Pub Date : 2024-05-17DOI: 10.1007/s40962-024-01359-9
Lukas Bruckmeier, A. Ringel, Marvin Erck, David Bailly, Kirsten Bobzin, Hendrik Heinemann, A. Bührig-Polaczek
{"title":"Investigation of the Compound Strength of Hybrid Casting Components with Different Variations of Coated and Undercut Sheet Metal","authors":"Lukas Bruckmeier, A. Ringel, Marvin Erck, David Bailly, Kirsten Bobzin, Hendrik Heinemann, A. Bührig-Polaczek","doi":"10.1007/s40962-024-01359-9","DOIUrl":"https://doi.org/10.1007/s40962-024-01359-9","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1007/s40962-024-01324-6
H. Itofuji, Yutaka Miyamoto, Keita Iwakado, Tomokatsu Kotani
{"title":"Examples of Chunky Graphite Formation in Production of Ductile Iron Castings and Effective Countermeasures","authors":"H. Itofuji, Yutaka Miyamoto, Keita Iwakado, Tomokatsu Kotani","doi":"10.1007/s40962-024-01324-6","DOIUrl":"https://doi.org/10.1007/s40962-024-01324-6","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1007/s40962-024-01362-0
Jingwen Liu, R. Su, Ling Shi, Tongyu Liu, Guanglong Li, Minghao Shi
{"title":"Effect of Thermal Cold Cycling on the Microstructure and Properties of Al–Cu–Mg–Ag Alloy","authors":"Jingwen Liu, R. Su, Ling Shi, Tongyu Liu, Guanglong Li, Minghao Shi","doi":"10.1007/s40962-024-01362-0","DOIUrl":"https://doi.org/10.1007/s40962-024-01362-0","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1007/s40962-024-01358-w
Chandler Liggett, Mingzhi Xu, Jingjing Qing
{"title":"Observation of Flake Graphite Nucleation and Growth in Gray Iron through Interrupted Solidification and Inclusion Analysis","authors":"Chandler Liggett, Mingzhi Xu, Jingjing Qing","doi":"10.1007/s40962-024-01358-w","DOIUrl":"https://doi.org/10.1007/s40962-024-01358-w","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140967463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1007/s40962-024-01334-4
Marvin D. Sandt, Robert J. Martin
{"title":"Molding Material Reclamation: A Case Study of Manufacturing Process Analysis Using a Causal-Based Graphical Model Approach","authors":"Marvin D. Sandt, Robert J. Martin","doi":"10.1007/s40962-024-01334-4","DOIUrl":"https://doi.org/10.1007/s40962-024-01334-4","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.1007/s40962-024-01353-1
Moinuddin Shuvo, Phil King, Robert Voigt, G. Manogharan
{"title":"Toward Reducing Casting Defects via 3D Risers via 3D Sand-Printing: A Simulation Study","authors":"Moinuddin Shuvo, Phil King, Robert Voigt, G. Manogharan","doi":"10.1007/s40962-024-01353-1","DOIUrl":"https://doi.org/10.1007/s40962-024-01353-1","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140977096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-12DOI: 10.1007/s40962-024-01300-0
Haruki Itofuji, Kazuya Edane, T. Sakatani, Natsuki Utagawa, Masayuki Itamura
Permanent mold (PM) and semi-solid (rheo) casting in ductile iron castings (DIC) were studied, and the microstructure was aimed to be chill free in as-cast condition. Denitrification was conducted understanding solubility properties of nitrogen in base molten iron, and re-nitrification was strictly avoided during molten treatment by Mg alloy. As the results, chill-free knuckle castings were possible with both casting methods in as-cast condition. The knuckle castings had no shrinkage cavity also. The solidification time by rheocasting was shorter than that of PM casting. It was approximately one in two and a half. The castings had ultrafine spheroidal graphite which were mostly under 10 µm. The graphite structure by rheocasing method was finer and more uniform than those of PM casting. The tensile strength in castings with both casting methods was approximately 1.3 times keeping elongation over 10% comparing with conventional sand knuckle castings. It was concluded that free nitrogen (NF) promoted chill formation, and chill could be avoided by promoting denitrification and minimum re-nitrification.
{"title":"PM and Rheocasting in Ductile Iron Castings","authors":"Haruki Itofuji, Kazuya Edane, T. Sakatani, Natsuki Utagawa, Masayuki Itamura","doi":"10.1007/s40962-024-01300-0","DOIUrl":"https://doi.org/10.1007/s40962-024-01300-0","url":null,"abstract":"<p>Permanent mold (PM) and semi-solid (rheo) casting in ductile iron castings (DIC) were studied, and the microstructure was aimed to be chill free in as-cast condition. Denitrification was conducted understanding solubility properties of nitrogen in base molten iron, and re-nitrification was strictly avoided during molten treatment by Mg alloy. As the results, chill-free knuckle castings were possible with both casting methods in as-cast condition. The knuckle castings had no shrinkage cavity also. The solidification time by rheocasting was shorter than that of PM casting. It was approximately one in two and a half. The castings had ultrafine spheroidal graphite which were mostly under 10 µm. The graphite structure by rheocasing method was finer and more uniform than those of PM casting. The tensile strength in castings with both casting methods was approximately 1.3 times keeping elongation over 10% comparing with conventional sand knuckle castings. It was concluded that free nitrogen (N<sub>F</sub>) promoted chill formation, and chill could be avoided by promoting denitrification and minimum re-nitrification.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-12DOI: 10.1007/s40962-024-01346-0
Xiaofeng Wu, Fufa Wu, Rongda Zhao
The effects of Er addition and solution treatment on the microstructure characteristics, tensile properties, and fracture behavior of a hypoeutectic Al–10%Mg2Si–3.5%Cu alloy were systematically studied. The results showed that the addition of 0.45 wt% Er to hypoeutectic Al–10Mg2Si alloy without and with the addition of 3.5 wt% Cu can significantly reduce the grain sizes of the eutectic Mg2Si phase and α-Al/Mg2Si eutectic cell, and transform the morphology of the eutectic Mg2Si from coarse Chinese characters to thin stripes, dots, and fibers. The modification of eutectic Mg2Si is attributed to the inhibition of Er on the heterogeneous nucleation of AlP by forming Er, P-containing phases, and the enrichment of Er atoms around eutectic Mg2Si, which inhibits the growth of eutectic Mg2Si and promotes a change in its growth direction. The solid solution treatment causes the eutectic Mg2Si to tend towards spheroidization, which is promoted by the addition of Er. The addition of 0.45 wt% Er simultaneously improves the strength and plasticity of the cast alloys without and with the addition of 3.5 wt% Cu. The solid solution treatment further improved the tensile properties of the studied alloys. The improvement in strength of the alloy after as-cast and T6 treatment is due to the obstruction of fine eutectic Mg2Si and containing-Er/Cu intermetallic compound particles on dislocations, while the improvement of plasticity mainly lies in the reduction of stress concentration and stress uniformity around eutectic Mg2Si and intermetallic compounds caused by the regularity and spheroidization of their morphology.
系统研究了添加 Er 和固溶处理对超共晶 Al-10%Mg2Si-3.5%Cu 合金的微观结构特征、拉伸性能和断裂行为的影响。结果表明,在不添加和添加 3.5 wt% Cu 的低共晶 Al-10Mg2Si 合金中添加 0.45 wt% Er 可显著减小共晶 Mg2Si 相和α-Al/Mg2Si 共晶晶胞的晶粒尺寸,并使共晶 Mg2Si 的形态从粗汉字变为细条纹、细点和细纤维。共晶 Mg2Si 的改变归因于 Er 通过形成含 Er、P 相抑制了 AlP 的异质成核,以及 Er 原子在共晶 Mg2Si 周围的富集,从而抑制了共晶 Mg2Si 的生长并促进了其生长方向的改变。固溶处理使共晶 Mg2Si 趋于球化,而添加 Er 则促进了球化。添加 0.45 wt% 的 Er 可同时提高未添加和添加了 3.5 wt% Cu 的铸造合金的强度和塑性。固溶处理进一步提高了所研究合金的拉伸性能。铸态和 T6 处理后合金强度的提高是由于共晶 Mg2Si 和含 Er/Cu 金属间化合物微粒对位错的阻碍,而塑性的改善主要是由于共晶 Mg2Si 和金属间化合物形态的规则性和球形化降低了其周围的应力集中和应力均匀性。
{"title":"Effect of Er Addition and Solution Treatment on the Microstructure and Mechanical Properties of Hypoeutectic Al–10%Mg2Si–3.5%Cu Alloy","authors":"Xiaofeng Wu, Fufa Wu, Rongda Zhao","doi":"10.1007/s40962-024-01346-0","DOIUrl":"https://doi.org/10.1007/s40962-024-01346-0","url":null,"abstract":"<p>The effects of Er addition and solution treatment on the microstructure characteristics, tensile properties, and fracture behavior of a hypoeutectic Al–10%Mg<sub>2</sub>Si–3.5%Cu alloy were systematically studied. The results showed that the addition of 0.45 wt% Er to hypoeutectic Al–10Mg<sub>2</sub>Si alloy without and with the addition of 3.5 wt% Cu can significantly reduce the grain sizes of the eutectic Mg<sub>2</sub>Si phase and <i>α</i>-Al/Mg<sub>2</sub>Si eutectic cell, and transform the morphology of the eutectic Mg<sub>2</sub>Si from coarse Chinese characters to thin stripes, dots, and fibers. The modification of eutectic Mg<sub>2</sub>Si is attributed to the inhibition of Er on the heterogeneous nucleation of AlP by forming Er, P-containing phases, and the enrichment of Er atoms around eutectic Mg<sub>2</sub>Si, which inhibits the growth of eutectic Mg<sub>2</sub>Si and promotes a change in its growth direction. The solid solution treatment causes the eutectic Mg<sub>2</sub>Si to tend towards spheroidization, which is promoted by the addition of Er. The addition of 0.45 wt% Er simultaneously improves the strength and plasticity of the cast alloys without and with the addition of 3.5 wt% Cu. The solid solution treatment further improved the tensile properties of the studied alloys. The improvement in strength of the alloy after as-cast and T6 treatment is due to the obstruction of fine eutectic Mg<sub>2</sub>Si and containing-Er/Cu intermetallic compound particles on dislocations, while the improvement of plasticity mainly lies in the reduction of stress concentration and stress uniformity around eutectic Mg<sub>2</sub>Si and intermetallic compounds caused by the regularity and spheroidization of their morphology.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}