Polymer Electrolyte Membrane Fuel Cells (PEMFCs) represent a promising energy solution for the marine industry, facilitating a sustainable transition from fossil fuels to emission-free alternatives. Despite their high power density and efficiency, water management is an issue. The serpentine flow channel (SFC) design is known for its efficient reactant distribution and enhanced water removal due to high-pressure drops when certain design conditions are met. Regardless these channels exhibit drawbacks such as increased flow resistance due to extended lengths and sharp bends, alongside non-uniform reactant distribution near the channels. This study develops a multiphase three-dimensional model to simulate the transport of mass, species and water within a PEMFC equipped with a five-channel SFC. The simulation results are validated through experiments and compared with two novel convergent 5-channel serpentines. The newly proposed convergent five-channel SFCs demonstrated improved performance at high current densities, notably in power density, pressure drop, water distribution, and removal.
扫码关注我们
求助内容:
应助结果提醒方式:
