首页 > 最新文献

International Journal of Metalcasting最新文献

英文 中文
Investigation of the Compound Strength of Hybrid Casting Components with Different Variations of Coated and Undercut Sheet Metal 涂层和下切金属板不同变化的混合铸造组件复合强度研究
IF 2.6 3区 材料科学 Q2 Materials Science Pub Date : 2024-05-17 DOI: 10.1007/s40962-024-01359-9
Lukas Bruckmeier, A. Ringel, Marvin Erck, David Bailly, Kirsten Bobzin, Hendrik Heinemann, A. Bührig-Polaczek
{"title":"Investigation of the Compound Strength of Hybrid Casting Components with Different Variations of Coated and Undercut Sheet Metal","authors":"Lukas Bruckmeier, A. Ringel, Marvin Erck, David Bailly, Kirsten Bobzin, Hendrik Heinemann, A. Bührig-Polaczek","doi":"10.1007/s40962-024-01359-9","DOIUrl":"https://doi.org/10.1007/s40962-024-01359-9","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examples of Chunky Graphite Formation in Production of Ductile Iron Castings and Effective Countermeasures 球墨铸铁铸件生产中形成块状石墨的实例及有效对策
IF 2.6 3区 材料科学 Q2 Materials Science Pub Date : 2024-05-17 DOI: 10.1007/s40962-024-01324-6
H. Itofuji, Yutaka Miyamoto, Keita Iwakado, Tomokatsu Kotani
{"title":"Examples of Chunky Graphite Formation in Production of Ductile Iron Castings and Effective Countermeasures","authors":"H. Itofuji, Yutaka Miyamoto, Keita Iwakado, Tomokatsu Kotani","doi":"10.1007/s40962-024-01324-6","DOIUrl":"https://doi.org/10.1007/s40962-024-01324-6","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Thermal Cold Cycling on the Microstructure and Properties of Al–Cu–Mg–Ag Alloy 热冷循环对 Al-Cu-Mg-Ag 合金微观结构和性能的影响
IF 2.6 3区 材料科学 Q2 Materials Science Pub Date : 2024-05-17 DOI: 10.1007/s40962-024-01362-0
Jingwen Liu, R. Su, Ling Shi, Tongyu Liu, Guanglong Li, Minghao Shi
{"title":"Effect of Thermal Cold Cycling on the Microstructure and Properties of Al–Cu–Mg–Ag Alloy","authors":"Jingwen Liu, R. Su, Ling Shi, Tongyu Liu, Guanglong Li, Minghao Shi","doi":"10.1007/s40962-024-01362-0","DOIUrl":"https://doi.org/10.1007/s40962-024-01362-0","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of Flake Graphite Nucleation and Growth in Gray Iron through Interrupted Solidification and Inclusion Analysis 通过间断凝固和夹杂分析观察灰铁中片状石墨的成核和生长
IF 2.6 3区 材料科学 Q2 Materials Science Pub Date : 2024-05-16 DOI: 10.1007/s40962-024-01358-w
Chandler Liggett, Mingzhi Xu, Jingjing Qing
{"title":"Observation of Flake Graphite Nucleation and Growth in Gray Iron through Interrupted Solidification and Inclusion Analysis","authors":"Chandler Liggett, Mingzhi Xu, Jingjing Qing","doi":"10.1007/s40962-024-01358-w","DOIUrl":"https://doi.org/10.1007/s40962-024-01358-w","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140967463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molding Material Reclamation: A Case Study of Manufacturing Process Analysis Using a Causal-Based Graphical Model Approach 成型材料回收:使用基于因果关系的图形模型方法进行制造过程分析的案例研究
IF 2.6 3区 材料科学 Q2 Materials Science Pub Date : 2024-05-16 DOI: 10.1007/s40962-024-01334-4
Marvin D. Sandt, Robert J. Martin
{"title":"Molding Material Reclamation: A Case Study of Manufacturing Process Analysis Using a Causal-Based Graphical Model Approach","authors":"Marvin D. Sandt, Robert J. Martin","doi":"10.1007/s40962-024-01334-4","DOIUrl":"https://doi.org/10.1007/s40962-024-01334-4","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure and Low-Temperature Impact Behavior of ADI Containing Ni 含镍 ADI 的微观结构和低温冲击行为
IF 2.6 3区 材料科学 Q2 Materials Science Pub Date : 2024-05-16 DOI: 10.1007/s40962-024-01347-z
Jinzhe Ma, Wei Zhang, Guanglong Li, Yingdong Qu, Zhangsong Zhou, Yajun Zhang, Wei Sun
{"title":"Microstructure and Low-Temperature Impact Behavior of ADI Containing Ni","authors":"Jinzhe Ma, Wei Zhang, Guanglong Li, Yingdong Qu, Zhangsong Zhou, Yajun Zhang, Wei Sun","doi":"10.1007/s40962-024-01347-z","DOIUrl":"https://doi.org/10.1007/s40962-024-01347-z","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140969562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of CeO2 Nanoparticles Addition on Tribological Behavior of Austenitic Ductile Iron 添加 CeO2 纳米粒子对奥氏体球墨铸铁摩擦学行为的影响
IF 2.6 3区 材料科学 Q2 Materials Science Pub Date : 2024-05-15 DOI: 10.1007/s40962-024-01352-2
Yu Zhao, Wei Zhang, Guanglong Li, Yingdong Qu, Rongde Li
{"title":"Effect of CeO2 Nanoparticles Addition on Tribological Behavior of Austenitic Ductile Iron","authors":"Yu Zhao, Wei Zhang, Guanglong Li, Yingdong Qu, Rongde Li","doi":"10.1007/s40962-024-01352-2","DOIUrl":"https://doi.org/10.1007/s40962-024-01352-2","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140973173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward Reducing Casting Defects via 3D Risers via 3D Sand-Printing: A Simulation Study 通过三维砂型打印减少三维冒口的铸造缺陷:模拟研究
IF 2.6 3区 材料科学 Q2 Materials Science Pub Date : 2024-05-15 DOI: 10.1007/s40962-024-01353-1
Moinuddin Shuvo, Phil King, Robert Voigt, G. Manogharan
{"title":"Toward Reducing Casting Defects via 3D Risers via 3D Sand-Printing: A Simulation Study","authors":"Moinuddin Shuvo, Phil King, Robert Voigt, G. Manogharan","doi":"10.1007/s40962-024-01353-1","DOIUrl":"https://doi.org/10.1007/s40962-024-01353-1","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140977096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PM and Rheocasting in Ductile Iron Castings 球墨铸铁铸件中的 PM 和流变铸造
IF 2.6 3区 材料科学 Q2 Materials Science Pub Date : 2024-05-12 DOI: 10.1007/s40962-024-01300-0
Haruki Itofuji, Kazuya Edane, T. Sakatani, Natsuki Utagawa, Masayuki Itamura

Permanent mold (PM) and semi-solid (rheo) casting in ductile iron castings (DIC) were studied, and the microstructure was aimed to be chill free in as-cast condition. Denitrification was conducted understanding solubility properties of nitrogen in base molten iron, and re-nitrification was strictly avoided during molten treatment by Mg alloy. As the results, chill-free knuckle castings were possible with both casting methods in as-cast condition. The knuckle castings had no shrinkage cavity also. The solidification time by rheocasting was shorter than that of PM casting. It was approximately one in two and a half. The castings had ultrafine spheroidal graphite which were mostly under 10 µm. The graphite structure by rheocasing method was finer and more uniform than those of PM casting. The tensile strength in castings with both casting methods was approximately 1.3 times keeping elongation over 10% comparing with conventional sand knuckle castings. It was concluded that free nitrogen (NF) promoted chill formation, and chill could be avoided by promoting denitrification and minimum re-nitrification.

研究了球墨铸铁铸件(DIC)中的永久铸型(PM)和半固态(rheo)铸造,其微观结构的目标是在铸件状态下无寒意。根据氮在基体铁水中的溶解特性进行了脱氮处理,并在用镁合金进行熔融处理时严格避免了再脱氮。结果表明,两种铸造方法都能在现浇状态下铸造出无冷节铸件。节铸件也没有缩孔。流变铸造的凝固时间比永磁铸造短。约为二分之一半。铸件中的超细球状石墨大多小于 10 微米。流变铸造法得到的石墨结构比永磁铸造法得到的石墨结构更细、更均匀。与传统砂节铸件相比,这两种铸造方法的铸件抗拉强度约为后者的 1.3 倍,伸长率超过 10%。研究得出结论,游离氮(NF)会促进寒化的形成,而寒化可以通过促进反硝化和减少再硝化来避免。
{"title":"PM and Rheocasting in Ductile Iron Castings","authors":"Haruki Itofuji, Kazuya Edane, T. Sakatani, Natsuki Utagawa, Masayuki Itamura","doi":"10.1007/s40962-024-01300-0","DOIUrl":"https://doi.org/10.1007/s40962-024-01300-0","url":null,"abstract":"<p>Permanent mold (PM) and semi-solid (rheo) casting in ductile iron castings (DIC) were studied, and the microstructure was aimed to be chill free in as-cast condition. Denitrification was conducted understanding solubility properties of nitrogen in base molten iron, and re-nitrification was strictly avoided during molten treatment by Mg alloy. As the results, chill-free knuckle castings were possible with both casting methods in as-cast condition. The knuckle castings had no shrinkage cavity also. The solidification time by rheocasting was shorter than that of PM casting. It was approximately one in two and a half. The castings had ultrafine spheroidal graphite which were mostly under 10 µm. The graphite structure by rheocasing method was finer and more uniform than those of PM casting. The tensile strength in castings with both casting methods was approximately 1.3 times keeping elongation over 10% comparing with conventional sand knuckle castings. It was concluded that free nitrogen (N<sub>F</sub>) promoted chill formation, and chill could be avoided by promoting denitrification and minimum re-nitrification.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Er Addition and Solution Treatment on the Microstructure and Mechanical Properties of Hypoeutectic Al–10%Mg2Si–3.5%Cu Alloy 添加铒和固溶处理对超共晶 Al-10%Mg2Si-3.5%Cu 合金微观结构和力学性能的影响
IF 2.6 3区 材料科学 Q2 Materials Science Pub Date : 2024-05-12 DOI: 10.1007/s40962-024-01346-0
Xiaofeng Wu, Fufa Wu, Rongda Zhao

The effects of Er addition and solution treatment on the microstructure characteristics, tensile properties, and fracture behavior of a hypoeutectic Al–10%Mg2Si–3.5%Cu alloy were systematically studied. The results showed that the addition of 0.45 wt% Er to hypoeutectic Al–10Mg2Si alloy without and with the addition of 3.5 wt% Cu can significantly reduce the grain sizes of the eutectic Mg2Si phase and α-Al/Mg2Si eutectic cell, and transform the morphology of the eutectic Mg2Si from coarse Chinese characters to thin stripes, dots, and fibers. The modification of eutectic Mg2Si is attributed to the inhibition of Er on the heterogeneous nucleation of AlP by forming Er, P-containing phases, and the enrichment of Er atoms around eutectic Mg2Si, which inhibits the growth of eutectic Mg2Si and promotes a change in its growth direction. The solid solution treatment causes the eutectic Mg2Si to tend towards spheroidization, which is promoted by the addition of Er. The addition of 0.45 wt% Er simultaneously improves the strength and plasticity of the cast alloys without and with the addition of 3.5 wt% Cu. The solid solution treatment further improved the tensile properties of the studied alloys. The improvement in strength of the alloy after as-cast and T6 treatment is due to the obstruction of fine eutectic Mg2Si and containing-Er/Cu intermetallic compound particles on dislocations, while the improvement of plasticity mainly lies in the reduction of stress concentration and stress uniformity around eutectic Mg2Si and intermetallic compounds caused by the regularity and spheroidization of their morphology.

系统研究了添加 Er 和固溶处理对超共晶 Al-10%Mg2Si-3.5%Cu 合金的微观结构特征、拉伸性能和断裂行为的影响。结果表明,在不添加和添加 3.5 wt% Cu 的低共晶 Al-10Mg2Si 合金中添加 0.45 wt% Er 可显著减小共晶 Mg2Si 相和α-Al/Mg2Si 共晶晶胞的晶粒尺寸,并使共晶 Mg2Si 的形态从粗汉字变为细条纹、细点和细纤维。共晶 Mg2Si 的改变归因于 Er 通过形成含 Er、P 相抑制了 AlP 的异质成核,以及 Er 原子在共晶 Mg2Si 周围的富集,从而抑制了共晶 Mg2Si 的生长并促进了其生长方向的改变。固溶处理使共晶 Mg2Si 趋于球化,而添加 Er 则促进了球化。添加 0.45 wt% 的 Er 可同时提高未添加和添加了 3.5 wt% Cu 的铸造合金的强度和塑性。固溶处理进一步提高了所研究合金的拉伸性能。铸态和 T6 处理后合金强度的提高是由于共晶 Mg2Si 和含 Er/Cu 金属间化合物微粒对位错的阻碍,而塑性的改善主要是由于共晶 Mg2Si 和金属间化合物形态的规则性和球形化降低了其周围的应力集中和应力均匀性。
{"title":"Effect of Er Addition and Solution Treatment on the Microstructure and Mechanical Properties of Hypoeutectic Al–10%Mg2Si–3.5%Cu Alloy","authors":"Xiaofeng Wu, Fufa Wu, Rongda Zhao","doi":"10.1007/s40962-024-01346-0","DOIUrl":"https://doi.org/10.1007/s40962-024-01346-0","url":null,"abstract":"<p>The effects of Er addition and solution treatment on the microstructure characteristics, tensile properties, and fracture behavior of a hypoeutectic Al–10%Mg<sub>2</sub>Si–3.5%Cu alloy were systematically studied. The results showed that the addition of 0.45 wt% Er to hypoeutectic Al–10Mg<sub>2</sub>Si alloy without and with the addition of 3.5 wt% Cu can significantly reduce the grain sizes of the eutectic Mg<sub>2</sub>Si phase and <i>α</i>-Al/Mg<sub>2</sub>Si eutectic cell, and transform the morphology of the eutectic Mg<sub>2</sub>Si from coarse Chinese characters to thin stripes, dots, and fibers. The modification of eutectic Mg<sub>2</sub>Si is attributed to the inhibition of Er on the heterogeneous nucleation of AlP by forming Er, P-containing phases, and the enrichment of Er atoms around eutectic Mg<sub>2</sub>Si, which inhibits the growth of eutectic Mg<sub>2</sub>Si and promotes a change in its growth direction. The solid solution treatment causes the eutectic Mg<sub>2</sub>Si to tend towards spheroidization, which is promoted by the addition of Er. The addition of 0.45 wt% Er simultaneously improves the strength and plasticity of the cast alloys without and with the addition of 3.5 wt% Cu. The solid solution treatment further improved the tensile properties of the studied alloys. The improvement in strength of the alloy after as-cast and T6 treatment is due to the obstruction of fine eutectic Mg<sub>2</sub>Si and containing-Er/Cu intermetallic compound particles on dislocations, while the improvement of plasticity mainly lies in the reduction of stress concentration and stress uniformity around eutectic Mg<sub>2</sub>Si and intermetallic compounds caused by the regularity and spheroidization of their morphology.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Metalcasting
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1