Pub Date : 2020-02-18eCollection Date: 2020-01-01DOI: 10.1155/2020/6426702
Carolina Ferrairo Danieletto-Zanna, Vinícius Ferreira Bizelli, Guilherme André Del Arco Ramires, Tamires Melo Francatti, Paulo Sérgio Perri de Carvalho, Ana Paula Farnezi Bassi
Membranes that aid the guided bone regeneration (GBR) process have been the subject of studies of compatible biomaterials that contribute to this repair process. The present study compared different membranes used in critical-size defects of rat calvaria by assessing GBR as well as histological, histomorphometric, and immunohistochemical reactions. Forty-eight male albino Wistar rats were randomly allocated into four groups (n = 12 each), namely, C: membrane-free control group (only blood clot, negative control group); BG: porcine collagen membrane group (Bio-Gide®, positive control group); GD: bovine cortical membrane group (first experimental group); and GDF: thicker bovine cortical membrane group (second experimental group). Rats were euthanized at 30 and 60 days postoperatively. Quantitative data from the histometric analysis were submitted to two-way ANOVA and Tukey's posttest when p < 0.05. Histomorphometric results of the thicker bovine cortical membrane at 30 and 60 days were promising, showing improved new bone formation values (p < 0.05), and the CD group presented similar results in both analysis periods, being surpassed only by the GDF group (p < 0.05). The immunohistochemical results were associated with the histomorphometric data. A less-thick membrane also assisted in GBR. All membranes promoted GBR, especially the positive control and experimental groups.
{"title":"Osteopromotion Capacity of Bovine Cortical Membranes in Critical Defects of Rat Calvaria: Histological and Immunohistochemical Analysis.","authors":"Carolina Ferrairo Danieletto-Zanna, Vinícius Ferreira Bizelli, Guilherme André Del Arco Ramires, Tamires Melo Francatti, Paulo Sérgio Perri de Carvalho, Ana Paula Farnezi Bassi","doi":"10.1155/2020/6426702","DOIUrl":"https://doi.org/10.1155/2020/6426702","url":null,"abstract":"<p><p>Membranes that aid the guided bone regeneration (GBR) process have been the subject of studies of compatible biomaterials that contribute to this repair process. The present study compared different membranes used in critical-size defects of rat calvaria by assessing GBR as well as histological, histomorphometric, and immunohistochemical reactions. Forty-eight male albino Wistar rats were randomly allocated into four groups (<i>n</i> = 12 each), namely, C: membrane-free control group (only blood clot, negative control group); BG: porcine collagen membrane group (Bio-Gide®, positive control group); GD: bovine cortical membrane group (first experimental group); and GDF: thicker bovine cortical membrane group (second experimental group). Rats were euthanized at 30 and 60 days postoperatively. Quantitative data from the histometric analysis were submitted to two-way ANOVA and Tukey's posttest when <i>p</i> < 0.05. Histomorphometric results of the thicker bovine cortical membrane at 30 and 60 days were promising, showing improved new bone formation values (<i>p</i> < 0.05), and the CD group presented similar results in both analysis periods, being surpassed only by the GDF group (<i>p</i> < 0.05). The immunohistochemical results were associated with the histomorphometric data. A less-thick membrane also assisted in GBR. All membranes promoted GBR, especially the positive control and experimental groups.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2020 ","pages":"6426702"},"PeriodicalIF":3.1,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/6426702","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37717672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biochars from bamboo leaves as a potential energy resource were synthesized by annealing in the oxygen-free environment. Samples were characterized using proximate analysis, Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Heating temperatures are 250°C, 300°C, and 350°C and for each temperature, the time was varied between 30, 60, and 90 minutes. The heating time for 30 minutes results in FC 30.777% and calorific value 15 MJ/Kg at temperature 250°C and decreased to 4.004% and 6 MJ/Kg at temperature 350°C, respectively. EDS shows the time of heating is an important parameter which shows the carbon and nitrogen contents were decreasing with the increase in the heating time, and silicon and oxygen contents were increasing with increase in the heating time. XRD shows broad (002) reflections between 20° and 30°, which indicated disordered carbon with small domains of coherent and parallel stacking of the graphene sheets, which is consistent with surface morphology of the SEM image. The experimental results indicated that heating at 300°C for 30 minutes is an effective and efficient parameter for fabrication of low-cost carbon from bamboo leaves which is a source of useful energy.
{"title":"Potentials of Biochars Derived from Bamboo Leaf Biomass as Energy Sources: Effect of Temperature and Time of Heating.","authors":"Bidayatul Armynah, Dahlang Tahir, Monalisa Tandilayuk, Zuryati Djafar, Wahyu H Piarah","doi":"10.1155/2019/3526145","DOIUrl":"https://doi.org/10.1155/2019/3526145","url":null,"abstract":"<p><p>Biochars from bamboo leaves as a potential energy resource were synthesized by annealing in the oxygen-free environment. Samples were characterized using proximate analysis, Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Heating temperatures are 250°C, 300°C, and 350°C and for each temperature, the time was varied between 30, 60, and 90 minutes. The heating time for 30 minutes results in FC 30.777% and calorific value 15 MJ/Kg at temperature 250°C and decreased to 4.004% and 6 MJ/Kg at temperature 350°C, respectively. EDS shows the time of heating is an important parameter which shows the carbon and nitrogen contents were decreasing with the increase in the heating time, and silicon and oxygen contents were increasing with increase in the heating time. XRD shows broad (002) reflections between 20° and 30°, which indicated disordered carbon with small domains of coherent and parallel stacking of the graphene sheets, which is consistent with surface morphology of the SEM image. The experimental results indicated that heating at 300°C for 30 minutes is an effective and efficient parameter for fabrication of low-cost carbon from bamboo leaves which is a source of useful energy.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2019 ","pages":"3526145"},"PeriodicalIF":3.1,"publicationDate":"2019-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/3526145","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37523582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-13eCollection Date: 2019-01-01DOI: 10.1155/2019/6862825
Marcel Cédric Deussi Ngaha, Evangéline Njanja, Giscard Doungmo, Arnaud Tamo Kamdem, Ignas Kenfack Tonle
In the present work, the usefulness of cetyltrimethylammonium bromide-modified palm oil fiber (CTAB-modified POF) for the removal of indigo carmine (IC) and 2,6-dichlorophenolindophenol (2,6-DCPIP) from aqueous solutions was investigated. Raw, NaOH-treated, and CTAB-modified POF were characterized by Fourier-transform infrared (FT-IR) spectroscopy, elemental analysis, thermogravimetric-hyperdifferential scanning calorimetric (TG-HDSC) analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The adsorption studies of IC and 2,6-DCPIP were performed in batch mode using CTAB-modified POF. The results showed that equilibrium was attained after a contact time of 30 minutes for IC and 20 minutes for 2,6-DCPIP. The maximum capacity of adsorption was obtained at pH = 2. The capacity of adsorption considerably increased with modified biosorbents and with increasing initial concentration of dyes. The ionic strength favors the increasing adsorption capacity of IC and does not affect the adsorption capacity of 2,6-DCPIP. The percentage of adsorption increased with increasing mass of the biosorbents. The nonlinear regression of adsorption isotherms showed that Freundlich (r2 = 0.953; χ2 = 4.398) and Temkin (r2 = 0.986; χ2 = 1.196) isotherms are most appropriate to describe the adsorption of IC and 2,6-DCPIP on CTAB-modified POF, respectively. The maximum adsorption capacities determined by the Langmuir isotherm were 275.426 and 230.423 μmol·g-1 for IC and 2,6-DCPIP, respectively. The linear regression of adsorption kinetics was best described by the pseudo-second-order model (R2 ≥ 0.998). The diffusion mechanism showed that external mass transfer is the main rate controlling step. Desorption of the two dyes is favorable in the alkaline medium.
{"title":"Indigo Carmine and 2,6-Dichlorophenolindophenol Removal Using Cetyltrimethylammonium Bromide-Modified Palm Oil Fiber: Adsorption Isotherms and Mass Transfer Kinetics.","authors":"Marcel Cédric Deussi Ngaha, Evangéline Njanja, Giscard Doungmo, Arnaud Tamo Kamdem, Ignas Kenfack Tonle","doi":"10.1155/2019/6862825","DOIUrl":"https://doi.org/10.1155/2019/6862825","url":null,"abstract":"<p><p>In the present work, the usefulness of cetyltrimethylammonium bromide-modified palm oil fiber (CTAB-modified POF) for the removal of indigo carmine (IC) and 2,6-dichlorophenolindophenol (2,6-DCPIP) from aqueous solutions was investigated. Raw, NaOH-treated, and CTAB-modified POF were characterized by Fourier-transform infrared (FT-IR) spectroscopy, elemental analysis, thermogravimetric-hyperdifferential scanning calorimetric (TG-HDSC) analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The adsorption studies of IC and 2,6-DCPIP were performed in batch mode using CTAB-modified POF. The results showed that equilibrium was attained after a contact time of 30 minutes for IC and 20 minutes for 2,6-DCPIP. The maximum capacity of adsorption was obtained at pH = 2. The capacity of adsorption considerably increased with modified biosorbents and with increasing initial concentration of dyes. The ionic strength favors the increasing adsorption capacity of IC and does not affect the adsorption capacity of 2,6-DCPIP. The percentage of adsorption increased with increasing mass of the biosorbents. The nonlinear regression of adsorption isotherms showed that Freundlich (<i>r</i> <sup>2</sup> = 0.953; <i>χ</i> <sup>2</sup> = 4.398) and Temkin (<i>r</i> <sup>2</sup> = 0.986; <i>χ</i> <sup>2</sup> = 1.196) isotherms are most appropriate to describe the adsorption of IC and 2,6-DCPIP on CTAB-modified POF, respectively. The maximum adsorption capacities determined by the Langmuir isotherm were 275.426 and 230.423 <i>μ</i>mol·g<sup>-1</sup> for IC and 2,6-DCPIP, respectively. The linear regression of adsorption kinetics was best described by the pseudo-second-order model (<i>R</i> <sup>2</sup> ≥ 0.998). The diffusion mechanism showed that external mass transfer is the main rate controlling step. Desorption of the two dyes is favorable in the alkaline medium.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2019 ","pages":"6862825"},"PeriodicalIF":3.1,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/6862825","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37523583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-19eCollection Date: 2019-01-01DOI: 10.1155/2019/4325845
G Isgrò, D Rodi, A Sachs, M Hashimoto
Statement of problem: Fabrication technique, precementation, and cementation operative procedures can induce significant modification of the stressing patterns throughout the thickness of some classes of dental ceramic materials.
Objectives: To estimate, by means of the deflection test, residual stress in restorative dental ceramic following fabrication technique, precementation, and resin cement coating procedures and to relate it to the elastic property of the ceramic material tested.
Materials and methods: From IPS e.max® Press, lithium disilicate heat-pressed glass-ceramic (elastic modulus of 95 ± 5 GPa) disc-shaped specimens (n = 10) were made according to the manufacturer's instructions. One surface of the specimens was polished to provide accurate baseline profilometric measurements (reference surface). Deflection measurements were performed after polishing and annealing alumina air-particle abrasion of the unpolished surface followed by resin cement coating of the alumina air-particle abraded surface. The specimens were reprofiled at 24, 48, and 168 hrs after coating. The Friedman test followed by Dunn's multiple comparison test was employed to identify significant differences (p < 0.05). To compare the difference in mean of maximum mechanical deflection, after cement coating at 0 hr, between two different ceramic materials (IPS e.max Press and Vitadur Alpha (result from another study)), Student's t-test for unpaired data was performed.
Results: Baseline profilometric measurements identified a convex form on the polished surface of the ceramic discs with a mean of maximum mechanical deflection of 4.45 ± 0.87 μm. A significant reduction in convexity of the polished specimens was characterized after alumina air-particle abrasion of the unpolished surface. The mean deflection significantly increased after resin cement coating and did not change over the time investigated.
Conclusions: The precementation treatment, namely, alumina air-particle abrasion and cementation procedure of IPS e.max® Press glass-ceramic disc-shaped specimens generates stress that induced mechanical deformation. However, a dental ceramic material with higher elastic modulus (stiffer) would minimize stress-inducing mechanical deformation.
{"title":"Modulus of Elasticity of Two Ceramic Materials and Stress-Inducing Mechanical Deformation following Fabrication Techniques and Adhesive Cementation Procedures of a Dental Ceramic.","authors":"G Isgrò, D Rodi, A Sachs, M Hashimoto","doi":"10.1155/2019/4325845","DOIUrl":"10.1155/2019/4325845","url":null,"abstract":"<p><strong>Statement of problem: </strong>Fabrication technique, precementation, and cementation operative procedures can induce significant modification of the stressing patterns throughout the thickness of some classes of dental ceramic materials.</p><p><strong>Objectives: </strong>To estimate, by means of the deflection test, residual stress in restorative dental ceramic following fabrication technique, precementation, and resin cement coating procedures and to relate it to the elastic property of the ceramic material tested.</p><p><strong>Materials and methods: </strong>From IPS e.max® Press, lithium disilicate heat-pressed glass-ceramic (elastic modulus of 95 ± 5 GPa) disc-shaped specimens (<i>n</i> = 10) were made according to the manufacturer's instructions. One surface of the specimens was polished to provide accurate baseline profilometric measurements (reference surface). Deflection measurements were performed after polishing and annealing alumina air-particle abrasion of the unpolished surface followed by resin cement coating of the alumina air-particle abraded surface. The specimens were reprofiled at 24, 48, and 168 hrs after coating. The Friedman test followed by Dunn's multiple comparison test was employed to identify significant differences (<i>p</i> < 0.05). To compare the difference in mean of maximum mechanical deflection, after cement coating at 0 hr, between two different ceramic materials (IPS e.max Press and Vitadur Alpha (result from another study)), Student's <i>t</i>-test for unpaired data was performed.</p><p><strong>Results: </strong>Baseline profilometric measurements identified a convex form on the polished surface of the ceramic discs with a mean of maximum mechanical deflection of 4.45 ± 0.87 <i>μ</i>m. A significant reduction in convexity of the polished specimens was characterized after alumina air-particle abrasion of the unpolished surface. The mean deflection significantly increased after resin cement coating and did not change over the time investigated.</p><p><strong>Conclusions: </strong>The precementation treatment, namely, alumina air-particle abrasion and cementation procedure of IPS e.max® Press glass-ceramic disc-shaped specimens generates stress that induced mechanical deformation. However, a dental ceramic material with higher elastic modulus (stiffer) would minimize stress-inducing mechanical deformation.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2019 ","pages":"4325845"},"PeriodicalIF":3.0,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37449209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Watcharaphong Chaemsawang, W. Prasongchean, K. Papadopoulos, G. Ritthidej, S. Sukrong, P. Wattanaarsakit
Cancer is a noncommunicable disease with a high worldwide incidence and mortality rate. The National Cancer Institute of Thailand reports increasing cumulative incidence of breast, colorectal, liver, lung, and cervical cancers, accounting for more than 60% of all cancers in the kingdom. In this current work, we attempt to elucidate the phytochemical composition of the okra (Abelmoschus esculentus (L.) Moench) seed extract (OSE) and study its anticancer activity, delivered in its native form as well as in the form of polymeric micelles with enhanced solubility, in three carcinoma cell lines (MCF-7, HeLa, and HepG2). The presence of flavonoid compounds in the OSE was successfully confirmed, and direct delivery had the highest cytotoxic effect on the breast cancer cell line (MCF-7), followed by the hepatocellular carcinoma (HepG2) and cervical carcinoma (HeLa) cell lines in that order, while its delivery in polymeric micelles further increased this effect only in the HepG2 cell line. The OSE's observed cytotoxic effects on cancer cell lines demonstrated a dose and time-dependent cell proliferation and migration inhibition plausibly due to VEGF production inhibition, leading to apoptosis and cell death, conceivably due to the four flavonoid compounds noted in the current study, one of which was isoquercitrin. However, in view of the latter compound's isolated effects being inferior to those observed by the OSE, we hypothesize that either isoquercitrin requires the biological synergy of any one or all of the observed flavonoids or any of the three in isolation or all in concert are responsible. Further studies are required to elucidate the nature of the three unknown compounds. Furthermore, as we encountered significant problems in dissolving the okra seed extract and creating the polymeric micelles, further studies are needed to devise a clinically beneficial delivery and targeting system.
{"title":"The Effect of Okra (Abelmoschus esculentus (L.) Moench) Seed Extract on Human Cancer Cell Lines Delivered in Its Native Form and Loaded in Polymeric Micelles","authors":"Watcharaphong Chaemsawang, W. Prasongchean, K. Papadopoulos, G. Ritthidej, S. Sukrong, P. Wattanaarsakit","doi":"10.1155/2019/9404383","DOIUrl":"https://doi.org/10.1155/2019/9404383","url":null,"abstract":"Cancer is a noncommunicable disease with a high worldwide incidence and mortality rate. The National Cancer Institute of Thailand reports increasing cumulative incidence of breast, colorectal, liver, lung, and cervical cancers, accounting for more than 60% of all cancers in the kingdom. In this current work, we attempt to elucidate the phytochemical composition of the okra (Abelmoschus esculentus (L.) Moench) seed extract (OSE) and study its anticancer activity, delivered in its native form as well as in the form of polymeric micelles with enhanced solubility, in three carcinoma cell lines (MCF-7, HeLa, and HepG2). The presence of flavonoid compounds in the OSE was successfully confirmed, and direct delivery had the highest cytotoxic effect on the breast cancer cell line (MCF-7), followed by the hepatocellular carcinoma (HepG2) and cervical carcinoma (HeLa) cell lines in that order, while its delivery in polymeric micelles further increased this effect only in the HepG2 cell line. The OSE's observed cytotoxic effects on cancer cell lines demonstrated a dose and time-dependent cell proliferation and migration inhibition plausibly due to VEGF production inhibition, leading to apoptosis and cell death, conceivably due to the four flavonoid compounds noted in the current study, one of which was isoquercitrin. However, in view of the latter compound's isolated effects being inferior to those observed by the OSE, we hypothesize that either isoquercitrin requires the biological synergy of any one or all of the observed flavonoids or any of the three in isolation or all in concert are responsible. Further studies are required to elucidate the nature of the three unknown compounds. Furthermore, as we encountered significant problems in dissolving the okra seed extract and creating the polymeric micelles, further studies are needed to devise a clinically beneficial delivery and targeting system.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/9404383","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42728319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raneem S Alofi, I. Alshiddi, Y. AlFawaz, A. Alsahhaf, K. Al-Aali, T. Abduljabbar, Fahim Vohra
Objective This in vitro study was designed to evaluate the influence of an Er,Cr:YSGG laser on the bond strength of zirconia and glass fiber posts with root dentin. Materials and methods Ninety extracted single-rooted human teeth were randomized into 6 groups (n = 15/group) on the basis of different posts (zirconia/glass fiber) and Er,Cr:YSGG laser tips (axial and radial). Specimens were prepared for push-out testing with the help of a cutting machine; six slices (2 on each cervical, middle, and apical) of approximately 1 mm thickness were sectioned for all roots on a plane perpendicular to the long axis of the post. All specimens were placed into a universal testing machine with a defined 0.5 mm/min crosshead speed until the maximum failure load was obtained. Results The highest mean push-out bond strength of the glass fiber and zirconia groups was achieved with laser treatment. The highest push-out bond strength was achieved with the axial fiber tip (7.63 ± 1.22 MPa), and the lowest was achieved with a radial fiber tip of the glass fiber group (6.98 ± 0.96 MPa). ANOVA showed a statistically significant difference between the groups (p = 0.041). The mean push-out bond strength was found to be higher with an axial fiber tip for both cervical and apical segments in the glass fiber and zirconia groups (p < 0.05). The independent t-test resulted in the overall highest mean push-out bond strength in the apical segments (p = 0.026). Conclusion Within the limits of the present in vitro research study, an enhancement in the push-out bond strength of resin cement, mainly in the cervical region of the root canal, was achieved after irradiation with an Er,Cr:YSGG laser using an axial fiber tip.
{"title":"Influence of Er,Cr:YSGG Laser Irradiation on the Push-Out Bond Strength of Zirconia and Glass Fiber Posts with Radicular Dentin","authors":"Raneem S Alofi, I. Alshiddi, Y. AlFawaz, A. Alsahhaf, K. Al-Aali, T. Abduljabbar, Fahim Vohra","doi":"10.1155/2019/4869853","DOIUrl":"https://doi.org/10.1155/2019/4869853","url":null,"abstract":"Objective This in vitro study was designed to evaluate the influence of an Er,Cr:YSGG laser on the bond strength of zirconia and glass fiber posts with root dentin. Materials and methods Ninety extracted single-rooted human teeth were randomized into 6 groups (n = 15/group) on the basis of different posts (zirconia/glass fiber) and Er,Cr:YSGG laser tips (axial and radial). Specimens were prepared for push-out testing with the help of a cutting machine; six slices (2 on each cervical, middle, and apical) of approximately 1 mm thickness were sectioned for all roots on a plane perpendicular to the long axis of the post. All specimens were placed into a universal testing machine with a defined 0.5 mm/min crosshead speed until the maximum failure load was obtained. Results The highest mean push-out bond strength of the glass fiber and zirconia groups was achieved with laser treatment. The highest push-out bond strength was achieved with the axial fiber tip (7.63 ± 1.22 MPa), and the lowest was achieved with a radial fiber tip of the glass fiber group (6.98 ± 0.96 MPa). ANOVA showed a statistically significant difference between the groups (p = 0.041). The mean push-out bond strength was found to be higher with an axial fiber tip for both cervical and apical segments in the glass fiber and zirconia groups (p < 0.05). The independent t-test resulted in the overall highest mean push-out bond strength in the apical segments (p = 0.026). Conclusion Within the limits of the present in vitro research study, an enhancement in the push-out bond strength of resin cement, mainly in the cervical region of the root canal, was achieved after irradiation with an Er,Cr:YSGG laser using an axial fiber tip.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2019 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/4869853","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42668634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. B. Ahi, Nergis Zeynep Renkler, Mine Gul Seker, K. Tuzlakoglu
Biodegradable composite membranes containing propolis were produced from PCL/PLLA blends using a simple and low-cost solvent casting method, and subsequently their physicochemical, mechanical, and antibacterial properties were characterized. SEM analysis revealed that the addition of propolis has created honeycomb-like structures on the film surfaces. The flexibility of the films increased in the presence of propolis, which may provide ease of use during application. Propolis disrupted the organized structure of both polymers at the molecular level and caused decreases in the melting points. The films with propolis showed faster degradation in physiological conditions due to this molecular disruption. Moreover, the PLLA/PCL/propolis composite films exhibited remarkable antibacterial activities against S. aureus. Collectively, the data suggest that the produced films might be used as an alternative to exiting barrier membranes in guided tissue regeneration.
{"title":"Biodegradable Polymer Films with a Natural Antibacterial Extract as Novel Periodontal Barrier Membranes","authors":"Z. B. Ahi, Nergis Zeynep Renkler, Mine Gul Seker, K. Tuzlakoglu","doi":"10.1155/2019/7932470","DOIUrl":"https://doi.org/10.1155/2019/7932470","url":null,"abstract":"Biodegradable composite membranes containing propolis were produced from PCL/PLLA blends using a simple and low-cost solvent casting method, and subsequently their physicochemical, mechanical, and antibacterial properties were characterized. SEM analysis revealed that the addition of propolis has created honeycomb-like structures on the film surfaces. The flexibility of the films increased in the presence of propolis, which may provide ease of use during application. Propolis disrupted the organized structure of both polymers at the molecular level and caused decreases in the melting points. The films with propolis showed faster degradation in physiological conditions due to this molecular disruption. Moreover, the PLLA/PCL/propolis composite films exhibited remarkable antibacterial activities against S. aureus. Collectively, the data suggest that the produced films might be used as an alternative to exiting barrier membranes in guided tissue regeneration.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7932470","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44456224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Ramirez-Vazquez, I. Escobar, J. González-Rubio, E. Arribas
We have read the work of Galli [1] “The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo”, published the 3rd of September, 2018, in International Journal of Biomaterials, and we want to comment on some values of the magnetic fields used. In this publication, the authors present a review that includes studies investigating the effects of Pulsed Electromagnetic Fields (PEMFs) on the response of bone cells to different classes of biomaterials and the reports that focused on in vivo investigations of biomaterials implanted in bone. In Tables 1, 2, and 3, on pages 3 and 6 to 8, the authors summarize the in vitro and in vivo studies on the effects of PEMFs stimulation on osteoblastic primary cells and cell lines on calcium phosphate biomaterials, titaniumbased biomaterials, and polymer-based biomaterials, respectively. The data of magnetic field intensity are expressed in miliTesla (mT), except the field intensity of experimental model about placement in rabbit tibias (expressed in W). This last value is not considered for having the incorrect units. We consider it interesting to do a detailed analysis of the average magnetic field used, to know their behaviour and calculate the intensity of the electromagnetic wave associated with this magnetic field. Supposing that the magnetic field is part of an electromagnetic wave, we have calculated the wave intensity of those waves using the data from Tables 1, 2 and 3, column 4, of the paper of Galli [1], obtaining the results of columns 3 and 6 (in italic font) of Table 1 (expressed in W/m). The expression we have used to calculate the intensity of the electromagnetic wave, measured in W/m, is as follows:
我们阅读了Galli[1]发表于2018年9月3日《International Journal of Biomaterials》上的文章《the Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo》,我们想对使用的磁场的一些值进行评论。在这篇论文中,作者综述了脉冲电磁场(pemf)对骨细胞对不同类型生物材料反应的影响的研究,以及对植入骨的生物材料的体内研究。在第3页和第6至8页的表1、2和3中,作者分别总结了体外和体内关于PEMFs刺激成骨原代细胞和磷酸钙生物材料、钛基生物材料和聚合物基生物材料细胞系的影响的研究。除放置兔胫骨实验模型的磁场强度以W表示外,其余磁场强度数据均以milesla (mT)表示。由于单位不正确,最后一个数值不考虑。我们认为对使用的平均磁场进行详细分析,了解它们的行为并计算与该磁场相关的电磁波强度是很有趣的。假设磁场是电磁波的一部分,我们利用Galli[1]论文表1、表2、表3第4列的数据计算了电磁波的波强,得到表1第3、6列(斜体)的结果(以W/m表示)。我们用来计算电磁波强度(W/m)的表达式如下:
{"title":"Comment on “The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo”","authors":"R. Ramirez-Vazquez, I. Escobar, J. González-Rubio, E. Arribas","doi":"10.1155/2019/2593205","DOIUrl":"https://doi.org/10.1155/2019/2593205","url":null,"abstract":"We have read the work of Galli [1] “The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo”, published the 3rd of September, 2018, in International Journal of Biomaterials, and we want to comment on some values of the magnetic fields used. In this publication, the authors present a review that includes studies investigating the effects of Pulsed Electromagnetic Fields (PEMFs) on the response of bone cells to different classes of biomaterials and the reports that focused on in vivo investigations of biomaterials implanted in bone. In Tables 1, 2, and 3, on pages 3 and 6 to 8, the authors summarize the in vitro and in vivo studies on the effects of PEMFs stimulation on osteoblastic primary cells and cell lines on calcium phosphate biomaterials, titaniumbased biomaterials, and polymer-based biomaterials, respectively. The data of magnetic field intensity are expressed in miliTesla (mT), except the field intensity of experimental model about placement in rabbit tibias (expressed in W). This last value is not considered for having the incorrect units. We consider it interesting to do a detailed analysis of the average magnetic field used, to know their behaviour and calculate the intensity of the electromagnetic wave associated with this magnetic field. Supposing that the magnetic field is part of an electromagnetic wave, we have calculated the wave intensity of those waves using the data from Tables 1, 2 and 3, column 4, of the paper of Galli [1], obtaining the results of columns 3 and 6 (in italic font) of Table 1 (expressed in W/m). The expression we have used to calculate the intensity of the electromagnetic wave, measured in W/m, is as follows:","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/2593205","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47546969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-01eCollection Date: 2019-01-01DOI: 10.1155/2019/7826373
Ryoji Sawada, Yuya Katou, Hirofumi Shibata, Max Katayama, Toru Nonami
Titanium-based materials are widely used for implant treatments such as artificial dental roots. Surface treatment has the potential to improve not only the biocompatibility but also the chemical and mechanical durability of the surface without changing the mechanical properties of the metal. A relatively thick titanium oxide film can be formed by the anodic oxidation method. Phosphoric acid or sulfuric acid electrolytic solution has previously been used for anodic oxidation. Such anodized films have excellent film hardness, abrasion resistance, and adhesion. In this study, titanium plate was anodized using an aqueous solution of sulfuric acid in which titanium oxide powder was suspended. A 2800-nm-thick titanium oxide film was formed, which was thicker than that obtained using phosphoric acid electrolyte. The titanium plate was immersed in simulated body fluid for 1 day to evaluate the photocatalytic activity and protein adsorption ability, and a homogeneous crack-free hydroxyapatite layer was formed. This titanium plate showed high methylene blue bleaching capacity. The adsorption ability of the acidic protein of the anodized titanium plate subjected to the above treatment was high. This suggests that this titanium plate has antimicrobial properties and protein adsorption ability. Thus, we report that a titanium plate, anodized with a sulfuric acid aqueous electrolyte solution containing suspended TiO2 powder and immersed in simulated body fluid, might behave as an antibacterial and highly biocompatible implant material.
{"title":"Evaluation of Photocatalytic and Protein Adsorption Properties of Anodized Titanium Plate Immersed in Simulated Body Fluid.","authors":"Ryoji Sawada, Yuya Katou, Hirofumi Shibata, Max Katayama, Toru Nonami","doi":"10.1155/2019/7826373","DOIUrl":"https://doi.org/10.1155/2019/7826373","url":null,"abstract":"<p><p>Titanium-based materials are widely used for implant treatments such as artificial dental roots. Surface treatment has the potential to improve not only the biocompatibility but also the chemical and mechanical durability of the surface without changing the mechanical properties of the metal. A relatively thick titanium oxide film can be formed by the anodic oxidation method. Phosphoric acid or sulfuric acid electrolytic solution has previously been used for anodic oxidation. Such anodized films have excellent film hardness, abrasion resistance, and adhesion. In this study, titanium plate was anodized using an aqueous solution of sulfuric acid in which titanium oxide powder was suspended. A 2800-nm-thick titanium oxide film was formed, which was thicker than that obtained using phosphoric acid electrolyte. The titanium plate was immersed in simulated body fluid for 1 day to evaluate the photocatalytic activity and protein adsorption ability, and a homogeneous crack-free hydroxyapatite layer was formed. This titanium plate showed high methylene blue bleaching capacity. The adsorption ability of the acidic protein of the anodized titanium plate subjected to the above treatment was high. This suggests that this titanium plate has antimicrobial properties and protein adsorption ability. Thus, we report that a titanium plate, anodized with a sulfuric acid aqueous electrolyte solution containing suspended TiO<sub>2</sub> powder and immersed in simulated body fluid, might behave as an antibacterial and highly biocompatible implant material.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2019 ","pages":"7826373"},"PeriodicalIF":3.1,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7826373","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41199837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Hikmawati, H. Maulida, A. Putra, A. S. Budiatin, A. Syahrom
The most effective treatment for spinal tuberculosis was by eliminating the tuberculosis bacteria and replacing the infected bone with the bone graft to induce the healing process. This study aims to synthesize and characterize nanohydroxyapatite-gelatin-based injectable bone substitute (IBS) with addition of streptomycin. The IBS was synthesized by mixing nanohydroxyapatite and 20 w/v% gelatin with ratio of 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, and 75:25 ratio and streptomycin addition as antibiotic agent. The mixture was added by hydroxypropyl methylcellulose as suspending agent. FTIR test showed that there was a chemical reaction occurring in the mixture, between the gelatin and streptomycin. The result of injectability test showed that the highest injectability of the IBS sample was 98.64% with the setting time between 30 minutes and four hours after injection on the HA scaffold that represents the bone cavity and coat the pore scaffold. The cytotoxicity test result showed that the IBS samples were nontoxic towards BHK-21 fibroblast cells and human hepatocyte cells since the viability cell was more than 50% with significant difference (p-value<0.05). The acidity of the IBS was stable and it was sensitive towards Staphylococcus aureus with significantly difference (p-value<0.05). The streptomycin release test showed that the streptomycin could be released from the IBS-injected bone scaffold with release of 2.5% after 4 hours. All the results mentioned showed that IBS was suitable as a candidate to be used in spinal tuberculosis case.
{"title":"Synthesis and Characterization of Nanohydroxyapatite-Gelatin Composite with Streptomycin as Antituberculosis Injectable Bone Substitute","authors":"D. Hikmawati, H. Maulida, A. Putra, A. S. Budiatin, A. Syahrom","doi":"10.1155/2019/7179243","DOIUrl":"https://doi.org/10.1155/2019/7179243","url":null,"abstract":"The most effective treatment for spinal tuberculosis was by eliminating the tuberculosis bacteria and replacing the infected bone with the bone graft to induce the healing process. This study aims to synthesize and characterize nanohydroxyapatite-gelatin-based injectable bone substitute (IBS) with addition of streptomycin. The IBS was synthesized by mixing nanohydroxyapatite and 20 w/v% gelatin with ratio of 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, and 75:25 ratio and streptomycin addition as antibiotic agent. The mixture was added by hydroxypropyl methylcellulose as suspending agent. FTIR test showed that there was a chemical reaction occurring in the mixture, between the gelatin and streptomycin. The result of injectability test showed that the highest injectability of the IBS sample was 98.64% with the setting time between 30 minutes and four hours after injection on the HA scaffold that represents the bone cavity and coat the pore scaffold. The cytotoxicity test result showed that the IBS samples were nontoxic towards BHK-21 fibroblast cells and human hepatocyte cells since the viability cell was more than 50% with significant difference (p-value<0.05). The acidity of the IBS was stable and it was sensitive towards Staphylococcus aureus with significantly difference (p-value<0.05). The streptomycin release test showed that the streptomycin could be released from the IBS-injected bone scaffold with release of 2.5% after 4 hours. All the results mentioned showed that IBS was suitable as a candidate to be used in spinal tuberculosis case.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7179243","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46547084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}