Pub Date : 2021-07-19DOI: 10.13052/IJFP1439-9776.2233
Jin Zheng
In order to improve the accuracy and speed of fault data acquisition of fluid power control system, this paper designs an automatic fault diagnosis method of fluid power control system based on English translation speech recognition. Firstly, the SDG model of the fluid dynamic control system is established, and the fault link is obtained and determined. Then the correlation dimension of data in fluid mechanics calculation is analyzed, and the fault data location is realized. On this basis, the fault classification model of the hydraulic power control system is established, and the automatic fault diagnosis of the hydraulic power control system is completed. Experiments show that the new fault diagnosis method can effectively improve the accuracy and speed of fault data acquisition of fluid power control system, the highest accuracy can reach 89.92%, the fastest speed is 11s, and improve the reliability of fault diagnosis results.
{"title":"Automatic Fault Diagnosis Method for Hydrodynamic Control System","authors":"Jin Zheng","doi":"10.13052/IJFP1439-9776.2233","DOIUrl":"https://doi.org/10.13052/IJFP1439-9776.2233","url":null,"abstract":"In order to improve the accuracy and speed of fault data acquisition of fluid power control system, this paper designs an automatic fault diagnosis method of fluid power control system based on English translation speech recognition. Firstly, the SDG model of the fluid dynamic control system is established, and the fault link is obtained and determined. Then the correlation dimension of data in fluid mechanics calculation is analyzed, and the fault data location is realized. On this basis, the fault classification model of the hydraulic power control system is established, and the automatic fault diagnosis of the hydraulic power control system is completed. Experiments show that the new fault diagnosis method can effectively improve the accuracy and speed of fault data acquisition of fluid power control system, the highest accuracy can reach 89.92%, the fastest speed is 11s, and improve the reliability of fault diagnosis results.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43635553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-10DOI: 10.13052/IJFP1439-9776.2232
Remzija Ćerimagić, P. Johansen, T. Andersen, R. Scheidl
This paper considers modeling of fluid stiction between two separating plates that start from a mechanical contact condition. Published experimental work on initially contacting plates showed significant variations in stiction force peak values. In order to describe the observed strong force variations with mathematical models, the models should be quite sensitive to some of the input parameters of the stiction problem. The model in this paper assumes that small air bubbles are entrapped between the contact areas of the asperity peaks and that the fluid film flow between the cavitation bubbles is guided by Reynolds equation. The proposed model exhibits high sensitivity to initial bubble size and initial contact force compared to state-of-the art models. A delay of about 1 ms in the simulated stiction force evolution and the experiments was found. Potential causes for this discrepancy are discussed at the end of this paper and an outlook to future work, which can reduce the discrepancy between the model and experimental results is given.
{"title":"Fluid Stiction From a Contact Condition","authors":"Remzija Ćerimagić, P. Johansen, T. Andersen, R. Scheidl","doi":"10.13052/IJFP1439-9776.2232","DOIUrl":"https://doi.org/10.13052/IJFP1439-9776.2232","url":null,"abstract":"This paper considers modeling of fluid stiction between two separating plates that start from a mechanical contact condition. Published experimental work on initially contacting plates showed significant variations in stiction force peak values. In order to describe the observed strong force variations with mathematical models, the models should be quite sensitive to some of the input parameters of the stiction problem. The model in this paper assumes that small air bubbles are entrapped between the contact areas of the asperity peaks and that the fluid film flow between the cavitation bubbles is guided by Reynolds equation. The proposed model exhibits high sensitivity to initial bubble size and initial contact force compared to state-of-the art models. A delay of about 1 ms in the simulated stiction force evolution and the experiments was found. Potential causes for this discrepancy are discussed at the end of this paper and an outlook to future work, which can reduce the discrepancy between the model and experimental results is given.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49447764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-10DOI: 10.13052/IJFP1439-9776.2231
A. K. Pandey, Ajay Kumar, Nitish Kumar
Hydraulic components play a significant role in the mining and construction equipment. It is responsible for smooth change in the output speed, torque, and power of the machine. The hydrostatic drive powered by a constant speed electric motor is widely used in the propel system of the mining equipment. Regulation of the displacements of the pump and the hydro-motor of the drive facilitates the control of the straight running and steering of the machines. In the present scenario, better efficiency and ease of control are the critical aspects to be considered in the design and selection of the hydraulic pump and motor used in underground mining operations. The bent axis hydro-motor is one such equipment that is an electro-hydraulic component that can work in an adverse working environment. The present study deals with the performance analysis of fixed displacement bent axis hydro-motor at different operating parameters such as different temperatures, sizes, viscosity at different loads, and drive speed. For analysis, the hydraulic drive consists of a variable displacement pump rotated by a constant speed electric motor and a fixed displacement hydro-motor. The regulation of the pump displacement controls the speed of the drive. Manually controlled hydrostatic drive propels the said machine against variable load demands. The present work investigates the performances of the hydro-motor used in the mining and construction machine through detailed modeling and experimentations. The steady-state performances are analyzed in terms of slip, torque losses and efficiency of the hydro-motor. The study finds the design guideline to operate the hydrostatic drive using such motors in a reasonable efficiency zone. The model is validated for various operating conditions of the equipment by comparing the predicted results with the test results. The outcome of the present work will be expedient for the preliminary design and assortment of similar hydraulic component used in the mobile, mining equipment.
{"title":"Analysis on the Steady-state Performance and Losses of a Bent-axis Type Hydraulic Motor Used in Heavy Earth Moving Machinery","authors":"A. K. Pandey, Ajay Kumar, Nitish Kumar","doi":"10.13052/IJFP1439-9776.2231","DOIUrl":"https://doi.org/10.13052/IJFP1439-9776.2231","url":null,"abstract":"Hydraulic components play a significant role in the mining and construction equipment. It is responsible for smooth change in the output speed, torque, and power of the machine. The hydrostatic drive powered by a constant speed electric motor is widely used in the propel system of the mining equipment. Regulation of the displacements of the pump and the hydro-motor of the drive facilitates the control of the straight running and steering of the machines. \u0000In the present scenario, better efficiency and ease of control are the critical aspects to be considered in the design and selection of the hydraulic pump and motor used in underground mining operations. The bent axis hydro-motor is one such equipment that is an electro-hydraulic component that can work in an adverse working environment. \u0000The present study deals with the performance analysis of fixed displacement bent axis hydro-motor at different operating parameters such as different temperatures, sizes, viscosity at different loads, and drive speed. For analysis, the hydraulic drive consists of a variable displacement pump rotated by a constant speed electric motor and a fixed displacement hydro-motor. The regulation of the pump displacement controls the speed of the drive. Manually controlled hydrostatic drive propels the said machine against variable load demands. The present work investigates the performances of the hydro-motor used in the mining and construction machine through detailed modeling and experimentations. The steady-state performances are analyzed in terms of slip, torque losses and efficiency of the hydro-motor. The study finds the design guideline to operate the hydrostatic drive using such motors in a reasonable efficiency zone. \u0000The model is validated for various operating conditions of the equipment by comparing the predicted results with the test results. The outcome of the present work will be expedient for the preliminary design and assortment of similar hydraulic component used in the mobile, mining equipment.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46634191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-31DOI: 10.13052/IJFP1439-9776.2223
Niklas Bauer, Andris Rambaks, Corinna Müller, H. Murrenhoff, K. Schmitz
The numerically stable simulation of cavitation effects is mandatory for predicting the friction and wear behavior of translational hydraulic seals. This contribution provides a comparison of two different implementations of the Jakobsson-Floberg-Olsson (JFO) cavitation model, an investigation of their properties and possible options for their stabilization. These methods are tested and compared both within a simple divergent gap test case as well as within an EHL simulation of a rubber metal contact. Based on these comparisons and theoretical investigations, the strengths and weaknesses of the different methods are summarized and discussed with respect to an application in EHL simulations of translational hydraulic seals.
{"title":"Strategies for Implementing the Jakobsson-Floberg-Olsson Cavitation Model in EHL Simulations of Translational Seals","authors":"Niklas Bauer, Andris Rambaks, Corinna Müller, H. Murrenhoff, K. Schmitz","doi":"10.13052/IJFP1439-9776.2223","DOIUrl":"https://doi.org/10.13052/IJFP1439-9776.2223","url":null,"abstract":"The numerically stable simulation of cavitation effects is mandatory for predicting the friction and wear behavior of translational hydraulic seals. This contribution provides a comparison of two different implementations of the Jakobsson-Floberg-Olsson (JFO) cavitation model, an investigation of their properties and possible options for their stabilization. These methods are tested and compared both within a simple divergent gap test case as well as within an EHL simulation of a rubber metal contact. Based on these comparisons and theoretical investigations, the strengths and weaknesses of the different methods are summarized and discussed with respect to an application in EHL simulations of translational hydraulic seals.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":"1 1","pages":"199–232-199–232"},"PeriodicalIF":0.8,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45089597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-31DOI: 10.13052/IJFP1439-9776.2226
Kai Shi, Huayi Zheng, Jun Li, Gang Bao
This article described a novel pneumatic soft joint used to make articulated soft fingers. This soft joint was designed by improving the basic structure of the fast pneumatic network. The joint was made of high modulus E630 silicon, which can increase the reverse exhaust speed through its high structural elasticity. Aramid fabric was used to restrain the non-working direction of joints to reduce ineffective expansion, thereby reducing air consumption. The kinematics and statics model of the joint was established by the piecewise constant curvature (PCC) method, and the model was proved to be effective. The silicone staging pouring process was used in the manufacture of joints and fingers, which can achieve high-quality product rates. A soft finger actuator composed of three soft joints was designed and manufactured, whose length was 1.3 times the human finger. The finger can nimbly achieve the target motion, and the gripping force of the fingertip can reach 7.1N. The articulated soft finger actuator has applications in soft dextrous hands and soft gripper.
{"title":"Study on the Articulated Finger Based on Pneumatic Soft Joint","authors":"Kai Shi, Huayi Zheng, Jun Li, Gang Bao","doi":"10.13052/IJFP1439-9776.2226","DOIUrl":"https://doi.org/10.13052/IJFP1439-9776.2226","url":null,"abstract":"This article described a novel pneumatic soft joint used to make articulated soft fingers. This soft joint was designed by improving the basic structure of the fast pneumatic network. The joint was made of high modulus E630 silicon, which can increase the reverse exhaust speed through its high structural elasticity. Aramid fabric was used to restrain the non-working direction of joints to reduce ineffective expansion, thereby reducing air consumption. The kinematics and statics model of the joint was established by the piecewise constant curvature (PCC) method, and the model was proved to be effective. The silicone staging pouring process was used in the manufacture of joints and fingers, which can achieve high-quality product rates. A soft finger actuator composed of three soft joints was designed and manufactured, whose length was 1.3 times the human finger. The finger can nimbly achieve the target motion, and the gripping force of the fingertip can reach 7.1N. The articulated soft finger actuator has applications in soft dextrous hands and soft gripper.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":"1 1","pages":"277–292-277–292"},"PeriodicalIF":0.8,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43098725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-31DOI: 10.13052/IJFP1439-9776.2225
Fu Zhang, Jun-hui Zhang, Bing Xu, Huaizhi Zong
Proportional directional control valves have flexible control functions for the control of various hydraulic manipulators. It is foreseeable that the application of proportional directional control valves will be further expanded. However, due to its own structure, its important parameter, flow gain, is complex, and it has a complex functional relationship with valve opening and temperature. The variable flow gain reduces the performance of a strictly derived nonlinear controller. Therefore, it is necessary to consider the nonlinearity of flow gain in the controller design. In order to solve the above problems, this paper proposes an adaptive robust controller for a hydraulic manipulator with a flow-mapping compensator, which takes into account the nonlinear flow gain and improves the performance of the nonlinear controller. First, we established an adaptive robust controller of the hydraulic manipulator to obtain the load flow of the control input valve. Then, the function of flow gain, input voltage, and temperature are calibrated offline using cubic polynomial, and the flow-mapping compensator is obtained. Finally, we calculate the input voltage based on the flow-mapping compensator and load flow. The flow-mapping compensator further reduces the uncertainty of the model and improves the robustness of the system. By using the proposed controller, the control accuracy of the hydraulic manipulator is significantly improved.
{"title":"An Adaptive Robust Controller for Hydraulic Robotic Manipulators with a Flow-Mapping Compensator","authors":"Fu Zhang, Jun-hui Zhang, Bing Xu, Huaizhi Zong","doi":"10.13052/IJFP1439-9776.2225","DOIUrl":"https://doi.org/10.13052/IJFP1439-9776.2225","url":null,"abstract":"Proportional directional control valves have flexible control functions for the control of various hydraulic manipulators. It is foreseeable that the application of proportional directional control valves will be further expanded. However, due to its own structure, its important parameter, flow gain, is complex, and it has a complex functional relationship with valve opening and temperature. The variable flow gain reduces the performance of a strictly derived nonlinear controller. Therefore, it is necessary to consider the nonlinearity of flow gain in the controller design. In order to solve the above problems, this paper proposes an adaptive robust controller for a hydraulic manipulator with a flow-mapping compensator, which takes into account the nonlinear flow gain and improves the performance of the nonlinear controller. First, we established an adaptive robust controller of the hydraulic manipulator to obtain the load flow of the control input valve. Then, the function of flow gain, input voltage, and temperature are calibrated offline using cubic polynomial, and the flow-mapping compensator is obtained. Finally, we calculate the input voltage based on the flow-mapping compensator and load flow. The flow-mapping compensator further reduces the uncertainty of the model and improves the robustness of the system. By using the proposed controller, the control accuracy of the hydraulic manipulator is significantly improved.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":"1 1","pages":"259–276-259–276"},"PeriodicalIF":0.8,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44282374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-31DOI: 10.13052/IJFP1439-9776.2222
Felix Fischer, Niklas Bauer, H. Murrenhoff, K. Schmitz
The macroscopic geometry of ball seat valves is important for the quality of the seal. This works discusses the influence of different geometric properties on the contact area, the contact pressure and their relation to the leakage. The leakage is calculated using the results of finite element method (FEM) calculations and Persson’s percolation based method. The following properties of the seat are examined: the angle, the curvature and the eccentricity.
{"title":"Geometry of Ball Seat Valves","authors":"Felix Fischer, Niklas Bauer, H. Murrenhoff, K. Schmitz","doi":"10.13052/IJFP1439-9776.2222","DOIUrl":"https://doi.org/10.13052/IJFP1439-9776.2222","url":null,"abstract":"The macroscopic geometry of ball seat valves is important for the quality of the seal. This works discusses the influence of different geometric properties on the contact area, the contact pressure and their relation to the leakage. The leakage is calculated using the results of finite element method (FEM) calculations and Persson’s percolation based method. The following properties of the seat are examined: the angle, the curvature and the eccentricity.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":"1 1","pages":"173–198-173–198"},"PeriodicalIF":0.8,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42829137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-31DOI: 10.13052/IJFP1439-9776.2224
Shaoyang Qu, David Fassbender, A. Vacca, Enrique Busquets
With the recent electrification trend in the fluid power area, more research has been incentivized to propose cost-effective and energy-efficient solutions for hydraulic systems. Hence, electro-hydraulic actuator (EHA) architectures receive increasing attention. The paper proposes a novel open-circuit EHA architecture, with the goal to obtain a cost-effective solution for mobile applications while maximizing the overall system efficiency. The proposed EHA is capable of meeting or exceeding traditional off-road machine performance, therefore enabling further electrification of off-road machines. Four-quadrant functionality, covering the full speed range, is achieved by a combination of a variable electro-hydraulic drive and valves with different functions. Focusing on the steady-state performance, the functionality is validated by numerical as well as experimental methods. A simulation model based on the Amesim environment and a dedicated test setup was developed to verify the performance. The good match between simulation and experimental results confirms the potential of the formulation approach of the proposed EHA for applications with different duty cycles and power levels.
{"title":"A Cost-Effective Electro-Hydraulic Actuator Solution with Open Circuit Architecture","authors":"Shaoyang Qu, David Fassbender, A. Vacca, Enrique Busquets","doi":"10.13052/IJFP1439-9776.2224","DOIUrl":"https://doi.org/10.13052/IJFP1439-9776.2224","url":null,"abstract":"With the recent electrification trend in the fluid power area, more research has been incentivized to propose cost-effective and energy-efficient solutions for hydraulic systems. Hence, electro-hydraulic actuator (EHA) architectures receive increasing attention. The paper proposes a novel open-circuit EHA architecture, with the goal to obtain a cost-effective solution for mobile applications while maximizing the overall system efficiency. The proposed EHA is capable of meeting or exceeding traditional off-road machine performance, therefore enabling further electrification of off-road machines. Four-quadrant functionality, covering the full speed range, is achieved by a combination of a variable electro-hydraulic drive and valves with different functions. Focusing on the steady-state performance, the functionality is validated by numerical as well as experimental methods. A simulation model based on the Amesim environment and a dedicated test setup was developed to verify the performance. The good match between simulation and experimental results confirms the potential of the formulation approach of the proposed EHA for applications with different duty cycles and power levels.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":"1 1","pages":"233–258-233–258"},"PeriodicalIF":0.8,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46663233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-29DOI: 10.13052/IJFP1439-9776.2221
Zhu Rui, Yang Qingjun, Chen Chen, Jiang Chunli, Li Congfei, Wan Yu-xuan
The hydraulically driven quadruped robot has received extensive attention from many scholars due to its high power density and adaptability to unstructured terrain. However, the research on hydraulic quadruped robots based on torque control is not mature enough, especially in the aspect of multi-rigid body dynamics. In this paper, the most commonly used gait trot is selected as the research object. First, the multi-rigid motion equation of the quadruped robot is established by the spin recursion method based on Lie groups. Next, the Lagrange multiplier is used to represent the constraint force to establish the 12-degree-of-freedom inverse dynamics model of the quadruped robot’s stance phase. And the hybrid dynamics method is used to reduce the dimension of the inversion matrix, which simplifies the solution process of the dynamics model. Then, the trajectory of the foot is planned. Through the analysis of the simplified model, it is concluded that the gait cycle and the initial position of the stance phase are important factors affecting the stability of the trot gait. Finally, the controller framework of the quadruped robot is introduced, and the effectiveness of the algorithm designed in this paper is verified through the co-simulation of the trot gait. The co-simulation results show that the inverse dynamics algorithm can be used as the feedforward of the control system, which can greatly reduce the gains of the PD controller; the robot has good compliance and can achieve stable trotting.
{"title":"Force-based Active Compliance Control of Hydraulic Quadruped Robot","authors":"Zhu Rui, Yang Qingjun, Chen Chen, Jiang Chunli, Li Congfei, Wan Yu-xuan","doi":"10.13052/IJFP1439-9776.2221","DOIUrl":"https://doi.org/10.13052/IJFP1439-9776.2221","url":null,"abstract":"The hydraulically driven quadruped robot has received extensive attention from many scholars due to its high power density and adaptability to unstructured terrain. However, the research on hydraulic quadruped robots based on torque control is not mature enough, especially in the aspect of multi-rigid body dynamics. In this paper, the most commonly used gait trot is selected as the research object. First, the multi-rigid motion equation of the quadruped robot is established by the spin recursion method based on Lie groups. Next, the Lagrange multiplier is used to represent the constraint force to establish the 12-degree-of-freedom inverse dynamics model of the quadruped robot’s stance phase. And the hybrid dynamics method is used to reduce the dimension of the inversion matrix, which simplifies the solution process of the dynamics model. Then, the trajectory of the foot is planned. Through the analysis of the simplified model, it is concluded that the gait cycle and the initial position of the stance phase are important factors affecting the stability of the trot gait. Finally, the controller framework of the quadruped robot is introduced, and the effectiveness of the algorithm designed in this paper is verified through the co-simulation of the trot gait. The co-simulation results show that the inverse dynamics algorithm can be used as the feedforward of the control system, which can greatly reduce the gains of the PD controller; the robot has good compliance and can achieve stable trotting.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":"1 1","pages":"147–172-147–172"},"PeriodicalIF":0.8,"publicationDate":"2021-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42406023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-01DOI: 10.13052/IJFP1439-9776.2211
Peyman Mawlani, M. Arbabtafti
In this paper, a direct adaptive fuzzy neural network (DAFNN) controller for trajectory tracking control of the non-linear non-affine pneumatic servo system is presented. First, using a neural network identifier, the non-linear dynamics of a real pneumatic servo system is simulated. By comparing the output of the neural network and the output of the experimental setup, it is observed that the non-linear pneumatic actuator system is well-identified using neural networks. By incorporating the Lyapunov stability theorem, the adaptive laws for the parameters of the controller are obtained, parameter boundedness and stability of the closed-loop system are guaranteed. Finally, practical results are successfully implemented for trajectory tracking control of the pneumatic servo system, in which the effect of the simultaneous updating of the antecedent and consequent’s parameters of the fuzzy neural network controller has been investigated. The tracking error ±1.3mm and ±1 mm for proposed updating method compared to ±2.5mm and ±3.5mm, for a case that the weigh parameters are merely adjusted, are obtained. The results indicate the proposed adjustment method improves the performance of the controller in the presence of unknown nonlinearities and dynamics uncertainty.
{"title":"Neural Network Identification and Direct Adaptive Fuzzy Neural Network (DAFNN) Controller for Unknown Nonlinear Non-affine Pneumatic Servo System","authors":"Peyman Mawlani, M. Arbabtafti","doi":"10.13052/IJFP1439-9776.2211","DOIUrl":"https://doi.org/10.13052/IJFP1439-9776.2211","url":null,"abstract":"In this paper, a direct adaptive fuzzy neural network (DAFNN) controller for trajectory tracking control of the non-linear non-affine pneumatic servo system is presented. First, using a neural network identifier, the non-linear dynamics of a real pneumatic servo system is simulated. By comparing the output of the neural network and the output of the experimental setup, it is observed that the non-linear pneumatic actuator system is well-identified using neural networks. By incorporating the Lyapunov stability theorem, the adaptive laws for the parameters of the controller are obtained, parameter boundedness and stability of the closed-loop system are guaranteed. Finally, practical results are successfully implemented for trajectory tracking control of the pneumatic servo system, in which the effect of the simultaneous updating of the antecedent and consequent’s parameters of the fuzzy neural network controller has been investigated. The tracking error ±1.3mm and ±1 mm for proposed updating method compared to ±2.5mm and ±3.5mm, for a case that the weigh parameters are merely adjusted, are obtained. The results indicate the proposed adjustment method improves the performance of the controller in the presence of unknown nonlinearities and dynamics uncertainty.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":"1 1","pages":"1–44-1–44"},"PeriodicalIF":0.8,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48159547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}