The Permanent Magnet Synchronous Motor (PMSM) has the capability to high torque to current ratio, high power to weight ratio, high efficiency and stability. Due to the above positive points, PMSM is extensively employed in recent variable speed AC drives, particularly in electric vehicle applications. The electric vehicle is convenient for the city traffic without toxic gas emissions with low noise. PMSM became at the top of AC motor types due to the positive features written in the previous lines. However, it has two major drawbacks i.e. high cost and small speed range but it can be controlled and exceed to the small speed range with some control methods. A radial flux inner rotor PMSM architecture for electric vehicle application is presented in the project. The Interior Permanent Magnet Synchronous Motor (IPMSM) of the electric vehicle Leaf model, which was first produced by Nissan company in 2012, will be analyzed with ANSYS Motor-CAD and then the analysis results will be compared with the theoretical results and finally will be optimized in the project. The paper will provide insights about various change of parameters and their effects to the other parameters.
{"title":"Analysis and optimization of interior permanent magnet synchronous motor for electric vehicle applications using ANSYS Motor-CAD","authors":"Doğukan AYHAN","doi":"10.18245/ijaet.1247462","DOIUrl":"https://doi.org/10.18245/ijaet.1247462","url":null,"abstract":"The Permanent Magnet Synchronous Motor (PMSM) has the capability to high torque to current ratio, high power to weight ratio, high efficiency and stability. Due to the above positive points, PMSM is extensively employed in recent variable speed AC drives, particularly in electric vehicle applications. The electric vehicle is convenient for the city traffic without toxic gas emissions with low noise. PMSM became at the top of AC motor types due to the positive features written in the previous lines. However, it has two major drawbacks i.e. high cost and small speed range but it can be controlled and exceed to the small speed range with some control methods. A radial flux inner rotor PMSM architecture for electric vehicle application is presented in the project. The Interior Permanent Magnet Synchronous Motor (IPMSM) of the electric vehicle Leaf model, which was first produced by Nissan company in 2012, will be analyzed with ANSYS Motor-CAD and then the analysis results will be compared with the theoretical results and finally will be optimized in the project. The paper will provide insights about various change of parameters and their effects to the other parameters.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136279425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mustafa Atakan AKAR, İlker SUGÖZÜ, Gökhan BİLGİ, Umut KUMLU
The aim of the current research is a comparison of the wear ratio on the brake pad with the real values and the simulation values. Therefore, brake pad samples prepared from cashew and ulexite mixtures were used. The variation of total deformation on and wear ratio is investigated with using Ansys. Also, in this study, the brake pad, and disc were designed using Catia v5. Data input of pressure is selected 1.05 MPa on pad surface samples and 500 seconds on a brake disc rotating at 6 m/s. This analysis was made for 5 different samples. On the other hand, we are not getting clear results because of some limitations such as creating materials and unknown some material properties. With some approaches, real results were approached. Results showed that the simulation results are linear to the values according to the real values. The results that are found on software, approximately between +%9 and -%14. Also, it was observed that wear occurred in the center of the pad. It was thought that this wear could be reduced by distributing the pressure applied to the surface of the pad.
{"title":"Analysis of the wear and friction of brake pad added cashew and ulexite using ANSYS","authors":"Mustafa Atakan AKAR, İlker SUGÖZÜ, Gökhan BİLGİ, Umut KUMLU","doi":"10.18245/ijaet.1302418","DOIUrl":"https://doi.org/10.18245/ijaet.1302418","url":null,"abstract":"The aim of the current research is a comparison of the wear ratio on the brake pad with the real values and the simulation values. Therefore, brake pad samples prepared from cashew and ulexite mixtures were used. The variation of total deformation on and wear ratio is investigated with using Ansys. Also, in this study, the brake pad, and disc were designed using Catia v5. Data input of pressure is selected 1.05 MPa on pad surface samples and 500 seconds on a brake disc rotating at 6 m/s. This analysis was made for 5 different samples. On the other hand, we are not getting clear results because of some limitations such as creating materials and unknown some material properties. With some approaches, real results were approached. Results showed that the simulation results are linear to the values according to the real values. The results that are found on software, approximately between +%9 and -%14. Also, it was observed that wear occurred in the center of the pad. It was thought that this wear could be reduced by distributing the pressure applied to the surface of the pad.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"129 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136279424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, the use of exhaust waste heat energy stored in a latent heat thermal energy storage (LHTES) system for cabin heating of a passenger car at cold climate conditions was investigated by experimental and computational fluid dynamics (CFD). A liquid circulation system was installed for this purpose, consisting of two heat exchangers, one in the passenger car's rear compartment and the other in which the phase change material (PCM) in the LHTES system was stored. Commercial RT55 paraffin wax was used as PCM, and tap water was used as heat transfer fluid (HTF). Experimental and CFD analysis studies, which started at 283 K cabin interior temperature, were continued for 1500 sec (25 min). Before the experiments, the cabin interior of the passenger car was cooled up to 283 K with the air conditioning system, and the air conditioning system was kept on at a setting where the cabin interior temperature would remain constant at 283 K during the experiments. Thus, real cold climate conditions were provided for the experimental study. As a result, it has been observed that with the new cabin heating system, thermal comfort conditions for people are provided after the first five minutes, and this temperature can be maintained throughout the experiment. So much so that the cabin temperature increased from 283 K to 295 K in five minutes and reached approximately 297 K at the end of the experiment with a slow rate of increase. Furthermore, the difference in RT55 temperatures between the experimental and CFD analysis results is less than 3% during the cabin interior heating period.
{"title":"A novel design of heating system using phase change material for passenger car cabin in cold starting conditions","authors":"Habib GÜRBÜZ, Durukan ATEŞ, Hüsameddin AKÇAY","doi":"10.18245/ijaet.1273428","DOIUrl":"https://doi.org/10.18245/ijaet.1273428","url":null,"abstract":"In this paper, the use of exhaust waste heat energy stored in a latent heat thermal energy storage (LHTES) system for cabin heating of a passenger car at cold climate conditions was investigated by experimental and computational fluid dynamics (CFD). A liquid circulation system was installed for this purpose, consisting of two heat exchangers, one in the passenger car's rear compartment and the other in which the phase change material (PCM) in the LHTES system was stored. Commercial RT55 paraffin wax was used as PCM, and tap water was used as heat transfer fluid (HTF). Experimental and CFD analysis studies, which started at 283 K cabin interior temperature, were continued for 1500 sec (25 min). Before the experiments, the cabin interior of the passenger car was cooled up to 283 K with the air conditioning system, and the air conditioning system was kept on at a setting where the cabin interior temperature would remain constant at 283 K during the experiments. Thus, real cold climate conditions were provided for the experimental study. As a result, it has been observed that with the new cabin heating system, thermal comfort conditions for people are provided after the first five minutes, and this temperature can be maintained throughout the experiment. So much so that the cabin temperature increased from 283 K to 295 K in five minutes and reached approximately 297 K at the end of the experiment with a slow rate of increase. Furthermore, the difference in RT55 temperatures between the experimental and CFD analysis results is less than 3% during the cabin interior heating period.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136279422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hüseyin Emre DOĞAN, Abdurrahman DEMİRCİ, Akın KUTLAR
The burning process is one of the most important periods, which affects thermal efficiency and exhaust gas emissions, in internal combustion engines. The combustion process in internal combustion engines is modeled with one-dimensional or multi-dimensional software because it is cheaper, faster, and more practical than experiment. One of these methods, which is used to model the combustion period, is the Wiebe function. The Wiebe equation is an approach used in calculating the mass fraction burned and the heat release rate. The selection of Wiebe parameters is one of the most important factors affecting the accuracy of the mass fraction burned. In this study, the measured cylinder pressure of a spark ignition engine was directly used to calculate the heat released rate. The experiments were conducted at different brake mean effective pressures, engine speeds and relative air/fuel ratios, which were called independent variables. The shape factor (m) was determined by fitting the Wiebe equation to the heat release rate curves, which were extracted from the experimental results. The relationship between determined shape factor and independent variables was analyzed with a statistical approach. Eventually, a linear regression model, which explains 80% of the change in the shape factor, was created.
{"title":"Estimation of the shape factor (m) in Wiebe function at different operating conditions for a SI engine","authors":"Hüseyin Emre DOĞAN, Abdurrahman DEMİRCİ, Akın KUTLAR","doi":"10.18245/ijaet.1234678","DOIUrl":"https://doi.org/10.18245/ijaet.1234678","url":null,"abstract":"The burning process is one of the most important periods, which affects thermal efficiency and exhaust gas emissions, in internal combustion engines. The combustion process in internal combustion engines is modeled with one-dimensional or multi-dimensional software because it is cheaper, faster, and more practical than experiment. One of these methods, which is used to model the combustion period, is the Wiebe function. The Wiebe equation is an approach used in calculating the mass fraction burned and the heat release rate. The selection of Wiebe parameters is one of the most important factors affecting the accuracy of the mass fraction burned. In this study, the measured cylinder pressure of a spark ignition engine was directly used to calculate the heat released rate. The experiments were conducted at different brake mean effective pressures, engine speeds and relative air/fuel ratios, which were called independent variables. The shape factor (m) was determined by fitting the Wiebe equation to the heat release rate curves, which were extracted from the experimental results. The relationship between determined shape factor and independent variables was analyzed with a statistical approach. Eventually, a linear regression model, which explains 80% of the change in the shape factor, was created.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136279423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy, which is one of the foundations of social and economic development, is decisive for the future of humanity. The situation becomes more important every day. Today, the total sales of the electrical energy market alone have exceeded the level of 1 trillion dollars. In this research, SFR’s (Sample Facility Research) energy efficiency studies in the automotive sector were examined. Energy efficiency studies were started in SFR in 2021. Comparisons were made according to 2019. Within the scope of the research, the current literature on the subject was scanned and the data of SFR (were examined. According to the data obtained, it has been determined that the factory saves approximately 693 thousand kW of electrical energy annually. Based on this value, it has been understood that as a result of the energy efficiency applications, an energy saving of 36.47% was achieved in 2021 compared to 2019. It was determined that the biggest gain was in the curing section with 94,246 kW.
{"title":"Investigation of energy efficiency studies in a sample facility research (Automobile Industry) (SFR)","authors":"D. Altiparmak, Süleyman Muzaffer Merci̇mek","doi":"10.18245/ijaet.1259800","DOIUrl":"https://doi.org/10.18245/ijaet.1259800","url":null,"abstract":"Energy, which is one of the foundations of social and economic development, is decisive for the future of humanity. The situation becomes more important every day. Today, the total sales of the electrical energy market alone have exceeded the level of 1 trillion dollars. In this research, SFR’s (Sample Facility Research) energy efficiency studies in the automotive sector were examined. Energy efficiency studies were started in SFR in 2021. Comparisons were made according to 2019. Within the scope of the research, the current literature on the subject was scanned and the data of SFR (were examined. According to the data obtained, it has been determined that the factory saves approximately 693 thousand kW of electrical energy annually. Based on this value, it has been understood that as a result of the energy efficiency applications, an energy saving of 36.47% was achieved in 2021 compared to 2019. It was determined that the biggest gain was in the curing section with 94,246 kW.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78896231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to investigate theoretically the effects of stroke to bore ratio on exergy balance in spark ignition (SI) engines. For this purpose, a two–zone quasi–dimensional cycle model was developed for SI engines without considering the complex calculation of fluid dynamics. The combustion process is simulated as turbulent flame entrainment model in the cycle simulation. Principles of the second law of thermodynamics were applied to the developed model in order to perform the exergy (or availability) analysis. The variations of exergetic terms and irreversibilities throughout the investigated part of the cycle were analyzed depending on stroke to bore ratio. The results of the study showed that variation of stroke to bore ratio have significant effects on the variation of the exergetic terms, irreversibilities and efficiencies. Exergy transfer with work increases, while exergy transfer with heat decreases with increasing of stroke to bore ratio. The maximum increment in exergy transfer with work is about 12.5% and maximum decrement in exergy transfer with heat is about 11.25% for the stroke to bore ratio of 1.3 compared to stroke to bore ratio of 0.7. Irriversibilities and exergy transfer with exhaust decrease with the increasing of stroke to bore ratio. The maximum decrements are about 3.1% in the irriversibilities and 4.9% in exergy transfer with exhaust for the stroke to bore ratio of 1.3 compared to stroke to bore ratio of 0.7. The first and second law efficiencies are increase, while brake specific fuel consumption decreases with the increase of the stroke to bore ratio. The maximum increments are about 12.3% in the first and second law efficiencies and the maximum decrement is about 11.3% in brake specific fuel consumption for the stroke to bore ratio of 1.3 compared to stroke to bore ratio of 0.7.
{"title":"Effects of Stroke to Bore Ratio on Exergy Balance in Spark Ignition Engines","authors":"İ. Sezer","doi":"10.18245/ijaet.1084758","DOIUrl":"https://doi.org/10.18245/ijaet.1084758","url":null,"abstract":"This study aims to investigate theoretically the effects of stroke to bore ratio on exergy balance in spark ignition (SI) engines. For this purpose, a two–zone quasi–dimensional cycle model was developed for SI engines without considering the complex calculation of fluid dynamics. The combustion process is simulated as turbulent flame entrainment model in the cycle simulation. Principles of the second law of thermodynamics were applied to the developed model in order to perform the exergy (or availability) analysis. The variations of exergetic terms and irreversibilities throughout the investigated part of the cycle were analyzed depending on stroke to bore ratio. The results of the study showed that variation of stroke to bore ratio have significant effects on the variation of the exergetic terms, irreversibilities and efficiencies. Exergy transfer with work increases, while exergy transfer with heat decreases with increasing of stroke to bore ratio. The maximum increment in exergy transfer with work is about 12.5% and maximum decrement in exergy transfer with heat is about 11.25% for the stroke to bore ratio of 1.3 compared to stroke to bore ratio of 0.7. Irriversibilities and exergy transfer with exhaust decrease with the increasing of stroke to bore ratio. The maximum decrements are about 3.1% in the irriversibilities and 4.9% in exergy transfer with exhaust for the stroke to bore ratio of 1.3 compared to stroke to bore ratio of 0.7. The first and second law efficiencies are increase, while brake specific fuel consumption decreases with the increase of the stroke to bore ratio. The maximum increments are about 12.3% in the first and second law efficiencies and the maximum decrement is about 11.3% in brake specific fuel consumption for the stroke to bore ratio of 1.3 compared to stroke to bore ratio of 0.7.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90087804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon-containing waste gases from vehicle exhausts are one of the main causes of climatic disasters. This problem is tried to be solved by reducing the amount of energy consumed by vehicles while they are in motion. To reduce fuel consumption, it is necessary to reduce the effect of aerodynamic drag force, which is the resistance on the solid surface in motion. It is known that high aerodynamic drag force increases fuel consumption. Reducing aerodynamic drag force is important not only for fuel consumption but also for wind noise and roadholding. Heavy vehicles such as trucks have high drag forces due to the width of their surface areas. However, this situation can be minimized with changes to be made in vehicle designs. In this study, the effect of the use of top deflectors on the drag force for trucks has been investigated. In this theoretical study, separate calculations have been made for different vehicle velocities and the results have been compared among themselves. In this study, which has been carried out using the computational fluid dynamics method, k-e has been preferred as the turbulence method. As a result, it has been concluded that the use of top deflectors reduces drag force, which in turn reduces fuel consumption.
{"title":"Investigation of the effect of the use of top deflectors on aerodynamic performance in vehicles with CFD analysis","authors":"H. Kepekci","doi":"10.18245/ijaet.1220476","DOIUrl":"https://doi.org/10.18245/ijaet.1220476","url":null,"abstract":"Carbon-containing waste gases from vehicle exhausts are one of the main causes of climatic disasters. This problem is tried to be solved by reducing the amount of energy consumed by vehicles while they are in motion. To reduce fuel consumption, it is necessary to reduce the effect of aerodynamic drag force, which is the resistance on the solid surface in motion. It is known that high aerodynamic drag force increases fuel consumption. Reducing aerodynamic drag force is important not only for fuel consumption but also for wind noise and roadholding. Heavy vehicles such as trucks have high drag forces due to the width of their surface areas. However, this situation can be minimized with changes to be made in vehicle designs. In this study, the effect of the use of top deflectors on the drag force for trucks has been investigated. In this theoretical study, separate calculations have been made for different vehicle velocities and the results have been compared among themselves. In this study, which has been carried out using the computational fluid dynamics method, k-e has been preferred as the turbulence method. As a result, it has been concluded that the use of top deflectors reduces drag force, which in turn reduces fuel consumption.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"51 8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91019535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Researches are carried out with different methods to reduce the emissions emitted by conventional fuel engines. In addition to using alternative fuels, especially ethanol, in gasoline engines, fuel injection, and combustion controls are applied in various strategies. In this study, the effects of various cycle skipping strategies on emissions were analyzed through a numerical model of a single-cylinder naturally aspirated spark ignition (SI) engine. The validated model was fueled with an ethanol gasoline blend with 30% ethanol content. The model engine was operated at partial load and 1500 rpm constant engine speed under Normal (N), 1N1S, 2N1S and 3N1S cycle skip strategies. NOx emission increased with all strategies due to increased in-cylinder temperature with more fuel depletion in ignition cycles. The BSFC decreased by 9.93%, 13.67% and 5.93% in the 1N1S, 2N1S and 3N1S cycle skipping strategies, respectively. CO and HC emissions decreased with all cycle skipping strategies compared to the normal cycle.
{"title":"Simulation analysis of cycle skipping strategy in SI engine fueled with ethanol gasoline mixture","authors":"Dr. Hüseyin Gürbüz","doi":"10.18245/ijaet.1246452","DOIUrl":"https://doi.org/10.18245/ijaet.1246452","url":null,"abstract":"Researches are carried out with different methods to reduce the emissions emitted by conventional fuel engines. In addition to using alternative fuels, especially ethanol, in gasoline engines, fuel injection, and combustion controls are applied in various strategies. In this study, the effects of various cycle skipping strategies on emissions were analyzed through a numerical model of a single-cylinder naturally aspirated spark ignition (SI) engine. The validated model was fueled with an ethanol gasoline blend with 30% ethanol content. The model engine was operated at partial load and 1500 rpm constant engine speed under Normal (N), 1N1S, 2N1S and 3N1S cycle skip strategies. NOx emission increased with all strategies due to increased in-cylinder temperature with more fuel depletion in ignition cycles. The BSFC decreased by 9.93%, 13.67% and 5.93% in the 1N1S, 2N1S and 3N1S cycle skipping strategies, respectively. CO and HC emissions decreased with all cycle skipping strategies compared to the normal cycle.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"72 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82559994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, different battery types to be used in the conversion of a small and light (600-1000 kg) internal combustion engine vehicle into an electric vehicle were analyzed. The study was conducted to ensure that this vehicle is suitable for urban use and has a range of approximately 100 km. Each battery technology capacity is evaluated to be approximately 15 kWh. While performing the techno-economic analysis of different battery types, it was taken into account that they provide the necessary energy for about 10 years. Seven different battery technologies (lead-acid, gel, Ni-Cd, Li-Ion, LiFePo4, LiPo, Ni-MH) were used for comparison. In the analysis; price assessment in US Dollars ($), 10-year investment cost, weight and volume values, weight and volume values required to produce 1 kWh of energy were presented in tables. In addition to these, a review of battery life was made. Finally, the advantages and disadvantages of battery technologies compared to each other are given. As a result of the study, it was seen that the cheapest technology for a 10-year lifespan was lead-acid technology. It has been determined that lead-acid technology is 30% cheaper than the second cheapest gel technology and 82% cheaper than the most expensive technology, LiPo technology. In the study, it was revealed that the lightest technology was LiPo. It has been determined that this technology is 85% lighter than gel technology. Besides this information, data on cycle life, self-discharge, advantages and disadvantages are presented in tabular form.
{"title":"Battery selection criteria for electric vehicles: techno-economic analysis","authors":"Alaattin Yücenurşen, A. Samancı","doi":"10.18245/ijaet.1216888","DOIUrl":"https://doi.org/10.18245/ijaet.1216888","url":null,"abstract":"In this study, different battery types to be used in the conversion of a small and light (600-1000 kg) internal combustion engine vehicle into an electric vehicle were analyzed. The study was conducted to ensure that this vehicle is suitable for urban use and has a range of approximately 100 km. Each battery technology capacity is evaluated to be approximately 15 kWh. While performing the techno-economic analysis of different battery types, it was taken into account that they provide the necessary energy for about 10 years. Seven different battery technologies (lead-acid, gel, Ni-Cd, Li-Ion, LiFePo4, LiPo, Ni-MH) were used for comparison. In the analysis; price assessment in US Dollars ($), 10-year investment cost, weight and volume values, weight and volume values required to produce 1 kWh of energy were presented in tables. In addition to these, a review of battery life was made. Finally, the advantages and disadvantages of battery technologies compared to each other are given. As a result of the study, it was seen that the cheapest technology for a 10-year lifespan was lead-acid technology. It has been determined that lead-acid technology is 30% cheaper than the second cheapest gel technology and 82% cheaper than the most expensive technology, LiPo technology. In the study, it was revealed that the lightest technology was LiPo. It has been determined that this technology is 85% lighter than gel technology. Besides this information, data on cycle life, self-discharge, advantages and disadvantages are presented in tabular form.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"166 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77491875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vehicle-to-Vehicle (V2V) communication channel measurements were carried out in different environments such as urban, suburban, rural, highway, tunnel, and overpass. The roads in these environments have generally flat terrain. However, there are horizontal or vertical curve roads that have been little focused in the literature. In this study, we performed two V2V measurements on a vertical-curve road in a rural environment to show how received signal strength changes with the distance between the transmitter and the receiver. The path loss exponent of log-distance path loss model was calculated by using the least-square method. According to the results, the path loss exponents were estimated as 7.53 and 7.61 with 78% and 83% fitting performances for two measurements. In literature, however, the path loss exponent for different propagation environments was obtained up to 6.13, especially in the straight road. Thus, our findings show that the vertical curve roads cause 15-20 dB more attenuation in the received signal strength than the straight roads. As a result, the vertical curve roads should be investigated and included in existing wireless communication simulators to better model real measurements. The authors contend that this study will aid in improving the channel modeling of V2V communication.
{"title":"Vehicle-to-vehicle communication channel measurements on a vertical curve road","authors":"Kenan Kuzulugil, Z. Hasirci, I. Cavdar","doi":"10.18245/ijaet.797489","DOIUrl":"https://doi.org/10.18245/ijaet.797489","url":null,"abstract":"Vehicle-to-Vehicle (V2V) communication channel measurements were carried out in different environments such as urban, suburban, rural, highway, tunnel, and overpass. The roads in these environments have generally flat terrain. However, there are horizontal or vertical curve roads that have been little focused in the literature. In this study, we performed two V2V measurements on a vertical-curve road in a rural environment to show how received signal strength changes with the distance between the transmitter and the receiver. The path loss exponent of log-distance path loss model was calculated by using the least-square method. According to the results, the path loss exponents were estimated as 7.53 and 7.61 with 78% and 83% fitting performances for two measurements. In literature, however, the path loss exponent for different propagation environments was obtained up to 6.13, especially in the straight road. Thus, our findings show that the vertical curve roads cause 15-20 dB more attenuation in the received signal strength than the straight roads. As a result, the vertical curve roads should be investigated and included in existing wireless communication simulators to better model real measurements. The authors contend that this study will aid in improving the channel modeling of V2V communication.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89864647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}