Fly ash is a waste matter generally emitted abundantly from chimneys of the production facilities and should mostly be recycled. In this context, this study reveals the tribological effects of fly ash on brake pad components by doping the fly ash in basic brake pad matrix with various weight fractions of 30% (S30), 35% (S35) and 40% (S40) by reducing aluminum powder in the pad matrix. According to the results, as the fly ash concentration increases in the matrix, density and hardness of the structure were prone to decrease to an extent. Water immersion technique was used to determine density values and specially modified pin-on-disc tribotester was utilized to measure coefficient of friction (CF) and specific wear rate (SWR) values between brake pad samples and the cast iron rotating disc. Among prepared samples, maximum average reduction in density and hardness were observed to be by 3.97% and 10.67%, respectively. S30 depicted the minimum CF of 0.32 and maximum CF of 0.43 was performed by S40. Maximum specific wear rate was observed for S40 subtending to an increase of 8.67% from that of S30 to S40. Results showed that, though higher escalation in CF as the fly ash fraction elevates in the matrix, wear rates did not show a dramatic increase which is an indication of effectiveness of fly ash in brake pads in terms of braking performance and long term durability.
{"title":"Effects of fly ash introduction on friction and wear characteristics of brake pads","authors":"A. Yilmaz","doi":"10.18245/ijaet.1108124","DOIUrl":"https://doi.org/10.18245/ijaet.1108124","url":null,"abstract":"Fly ash is a waste matter generally emitted abundantly from chimneys of the production facilities and should mostly be recycled. In this context, this study reveals the tribological effects of fly ash on brake pad components by doping the fly ash in basic brake pad matrix with various weight fractions of 30% (S30), 35% (S35) and 40% (S40) by reducing aluminum powder in the pad matrix. According to the results, as the fly ash concentration increases in the matrix, density and hardness of the structure were prone to decrease to an extent. Water immersion technique was used to determine density values and specially modified pin-on-disc tribotester was utilized to measure coefficient of friction (CF) and specific wear rate (SWR) values between brake pad samples and the cast iron rotating disc. Among prepared samples, maximum average reduction in density and hardness were observed to be by 3.97% and 10.67%, respectively. S30 depicted the minimum CF of 0.32 and maximum CF of 0.43 was performed by S40. Maximum specific wear rate was observed for S40 subtending to an increase of 8.67% from that of S30 to S40. Results showed that, though higher escalation in CF as the fly ash fraction elevates in the matrix, wear rates did not show a dramatic increase which is an indication of effectiveness of fly ash in brake pads in terms of braking performance and long term durability.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87132685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability analysis of an active electromagnetic actuating suspension system","authors":"P. Olayiwola, P. Olabisi","doi":"10.18245/ijaet.886129","DOIUrl":"https://doi.org/10.18245/ijaet.886129","url":null,"abstract":"<jats:p xml:lang=\"tr\" />","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87991935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Fırat, Ş. Altun, Mutlu Okcu, Y. Varol, M. Senocak
Reactivity Controlled Compression-Ignition (RCCI) concept presents a great potential to reduce both NOx and soot emissions from conventional diesel engines with improved thermal efficiency. Therefore, in this work, a single-cylinder diesel engine with CRDI was operated on RCCI mode. To investigate the effect of RCCI mode on engine performance and emissions, gasoline was injected into the port as LRF, while diesel was injected directly into the cylinder as HRF. Premixed ratio of low reactivity fuel was varied from 0% (conventional diesel mode, CDM) to 60% with 15% intervals as energy ratio given to engine per cycle. Engine load was also studied from 20% to 60% of max. engine torque with 20% intervals to stimulate low, mid and mid-high load conditions. Experimental results showed that with increase of Rp, unburned HC and CO emissions increased while smoke opacity decreased significantly (up to about 95% in case of 0.60 Rp and 60% engine load) in gasoline/diesel RCCI compared to CDM. Though NOx emissions decreased at low engine loads with RCCI strategy, they started to increase with increase of Rp at high loads.
{"title":"Experimental study on reduction of pollutant emissions in reactivity controlled compression ignition (RCCI) engine fueled with diesel/gasoline fuels","authors":"M. Fırat, Ş. Altun, Mutlu Okcu, Y. Varol, M. Senocak","doi":"10.18245/ijaet.1078400","DOIUrl":"https://doi.org/10.18245/ijaet.1078400","url":null,"abstract":"Reactivity Controlled Compression-Ignition (RCCI) concept presents a great potential to reduce both NOx and soot emissions from conventional diesel engines with improved thermal efficiency. Therefore, in this work, a single-cylinder diesel engine with CRDI was operated on RCCI mode. To investigate the effect of RCCI mode on engine performance and emissions, gasoline was injected into the port as LRF, while diesel was injected directly into the cylinder as HRF. Premixed ratio of low reactivity fuel was varied from 0% (conventional diesel mode, CDM) to 60% with 15% intervals as energy ratio given to engine per cycle. Engine load was also studied from 20% to 60% of max. engine torque with 20% intervals to stimulate low, mid and mid-high load conditions. Experimental results showed that with increase of Rp, unburned HC and CO emissions increased while smoke opacity decreased significantly (up to about 95% in case of 0.60 Rp and 60% engine load) in gasoline/diesel RCCI compared to CDM. Though NOx emissions decreased at low engine loads with RCCI strategy, they started to increase with increase of Rp at high loads.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84700761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this research, both numerically and experimentally, the thermal efficiency of a Printed Circuit Board (PCB) with two Light Emitting Diode (LED) chips was examined. The two LED lighting systems, which are single-cell LEDs, including PCB and copper plates, were manufactured, and tested under laboratory conditions to achieve this goal. The three-dimensional Computational Fluid Dynamics (CFD) model with natural convection effects prepared using the FloEFD software package to predict PCB surface temperature distributions. The goal was to perform comprehensive circuit board simulation and validate the numerical model built in this study using the experimental data during the studies. From the results, we can easily claim that higher temperature gradients are calculated and predicted near the LED chip because of heat generation. Data paths have played an essential role in the LED circuit board's temperature distribution. High-temperature variations are observed at short distances around the LED when the experimental and simulation results are compared. Temperature changes are minimized as they travel away from the LED chip. It is found that the error rate is below 5 percent overall between the experimental and simulation results. The numerical results were in proper alignment with numerical data obtained from the three-dimensional (3D) CFD model. Given thermal efficiency and using such models, this model can design and analyze Automotive Lighting Systems.
{"title":"Thermal performance investigation of position function circuit board used in automotive exterior rear lighting","authors":"Birhat Sönmezay, M. Aktaş","doi":"10.18245/ijaet.830838","DOIUrl":"https://doi.org/10.18245/ijaet.830838","url":null,"abstract":"In this research, both numerically and experimentally, the thermal efficiency of a Printed Circuit Board (PCB) with two Light Emitting Diode (LED) chips was examined. The two LED lighting systems, which are single-cell LEDs, including PCB and copper plates, were manufactured, and tested under laboratory conditions to achieve this goal. The three-dimensional Computational Fluid Dynamics (CFD) model with natural convection effects prepared using the FloEFD software package to predict PCB surface temperature distributions. The goal was to perform comprehensive circuit board simulation and validate the numerical model built in this study using the experimental data during the studies. From the results, we can easily claim that higher temperature gradients are calculated and predicted near the LED chip because of heat generation. Data paths have played an essential role in the LED circuit board's temperature distribution. High-temperature variations are observed at short distances around the LED when the experimental and simulation results are compared. Temperature changes are minimized as they travel away from the LED chip. It is found that the error rate is below 5 percent overall between the experimental and simulation results. The numerical results were in proper alignment with numerical data obtained from the three-dimensional (3D) CFD model. Given thermal efficiency and using such models, this model can design and analyze Automotive Lighting Systems.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"80 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88584182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This experimental work examined the prediction and optimization of biodiesel production from pomegranate seed oil using Artificial Neural Networks (ANN) and Response Surface Methodology (RSM) with central composite design and The transesterification method chosen for biodiesel production. The Central Composite Design (CCD) optimization conditions were methanol/oil molar ratio (3:1 to 11:1), catalyst rate (0.5 wt% to 1.50 wt%), temperature (50 ℃ to 70 ℃) and time (45 min to 105 min). The process factors were optimized by using CCD based on the RSM method and developed an ANN model to predict biodiesel yield. The optimum yield was found 95.68% with optimum process parameters as 8.01:1 methanol/oil molar ratio, 1.08 wt% catalyst rate, 70 ℃ temperature and 45 min time. The coefficient of determination (R2) acquired from the response surface methodology model is 0.9887 and is better when compared to the coefficient of determination (R2) of 0.9691 acquired from the Artificial neural network model. According to the results, using RSM and ANN models is beneficial for optimizing and predicting the biodiesel production process.
{"title":"Prediction and optimization of biodiesel production by using ANN and RSM","authors":"Ceyla Özgür","doi":"10.18245/ijaet.1057170","DOIUrl":"https://doi.org/10.18245/ijaet.1057170","url":null,"abstract":"This experimental work examined the prediction and optimization of biodiesel production from pomegranate seed oil using Artificial Neural Networks (ANN) and Response Surface Methodology (RSM) with central composite design and The transesterification method chosen for biodiesel production. The Central Composite Design (CCD) optimization conditions were methanol/oil molar ratio (3:1 to 11:1), catalyst rate (0.5 wt% to 1.50 wt%), temperature (50 ℃ to 70 ℃) and time (45 min to 105 min). The process factors were optimized by using CCD based on the RSM method and developed an ANN model to predict biodiesel yield. The optimum yield was found 95.68% with optimum process parameters as 8.01:1 methanol/oil molar ratio, 1.08 wt% catalyst rate, 70 ℃ temperature and 45 min time. The coefficient of determination (R2) acquired from the response surface methodology model is 0.9887 and is better when compared to the coefficient of determination (R2) of 0.9691 acquired from the Artificial neural network model. According to the results, using RSM and ANN models is beneficial for optimizing and predicting the biodiesel production process.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84996969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cooling systems are one of the essential systems for internal combustion engines. They prevent damage to engine parts and extend the engine’s life by removing the high heat generated by the combustion from the engine. These systems vary depending on the engine’s volume, combustion pressure, coolant flow, and types and may differ in light commercial and heavy commercial vehicles. These differences are generally observed in the water pump used, type of refrigerant, filter systems, and pump control mechanisms. The most apparent differences are in the water pump and filter systems. Light commercial vehicles do not have a filtration system, while most of the heavy commercial vehicles have a filtration system. There are many studies in the literature focusing on the performance and durability of the filter systems.In this study, the necessity of the filter system in the cooling systems of heavy commercial vehicles, system filtration performance, and whether it is possible to work without a filter were investigated. A water pump performance test setup was used to simulate the real engine condition. The test was performed at 110°C coolant temperature, 1 barg input pressure, and with 53.195gr contamination. Results of the study showed that removing the filter from the coolant system after the first service shortens the life of the water pump.
{"title":"Water pump filter removal and filter performance study at heavy commercial vehicle engine","authors":"I. Savci, Yavuz Can Özkaptan, M. Demir","doi":"10.18245/ijaet.972135","DOIUrl":"https://doi.org/10.18245/ijaet.972135","url":null,"abstract":"Cooling systems are one of the essential systems for internal combustion engines. They prevent damage to engine parts and extend the engine’s life by removing the high heat generated by the combustion from the engine. These systems vary depending on the engine’s volume, combustion pressure, coolant flow, and types and may differ in light commercial and heavy commercial vehicles. These differences are generally observed in the water pump used, type of refrigerant, filter systems, and pump control mechanisms. The most apparent differences are in the water pump and filter systems. Light commercial vehicles do not have a filtration system, while most of the heavy commercial vehicles have a filtration system. There are many studies in the literature focusing on the performance and durability of the filter systems.In this study, the necessity of the filter system in the cooling systems of heavy commercial vehicles, system filtration performance, and whether it is possible to work without a filter were investigated. A water pump performance test setup was used to simulate the real engine condition. The test was performed at 110°C coolant temperature, 1 barg input pressure, and with 53.195gr contamination. Results of the study showed that removing the filter from the coolant system after the first service shortens the life of the water pump.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89641004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of the pure use of microalg oil in diesel engines","authors":"Erdal Çılgın","doi":"10.18245/ijaet.874696","DOIUrl":"https://doi.org/10.18245/ijaet.874696","url":null,"abstract":"","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78773657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental investigation of essential oils as fuel additives","authors":"Erdal Çılgın","doi":"10.18245/ijaet.838224","DOIUrl":"https://doi.org/10.18245/ijaet.838224","url":null,"abstract":"","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"72 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78979691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electric vehicle mechanical design, manufacturing and analysis application","authors":"A. Özçelik, H. Terzioglu","doi":"10.18245/ijaet.1054509","DOIUrl":"https://doi.org/10.18245/ijaet.1054509","url":null,"abstract":"","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74706975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}