanosilver, CS + biotin, and CS + biotin + nanosilver-coated 316L stainless steel showed roughness values of about 8.68, 4.21, and 3.3 nm, respectively, compared with the neat chitosan coating, which exhibits 12 nm roughness, indicating a strong effect of biotin and nanosilver on surface topography whereas the coating layers were homogenous, measuring around 33 nm in thickness. For CS + nanosilver and CS + biotin, the average size of agglomerates was approximately 444 nm and 355 nm, respectively. The coatings showed adequate wettability for biomedical applications, were homogeneous, and had no cracks. Their contact angles were around 51-75 degrees. All of these results point to the composite coating's intriguing potential for use in biological applications.

本项目旨在制造一种涂有壳聚糖生物复合材料的 316L 不锈钢,用于生物医学行业。为了完全涂覆该材料,采用了浸涂技术,依次涂覆纯壳聚糖、壳聚糖纳米银、壳聚糖生物素和壳聚糖-纳米银-生物素。利用场发射扫描电子显微镜(FESEM)研究了这种涂层的表面形态。扫描探针显微镜和原子力显微镜(SPM 和 AFM)对表面粗糙度、平均粒度分布以及二维和三维表面层析进行了研究。傅立叶变换红外(FTIR)光谱技术用于量化官能团的变化。为了评估涂层样品的润湿性,还进行了接触角测量。壳聚糖 (CS) + 纳米银、CS + 生物素和 CS + 生物素 + 纳米银涂层 316L 不锈钢的粗糙度值分别约为 8.68、4.21 和 3.3 nm,而纯壳聚糖涂层的粗糙度值为 12 nm,这表明生物素和纳米银对表面形貌有很强的影响,而涂层是均匀的,厚度约为 33 nm。对于 CS + 纳米银和 CS + 生物素,团聚体的平均尺寸分别约为 444 nm 和 355 nm。涂层显示出足够的生物医学应用润湿性,均匀且无裂纹。它们的接触角约为 51-75 度。所有这些结果都表明,这种复合涂层在生物应用方面具有引人入胜的潜力。
{"title":"Investigation of Roughness, Morphology, and Wettability Characteristics of Biopolymer Composite Coating on SS 316L for Biomedical Applications.","authors":"Hanaa A Al-Kaisy, Basma H Al-Tamimi, Qahtan A Hamad, Mayyadah S Abed","doi":"10.1155/2024/5568047","DOIUrl":"10.1155/2024/5568047","url":null,"abstract":"<p><p>This project aims to create a 316L stainless steel coated with a biocomposite based on chitosan for use in the biomedical industry. To completely coat the material, the dip-coating technique was used to apply plain chitosan, chitosan nanosilver, chitosan biotin, and chitosan-nanosilver-biotin in that order. This coating's surface morphology was investigated with field emission scanning electron microscopy (FESEM). Surface roughness, average size distribution, and 2D and 3D surface tomography were all investigated using scanning probe microscopy and atomic force microscopy (SPM and AFM). The Fourier transform infrared (FTIR) spectroscopy technique was used to quantify changes in functional groups. To evaluate the coated samples' wettability, contact angle measurements were also performed. The chitosan (CS) + nanosilver, CS + biotin, and CS + biotin + nanosilver-coated 316L stainless steel showed roughness values of about 8.68, 4.21, and 3.3 nm, respectively, compared with the neat chitosan coating, which exhibits 12 nm roughness, indicating a strong effect of biotin and nanosilver on surface topography whereas the coating layers were homogenous, measuring around 33 nm in thickness. For CS + nanosilver and CS + biotin, the average size of agglomerates was approximately 444 nm and 355 nm, respectively. The coatings showed adequate wettability for biomedical applications, were homogeneous, and had no cracks. Their contact angles were around 51-75 degrees. All of these results point to the composite coating's intriguing potential for use in biological applications.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2024 ","pages":"5568047"},"PeriodicalIF":3.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic Effects of SDS and H2O2 Combinations on Tracheal Scaffold Development: An In Vitro Study Using Goat Trachea SDS 和 H2O2 组合对气管支架发育的协同效应:使用山羊气管进行的体外研究
IF 3.1 Q3 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-01-02 DOI: 10.1155/2024/6635565
Dhihintia Jiwangga, F. Mahyudin, Gondo Mastutik, Estya Nadya Meitavany, Juliana, P. A. Wiratama
Currently, a tissue-engineered trachea has been popularly used as a biological graft for tracheal replacement in severe respiratory diseases. In the development of tissue-engineered tracheal scaffolds, in vitro studies play a crucial role in allowing researchers to evaluate the efficacy and safety of scaffold designs and fabrication techniques before progressing to in vivo or clinical trials. This research involved the decellularization of goat trachea using SDS, H2O2, and their combinations. Various quantitative and qualitative assessments were performed, including histological analysis, immunohistochemistry, and biomechanical testing. Hematoxylin and eosin staining evaluated the cellular content, while safranin O-fast green and Masson’s trichrome staining assessed glycosaminoglycan content and collagen distribution, respectively. The immunohistochemical analysis focused on detecting MHC-1 antigen presence. Tensile strength measurements were conducted to evaluate the biomechanical properties of the decellularized scaffolds. The results demonstrated that the combination of SDS and H2O2 for goat tracheal decellularization yielded scaffolds with minimal cellular remnants, low toxicity, preserved ECM, and high tensile strength and elasticity. This method holds promise for developing functional tracheal scaffolds to address severe respiratory diseases effectively.
目前,组织工程气管已被广泛用作严重呼吸系统疾病的气管替代生物移植物。在组织工程气管支架的开发过程中,体外研究起着至关重要的作用,研究人员可以通过体外研究评估支架设计和制造技术的有效性和安全性,然后再进行体内或临床试验。这项研究使用 SDS、H2O2 及其组合对山羊气管进行脱细胞处理。研究人员进行了各种定量和定性评估,包括组织学分析、免疫组化和生物力学测试。血色素和伊红染色评估了细胞含量,而黄绿素 O-快绿染色和马森三色染色则分别评估了糖胺聚糖含量和胶原分布。免疫组化分析侧重于检测 MHC-1 抗原的存在。拉伸强度测量用于评估脱细胞支架的生物力学特性。结果表明,结合使用 SDS 和 H2O2 对山羊气管进行脱细胞处理可获得细胞残留极少、毒性低、ECM 保存完好、拉伸强度和弹性高的支架。这种方法有望开发出功能性气管支架,有效解决严重的呼吸系统疾病。
{"title":"Synergistic Effects of SDS and H2O2 Combinations on Tracheal Scaffold Development: An In Vitro Study Using Goat Trachea","authors":"Dhihintia Jiwangga, F. Mahyudin, Gondo Mastutik, Estya Nadya Meitavany, Juliana, P. A. Wiratama","doi":"10.1155/2024/6635565","DOIUrl":"https://doi.org/10.1155/2024/6635565","url":null,"abstract":"Currently, a tissue-engineered trachea has been popularly used as a biological graft for tracheal replacement in severe respiratory diseases. In the development of tissue-engineered tracheal scaffolds, in vitro studies play a crucial role in allowing researchers to evaluate the efficacy and safety of scaffold designs and fabrication techniques before progressing to in vivo or clinical trials. This research involved the decellularization of goat trachea using SDS, H2O2, and their combinations. Various quantitative and qualitative assessments were performed, including histological analysis, immunohistochemistry, and biomechanical testing. Hematoxylin and eosin staining evaluated the cellular content, while safranin O-fast green and Masson’s trichrome staining assessed glycosaminoglycan content and collagen distribution, respectively. The immunohistochemical analysis focused on detecting MHC-1 antigen presence. Tensile strength measurements were conducted to evaluate the biomechanical properties of the decellularized scaffolds. The results demonstrated that the combination of SDS and H2O2 for goat tracheal decellularization yielded scaffolds with minimal cellular remnants, low toxicity, preserved ECM, and high tensile strength and elasticity. This method holds promise for developing functional tracheal scaffolds to address severe respiratory diseases effectively.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"42 6","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139390227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Biomaterials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1