J. Safari, Seyyed Jafar Hashemi, Azadeh Ranjbar Nedamani
Abstract This study aims to simulate the effect of the drier humidity distribution on the temperature distribution and dried product shrinkage. The Lebanese yellow apple (Golden Delicious) was prepared in the form of slices with 3 and 5 mm thicknesses and dried at 60 °C in a hot air oven. Shrinkage models were determined by fitting the experimental data with Sigmaplot software. The simulation was done using these equations in COMSOL software. The simulation results showed that due to the accumulation of air humidity in one part of the oven, the temperature distribution inside the product was not distributed evenly in that part. This phenomenon caused the imbalance of moisture transfer from the product and this can increase the drying time as well as unbalanced shrinkage of the product. Finally, it was found that the air humidity distribution inside the oven had a significant effect on the drying process and shrinkage rate of samples.
{"title":"CFD simulating of air moisture distribution inside the dryer and investigating its effect on the shrinkage rate of dried apples","authors":"J. Safari, Seyyed Jafar Hashemi, Azadeh Ranjbar Nedamani","doi":"10.1515/ijfe-2022-0226","DOIUrl":"https://doi.org/10.1515/ijfe-2022-0226","url":null,"abstract":"Abstract This study aims to simulate the effect of the drier humidity distribution on the temperature distribution and dried product shrinkage. The Lebanese yellow apple (Golden Delicious) was prepared in the form of slices with 3 and 5 mm thicknesses and dried at 60 °C in a hot air oven. Shrinkage models were determined by fitting the experimental data with Sigmaplot software. The simulation was done using these equations in COMSOL software. The simulation results showed that due to the accumulation of air humidity in one part of the oven, the temperature distribution inside the product was not distributed evenly in that part. This phenomenon caused the imbalance of moisture transfer from the product and this can increase the drying time as well as unbalanced shrinkage of the product. Finally, it was found that the air humidity distribution inside the oven had a significant effect on the drying process and shrinkage rate of samples.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":"18 1","pages":"775 - 784"},"PeriodicalIF":1.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41671193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This study aimed to develop functional emulsions with dietary fibre/proteins and to examine the role of interfacial rheological properties on the emulsion stability. Emulsions with inulin and various animal/vegetable proteins were prepared, and their emulsifying and interfacial rheological properties were appraised for their possible applications in stabilizing oil-in-water emulsions. Interfacial measurements including the frequency, time and strain sweep test were determined depending on the protein differences. The results revealed that the adsorption behaviour of proteins at the two interfaces was quite different. The apparent viscosity (η50) of the emulsions ranged between 0.006 and 0.037 Pa s. The highest interfacial viscosity (ηi) values at low shear rates were determined in the mixture of egg protein-inulin at the oil/water interface. In particular, the interfacial properties of egg protein were not similar to those of other proteins. This study indicated that interfacial rheological properties and emulsifying properties of the proteins were influenced by the presence of inulin which contributes to the existing body of knowledge on the preparation of the prebiotic emulsions with proteins.
摘要本研究旨在制备含膳食纤维/蛋白质的功能性乳剂,并研究界面流变性能对乳剂稳定性的影响。以菊粉和多种动植物蛋白为原料制备了乳状液,并对其乳化和界面流变性能进行了评价,探讨了其在稳定水包油乳状液中的应用前景。界面测量包括频率、时间和菌株扫描测试,根据蛋白质的差异来确定。结果表明,蛋白质在两个界面上的吸附行为有很大的不同。乳状液的表观粘度(η50)在0.006 ~ 0.037 Pa s之间。低剪切速率下,蛋蛋白-菊粉混合物在油水界面处的界面粘度(ηi)值最高。特别是,鸡蛋蛋白的界面特性与其他蛋白质不同。该研究表明,菊粉的存在会影响蛋白质的界面流变性能和乳化性,这有助于现有的用蛋白质制备益生元乳剂的知识体系。
{"title":"Determination of the best interaction of inulin with different proteins by using interfacial rheology: the relationship with the emulsion activity and stability in emulsion systems","authors":"Duygu Aslan Türker, Meryem Göksel Saraç, M. Doğan","doi":"10.1515/ijfe-2022-0212","DOIUrl":"https://doi.org/10.1515/ijfe-2022-0212","url":null,"abstract":"Abstract This study aimed to develop functional emulsions with dietary fibre/proteins and to examine the role of interfacial rheological properties on the emulsion stability. Emulsions with inulin and various animal/vegetable proteins were prepared, and their emulsifying and interfacial rheological properties were appraised for their possible applications in stabilizing oil-in-water emulsions. Interfacial measurements including the frequency, time and strain sweep test were determined depending on the protein differences. The results revealed that the adsorption behaviour of proteins at the two interfaces was quite different. The apparent viscosity (η50) of the emulsions ranged between 0.006 and 0.037 Pa s. The highest interfacial viscosity (ηi) values at low shear rates were determined in the mixture of egg protein-inulin at the oil/water interface. In particular, the interfacial properties of egg protein were not similar to those of other proteins. This study indicated that interfacial rheological properties and emulsifying properties of the proteins were influenced by the presence of inulin which contributes to the existing body of knowledge on the preparation of the prebiotic emulsions with proteins.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":"18 1","pages":"761 - 773"},"PeriodicalIF":1.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41805971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Baijiu, the national liquor of China, is produced using traditional solid-state fermentation (SSF). SSF automation during compound flavor baijiu (CFB) production can considerably reduce labor intensity and required manpower, improve the working environment, decrease costs, and increase efficiency. The approaches for SSF automation in CFB production can provide a reference for the automation of SSF in other industries. Therefore, this review compares the traditional and automated processes for jiuqu starter production, SSF, and solid-state distillation during baijiu brewing. Furthermore, specific applications of automation technology and equipment are summarized for each process. The problems and challenges associated with the automation of the process are then detailed and future development directions are proposed. Thus, this review provides an overall introduction to and insight into the developments and challenges in the automation of the CFB brewing process, helping to promote automation in the brewing of other baijiu flavor classes and SSF products.
{"title":"Applications and prospects of the automation of compound flavor baijiu production by solid-state fermentation","authors":"Wei Cheng, Xuefeng Chen, Duandi Zhou, Feng-kui Xiong","doi":"10.1515/ijfe-2022-0200","DOIUrl":"https://doi.org/10.1515/ijfe-2022-0200","url":null,"abstract":"Abstract Baijiu, the national liquor of China, is produced using traditional solid-state fermentation (SSF). SSF automation during compound flavor baijiu (CFB) production can considerably reduce labor intensity and required manpower, improve the working environment, decrease costs, and increase efficiency. The approaches for SSF automation in CFB production can provide a reference for the automation of SSF in other industries. Therefore, this review compares the traditional and automated processes for jiuqu starter production, SSF, and solid-state distillation during baijiu brewing. Furthermore, specific applications of automation technology and equipment are summarized for each process. The problems and challenges associated with the automation of the process are then detailed and future development directions are proposed. Thus, this review provides an overall introduction to and insight into the developments and challenges in the automation of the CFB brewing process, helping to promote automation in the brewing of other baijiu flavor classes and SSF products.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":"18 1","pages":"737 - 749"},"PeriodicalIF":1.6,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44482221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Dextran problem restricts the development of the sugar industry. Although the enzymatic treatment based on α-dextranase from Chaetomium gracile (α-dextranase (CG)) has been effective in solving this issue, the lack of immobilization products hinder its industrial applications. This research described a novel and suitable method to immobilize α-dextranase (CG). The purified α-dextranase (CG) was immobilized via cross-linking using modified chitosan as carriers. In addition, this study used a deep eutectic solvent that greatly improved the enzymatic properties of immobilized α-dextranase (CG). α-dextranase (CG) was immobilized by adding deep eutectic solvent (DES-IM-α-dextranase (CG)) showed better temperature tolerance and storage properties than free and ordinary immobilized counterparts. It can eliminate dextran by 59.71% in mixed sugarcane juice and 38.71% in clarified sugarcane juice. The achieved results were considerably better than those obtained using free and other immobilized enzymes. Altogether, these findings confirmed that DES-IM-α-dextranase (CG) displayed great potential in solving the dextran problem.
{"title":"Efficient removal of dextran in sugar juice by immobilized α-dextranase from Chaetomium gracile","authors":"Zedong Zhang, Sheng Wang, Longhan Wei, Yanfang Liao, Dongming Li, Guoqiang Wu, Wenjun Wang","doi":"10.1515/ijfe-2022-0102","DOIUrl":"https://doi.org/10.1515/ijfe-2022-0102","url":null,"abstract":"Abstract Dextran problem restricts the development of the sugar industry. Although the enzymatic treatment based on α-dextranase from Chaetomium gracile (α-dextranase (CG)) has been effective in solving this issue, the lack of immobilization products hinder its industrial applications. This research described a novel and suitable method to immobilize α-dextranase (CG). The purified α-dextranase (CG) was immobilized via cross-linking using modified chitosan as carriers. In addition, this study used a deep eutectic solvent that greatly improved the enzymatic properties of immobilized α-dextranase (CG). α-dextranase (CG) was immobilized by adding deep eutectic solvent (DES-IM-α-dextranase (CG)) showed better temperature tolerance and storage properties than free and ordinary immobilized counterparts. It can eliminate dextran by 59.71% in mixed sugarcane juice and 38.71% in clarified sugarcane juice. The achieved results were considerably better than those obtained using free and other immobilized enzymes. Altogether, these findings confirmed that DES-IM-α-dextranase (CG) displayed great potential in solving the dextran problem.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":"18 1","pages":"751 - 759"},"PeriodicalIF":1.6,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43316199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Continuous flow microwave sterilization for liquid food has advantages of a short time and high retention rate of nutrients. However, uneven microwave heating is the critical factor restricting the industrialization of microwave sterilization. This paper reviews the up-to-date research on the continuous flow microwave heating and the continuous flow microwave sterilization system for liquid food. The causes of the non-uniformity of continuous flow microwave heating are thoroughly discussed and the methods of improving the uniformity are proposed. Finally, the recommendations for future research of continuous flow microwave sterilization for liquid food are presented.
{"title":"Continuous flow microwave heating and sterilization for liquid food","authors":"Xiaoling Chang, Lixin Zhang, Q. Xu, Zhao-jie Zheng, Ruifang Wang, Zhanyong Li","doi":"10.1515/ijfe-2022-0130","DOIUrl":"https://doi.org/10.1515/ijfe-2022-0130","url":null,"abstract":"Abstract Continuous flow microwave sterilization for liquid food has advantages of a short time and high retention rate of nutrients. However, uneven microwave heating is the critical factor restricting the industrialization of microwave sterilization. This paper reviews the up-to-date research on the continuous flow microwave heating and the continuous flow microwave sterilization system for liquid food. The causes of the non-uniformity of continuous flow microwave heating are thoroughly discussed and the methods of improving the uniformity are proposed. Finally, the recommendations for future research of continuous flow microwave sterilization for liquid food are presented.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":"18 1","pages":"717 - 735"},"PeriodicalIF":1.6,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48660778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In current paper, a comprehensive review to contribute the present insight an implementations and the recent improvements through the diverse endeavor made by the researchers utilizing a membrane technique for degumming, deacidifying, dewaxing and discoloration edible vegetable oils with and without solvent availability and also the solvent recovery has been evaluated. Endeavors made with NF, UF, MF and non-porous membranes, have shown the capability of these membranes to predicate vegetable oil treatment. A membrane technique is noticeably simple and potentially provides many usefulness in vegetable oil purification. It appears that oils treatment with membranes, which carried out at low temperatures that provides saving energy, with real cancellation of stages, provides a promising alternate to conventional procedure, towards the accomplishment of eco-friendly and cost-effective operations that are technically sophisticated. Generally, the solvent (hexane-dilution) technique enhances the membrane oil flux. For dewaxing undiluted vegetable oils, the effective membrane was MF, whereas in dewaxing solvent-diluted oils process UF membranes were more energetic.
{"title":"A review on membrane technology application for vegetable oil purification processes","authors":"Jenan M. Shihab, K. Rashid, M. Toma","doi":"10.1515/ijfe-2022-0058","DOIUrl":"https://doi.org/10.1515/ijfe-2022-0058","url":null,"abstract":"Abstract In current paper, a comprehensive review to contribute the present insight an implementations and the recent improvements through the diverse endeavor made by the researchers utilizing a membrane technique for degumming, deacidifying, dewaxing and discoloration edible vegetable oils with and without solvent availability and also the solvent recovery has been evaluated. Endeavors made with NF, UF, MF and non-porous membranes, have shown the capability of these membranes to predicate vegetable oil treatment. A membrane technique is noticeably simple and potentially provides many usefulness in vegetable oil purification. It appears that oils treatment with membranes, which carried out at low temperatures that provides saving energy, with real cancellation of stages, provides a promising alternate to conventional procedure, towards the accomplishment of eco-friendly and cost-effective operations that are technically sophisticated. Generally, the solvent (hexane-dilution) technique enhances the membrane oil flux. For dewaxing undiluted vegetable oils, the effective membrane was MF, whereas in dewaxing solvent-diluted oils process UF membranes were more energetic.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":"18 1","pages":"655 - 677"},"PeriodicalIF":1.6,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46172185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Srenuja, A. Shanmugam, Vadakkepulppara Ramachandran Nair Sinija
Abstract Commercial vegetables include tomatoes, potatoes, onions, and eggplant due to their surplus production, availability, and affordability. The valorisation of the massive wastage of commercial vegetables and providing a long-term solution has been challenging. The review addresses the implications of biowastes on the environment and fosters the recent investigations into valorising commercial vegetable waste to develop multiple value-added products. It discussed the outcomes of the multiple technologies, majorly on green chemistry extraction, while outlining other methods such as fermentation, enzymatic treatments, 3D printing foods, high-pressure homogenisation, microencapsulation, bio-absorption method, and pyrolysis for their respective vegetable wastes. Agri-residues can be a valuable source for formulating functional ingredients, natural additives, biodiesel, dyes, and animal feed. This comprehensive review proposes a strategy to upcycle low-cost biowaste to boost the economic and ecological benefits. The current review captures the interests and great collaborations between researchers, industrialists, policymakers, waste management bodies, and eco-activists.
{"title":"Novel zero waste tactics for commercial vegetables – recent advances","authors":"D. Srenuja, A. Shanmugam, Vadakkepulppara Ramachandran Nair Sinija","doi":"10.1515/ijfe-2022-0126","DOIUrl":"https://doi.org/10.1515/ijfe-2022-0126","url":null,"abstract":"Abstract Commercial vegetables include tomatoes, potatoes, onions, and eggplant due to their surplus production, availability, and affordability. The valorisation of the massive wastage of commercial vegetables and providing a long-term solution has been challenging. The review addresses the implications of biowastes on the environment and fosters the recent investigations into valorising commercial vegetable waste to develop multiple value-added products. It discussed the outcomes of the multiple technologies, majorly on green chemistry extraction, while outlining other methods such as fermentation, enzymatic treatments, 3D printing foods, high-pressure homogenisation, microencapsulation, bio-absorption method, and pyrolysis for their respective vegetable wastes. Agri-residues can be a valuable source for formulating functional ingredients, natural additives, biodiesel, dyes, and animal feed. This comprehensive review proposes a strategy to upcycle low-cost biowaste to boost the economic and ecological benefits. The current review captures the interests and great collaborations between researchers, industrialists, policymakers, waste management bodies, and eco-activists.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":"18 1","pages":"633 - 654"},"PeriodicalIF":1.6,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43354728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The purpose of this study was to investigate the effects of chitosan coating containing resveratrol (RES) and Satureja bachtiarica essential oil (SEO) on the microbial quality, oxidative stability, and sensory properties of chicken meat as well as inoculated Escherichia coli O157:H7 during 12 day storage at 4 °C. The synergistic in vitro antioxidant effects between RES and SEO in chitosan coatings were observed. Moreover, chicken coated with chitosan solution containing RES 0.001% + SEO 2% indicated better results compared with the control group with the following scores (p≤0.05): Total viable count (6.11 log10 CFU/g), total psychrotrophic count (5.39 log10 CFU/g), Lactic acid bacteria (5.36 log10 CFU/g), pH (6.25), peroxide value (4.32 meq/kg lipid), thiobarbituric acid reactive substance (1.03 mg MDA/kg), sensory analysis (overall acceptability: 5.5), and inoculated E.coli O157:H7 (6.01 log10 CFU/g). The finding of the present study can contribute to the meat industry as a natural active packaging system.
{"title":"Chitosan edible coating incorporated with resveratrol and Satureja bachtiarica essential oil as natural active packaging: In vitro antibacterial and antioxidant properties, and its impact on the shelf life of fresh chicken fillet and growth of inoculated Escherichia coli O157:H7","authors":"Sepehr Abdalbeygi, Majid Aminzare, Hassan Hassanzad Azar","doi":"10.1515/ijfe-2022-0138","DOIUrl":"https://doi.org/10.1515/ijfe-2022-0138","url":null,"abstract":"Abstract The purpose of this study was to investigate the effects of chitosan coating containing resveratrol (RES) and Satureja bachtiarica essential oil (SEO) on the microbial quality, oxidative stability, and sensory properties of chicken meat as well as inoculated Escherichia coli O157:H7 during 12 day storage at 4 °C. The synergistic in vitro antioxidant effects between RES and SEO in chitosan coatings were observed. Moreover, chicken coated with chitosan solution containing RES 0.001% + SEO 2% indicated better results compared with the control group with the following scores (p≤0.05): Total viable count (6.11 log10 CFU/g), total psychrotrophic count (5.39 log10 CFU/g), Lactic acid bacteria (5.36 log10 CFU/g), pH (6.25), peroxide value (4.32 meq/kg lipid), thiobarbituric acid reactive substance (1.03 mg MDA/kg), sensory analysis (overall acceptability: 5.5), and inoculated E.coli O157:H7 (6.01 log10 CFU/g). The finding of the present study can contribute to the meat industry as a natural active packaging system.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":"18 1","pages":"701 - 715"},"PeriodicalIF":1.6,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47157409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Mandarin peel, an agro waste has an immense potential for bio utilization. The present study highlights the effect of drying on the physicochemical and biochemical properties of dried mandarin peel. Microwave drying and forced air drying accomplished at three different power levels (180, 360 and 540 W) and temperatures (30, 50 and 70 °C), respectively, while freeze drying was carried out at shelf temperature of –35 °C. The results revealed highest recovery of bioactive compounds from microwave drying at 540 W viz total phenolic (43.61 mg GAE/g), flavonoid (8.08 mg QE/g), tannin (8.73 mg GAE/g), saponin (159.91 mg EE/g−1), as well as, gallic acid antioxidant activity (3.58 mg GAEAC/g) and ferric reducing antioxidant power (50.61 mg TE/g−1). Furthermore, results from HPLC and UV–vis spectroscopy revealed presence of major polyphenols in dried peel. Microwave drying can be concluded as an industrial method for the bio utilization of mandarin peel.
{"title":"Effect of drying methods on physico-chemical and bioactive compounds of mandarin (citrus reticulata) peel","authors":"Amit Kumar, Rahul Kumar Rout, P. S. Rao","doi":"10.1515/ijfe-2022-0121","DOIUrl":"https://doi.org/10.1515/ijfe-2022-0121","url":null,"abstract":"Abstract Mandarin peel, an agro waste has an immense potential for bio utilization. The present study highlights the effect of drying on the physicochemical and biochemical properties of dried mandarin peel. Microwave drying and forced air drying accomplished at three different power levels (180, 360 and 540 W) and temperatures (30, 50 and 70 °C), respectively, while freeze drying was carried out at shelf temperature of –35 °C. The results revealed highest recovery of bioactive compounds from microwave drying at 540 W viz total phenolic (43.61 mg GAE/g), flavonoid (8.08 mg QE/g), tannin (8.73 mg GAE/g), saponin (159.91 mg EE/g−1), as well as, gallic acid antioxidant activity (3.58 mg GAEAC/g) and ferric reducing antioxidant power (50.61 mg TE/g−1). Furthermore, results from HPLC and UV–vis spectroscopy revealed presence of major polyphenols in dried peel. Microwave drying can be concluded as an industrial method for the bio utilization of mandarin peel.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":"18 1","pages":"689 - 700"},"PeriodicalIF":1.6,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48476755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Asimi, Ren Xin, Zhang Min, Tuohetisayipu Tuersuntuoheti, Li Sixuan, Wang Zhenhua, Liang Shan, Wang Ziyuan
Abstract By simulating the aroma changes during in vitro mastication, we can better understand the aroma changes during rice eating, which is helpful in studying people’s sensory preferences. To investigate the rice aroma released during the in vitro mastication, the present study analyzed rice bolus’s odor fingerprints in vitro mastication using electronic nose and gas chromatography-ion mobility spectrometry (GC-IMS). The electronic nose analysis results showed significant differences in the flavor of japonica rice in vitro mastication. In addition, GC-IMS determined 30 volatile organic compounds (VOCs) during rice in vitro mastication. Among these compounds, the most important content was aldehydes, followed by ketones and alcohols. Although the concentration of various chemicals was relatively high in cooked rice, most compounds decreased after mastication. The concentration of propan-2-ol, ethanol, and methanol increased after mastication. Multivariate data analysis showed that isoamyl sovalerate, pentanal, hexanal, acetone, hexanal, and limonene were the main VOCs of japonica rice during in vitro mastication. GC-IMS and e-nose analyses are complementary and recommended for using the two techniques to achieve the VOCs’ rapid and comprehensive detection during in vitro mastication. Results from this study allowed us to understand rice flavor during oral processing.
{"title":"Characterization of japonica rice aroma profiles during in vitro mastication by gas chromatography-ion mobility spectrometry (GC-IMS) and electronic nose technology","authors":"S. Asimi, Ren Xin, Zhang Min, Tuohetisayipu Tuersuntuoheti, Li Sixuan, Wang Zhenhua, Liang Shan, Wang Ziyuan","doi":"10.1515/ijfe-2021-0326","DOIUrl":"https://doi.org/10.1515/ijfe-2021-0326","url":null,"abstract":"Abstract By simulating the aroma changes during in vitro mastication, we can better understand the aroma changes during rice eating, which is helpful in studying people’s sensory preferences. To investigate the rice aroma released during the in vitro mastication, the present study analyzed rice bolus’s odor fingerprints in vitro mastication using electronic nose and gas chromatography-ion mobility spectrometry (GC-IMS). The electronic nose analysis results showed significant differences in the flavor of japonica rice in vitro mastication. In addition, GC-IMS determined 30 volatile organic compounds (VOCs) during rice in vitro mastication. Among these compounds, the most important content was aldehydes, followed by ketones and alcohols. Although the concentration of various chemicals was relatively high in cooked rice, most compounds decreased after mastication. The concentration of propan-2-ol, ethanol, and methanol increased after mastication. Multivariate data analysis showed that isoamyl sovalerate, pentanal, hexanal, acetone, hexanal, and limonene were the main VOCs of japonica rice during in vitro mastication. GC-IMS and e-nose analyses are complementary and recommended for using the two techniques to achieve the VOCs’ rapid and comprehensive detection during in vitro mastication. Results from this study allowed us to understand rice flavor during oral processing.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":"18 1","pages":"679 - 688"},"PeriodicalIF":1.6,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47080491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}