Pub Date : 2024-11-26DOI: 10.1080/15226514.2024.2433536
Hakimeh Sharififard, Mansoor Novin
Herein, a walnut shell as a biosorbent was applied to remove petroleum compounds from the water medium. The characterization analyses of the walnut shells showed the macro-mesopore structure of the walnut shells, a specific surface area of 26 m2/g, and the presence of various functional groups (-OH, -COOH, -C = O). The CCD design showed that the walnut shell can remove 84.43% of petroleum compounds at pH = 3 (the optimum pH), adsorbent dosage: 2 g/L, and initial concentration of petroleum compounds: 550 mg/L. The study of kinetics and adsorption equilibrium indicated matching the experimental data with the pseudo-second-order kinetic model and Freundlich equilibrium isotherm, respectively. The maximum adsorption ability of walnut shell was 3038.29 mg/g at 45 °C. The ability to regenerate and reuse the walnut shell was investigated in 6 cycles, and the results showed a 21% decrease in adsorption ability after 6 cycles. The obtained data showed that the walnut shells could be a promising adsorbent with high adsorption ability toward petroleum components. Also, the walnut shell is a regenerable adsorbent, low-cost, and environmentally friendly, and can be effective in successive cycles. Therefore, this biosorbent can have a superb influence on wastewater treatment technology and possible applications at an industrial scale.
{"title":"Biosorption of petroleum compounds from aqueous solutions using walnut shells.","authors":"Hakimeh Sharififard, Mansoor Novin","doi":"10.1080/15226514.2024.2433536","DOIUrl":"https://doi.org/10.1080/15226514.2024.2433536","url":null,"abstract":"<p><p>Herein, a walnut shell as a biosorbent was applied to remove petroleum compounds from the water medium. The characterization analyses of the walnut shells showed the macro-mesopore structure of the walnut shells, a specific surface area of 26 m<sup>2</sup>/g, and the presence of various functional groups (-OH, -COOH, -C = O). The CCD design showed that the walnut shell can remove 84.43% of petroleum compounds at pH = 3 (the optimum pH), adsorbent dosage: 2 g/L, and initial concentration of petroleum compounds: 550 mg/L. The study of kinetics and adsorption equilibrium indicated matching the experimental data with the pseudo-second-order kinetic model and Freundlich equilibrium isotherm, respectively. The maximum adsorption ability of walnut shell was 3038.29 mg/g at 45 °C. The ability to regenerate and reuse the walnut shell was investigated in 6 cycles, and the results showed a 21% decrease in adsorption ability after 6 cycles. The obtained data showed that the walnut shells could be a promising adsorbent with high adsorption ability toward petroleum components. Also, the walnut shell is a regenerable adsorbent, low-cost, and environmentally friendly, and can be effective in successive cycles. Therefore, this biosorbent can have a superb influence on wastewater treatment technology and possible applications at an industrial scale.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.4,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142728840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, rice plants were co-exposed to selenium (Se) and silica (Si) under arsenic (As) stress to evaluate As accumulation in rice grains, associated cancer risk, and its impact on the types and numbers of grain metabolites. A total of 58 metabolites were identified, of which, 19 belong to sugars, and drastically altered during different treatments. Arsenic exposure significantly reduced monosaccharides, i.e., D-glucose (83%) >D-galactose (60%) >D-fructose (57%) >D-ribose (29%) but increased that monosaccharide units which have antioxidant properties (i.e. α-D-glucopyranoside and melibiose). However, the levels of D-galactose, fructose, and ribose were significantly increased during co-supplementation of selenite (SeIV) and Si under As stress. Other groups of rice grain metabolites, like sugar alcohols, organic acids, polyphenols, carboxylic acids, fatty acids, and phytosterols, were also significantly altered by As exposure and increased in grains of SeIV and Si supplemented rice compared to alone As exposure. In brief, rice growing in As-affected areas may have a low level of different metabolites. However, supplementation by selenite (SeIV) with Si not only increased metabolites and amylose/amylopectin ratio but also reduced ∼90% of As accumulation in grains. Thus, the use of SeIV with Si might be advantageous for the locals to provide a healthy diet of rice and limit As-induced cancer risk up to 10-fold.
{"title":"Integrated application of selenium and silica reduce arsenic accumulation and enhance the level of metabolites in rice grains.","authors":"Vishnu Kumar, Sarvesh Kumar, Sanjay Dwivedi, Ruchi Agnihotri, Pragya Sharma, Shashank Kumar Mishra, Mariya Naseem, Puneet Singh Chauhan, Rajveer Singh Chauhan","doi":"10.1080/15226514.2024.2431096","DOIUrl":"https://doi.org/10.1080/15226514.2024.2431096","url":null,"abstract":"<p><p>In this study, rice plants were co-exposed to selenium (Se) and silica (Si) under arsenic (As) stress to evaluate As accumulation in rice grains, associated cancer risk, and its impact on the types and numbers of grain metabolites. A total of 58 metabolites were identified, of which, 19 belong to sugars, and drastically altered during different treatments. Arsenic exposure significantly reduced monosaccharides, <i>i.e.,</i> D-glucose (83%) >D-galactose (60%) >D-fructose (57%) >D-ribose (29%) but increased that monosaccharide units which have antioxidant properties (i.e. α-D-glucopyranoside and melibiose). However, the levels of D-galactose, fructose, and ribose were significantly increased during co-supplementation of selenite (Se<sup>IV</sup>) and Si under As stress. Other groups of rice grain metabolites, like sugar alcohols, organic acids, polyphenols, carboxylic acids, fatty acids, and phytosterols, were also significantly altered by As exposure and increased in grains of Se<sup>IV</sup> and Si supplemented rice compared to alone As exposure. In brief, rice growing in As-affected areas may have a low level of different metabolites. However, supplementation by selenite (Se<sup>IV</sup>) with Si not only increased metabolites and amylose/amylopectin ratio but also reduced ∼90% of As accumulation in grains. Thus, the use of Se<sup>IV</sup> with Si might be advantageous for the locals to provide a healthy diet of rice and limit As-induced cancer risk up to 10-fold.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-19"},"PeriodicalIF":3.4,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142728841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1080/15226514.2024.2431619
Huanyuan Wang, Rui Guo, Chao Zhang
Green manure returning can improve soil fertility and crop production, and immobilize heavy metals in the soil. However, limited information is available on the effects of green manure replacing chemical fertilizers on soil properties and crop growth. In this study, we investigated the effects of Chinese milk vetch incorporation with reduced chemical fertilizers on soil properties, rice agronomic traits and cadmium (Cd) accumulation by field experiments, and four treatments were conducted: chemical fertilizer alone (CF), milk vetch alone (MV), milk vetch plus 80% chemical fertilizers (MVCF80), and milk vetch plus 50% chemical fertilizers (MVCF50). The results showed that all milk vetch treatments decreased soil pH and Eh, and increased the SOM, DOC contents and the activities of catalase and urease. The soil DTPA-Cd contents decreased by 20.41%, 18.20%, and 21.22%, and the Cd accumulation in rice root, stem, leaf, and grain decreased by 21.13%-37.62%, 20.74%-39.61%, and 21.91%-43.56% under MV, MVCF80, and MVCF50 treatments, respectively. Additionally, the MVCF80 treatment showed a better rice agronomic traits and grain yield than others. These data revealed the great potential of milk vetch incorporation with chemical fertilizer reduction in decreasing Cd accumulation in rice plants and improving rice quality and yield of Cd-contaminated paddy fields.
{"title":"Impact of Chinese milk vetch incorporation with reduced chemical fertilizers on the soil properties, rice growth and cadmium uptake in Cd-contaminated paddy fields.","authors":"Huanyuan Wang, Rui Guo, Chao Zhang","doi":"10.1080/15226514.2024.2431619","DOIUrl":"https://doi.org/10.1080/15226514.2024.2431619","url":null,"abstract":"<p><p>Green manure returning can improve soil fertility and crop production, and immobilize heavy metals in the soil. However, limited information is available on the effects of green manure replacing chemical fertilizers on soil properties and crop growth. In this study, we investigated the effects of Chinese milk vetch incorporation with reduced chemical fertilizers on soil properties, rice agronomic traits and cadmium (Cd) accumulation by field experiments, and four treatments were conducted: chemical fertilizer alone (CF), milk vetch alone (MV), milk vetch plus 80% chemical fertilizers (MVCF80), and milk vetch plus 50% chemical fertilizers (MVCF50). The results showed that all milk vetch treatments decreased soil pH and Eh, and increased the SOM, DOC contents and the activities of catalase and urease. The soil DTPA-Cd contents decreased by 20.41%, 18.20%, and 21.22%, and the Cd accumulation in rice root, stem, leaf, and grain decreased by 21.13%-37.62%, 20.74%-39.61%, and 21.91%-43.56% under MV, MVCF80, and MVCF50 treatments, respectively. Additionally, the MVCF80 treatment showed a better rice agronomic traits and grain yield than others. These data revealed the great potential of milk vetch incorporation with chemical fertilizer reduction in decreasing Cd accumulation in rice plants and improving rice quality and yield of Cd-contaminated paddy fields.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-9"},"PeriodicalIF":3.4,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-23DOI: 10.1080/15226514.2024.2430657
Lei Zhao, Imran
The use of organic and inorganic amendments like stilbite-zeolite (SZ) and nano-biochar (NBC) in phytoremediation holds immense promise, long-term stability, and its effectiveness necessitate comprehensive research. This study aimed to evaluate their potential in mitigating heavy metal contamination in soil and plants. Our results shows that SZ and NBC treatments significantly impacted heavy metal levels, notably reducing arsenic (As), nickel (Ni), lead (Pb), cadmium (Cd), and mercury (Hg) accumulation in plant tissues. The treatments exhibited varying degrees of effectiveness in reducing heavy metal levels. Notably, SZ2 treatment decreased As and Pb levels by 33.33% and 20%, respectively, while NBC3 achieved even greater reductions, lowering As by 53.33% and Pb by 30%. Moreover, SZ2, SZ5, and NBC3 treatments halved Cd levels, showcasing their potential in mitigating heavy metal contamination in rice. However Hg levels remained largely unaffected, except for NBC1, which unexpectedly doubled its concentration. In soil, SZ2 treatment significantly reduced metal concentrations, particularly Cd (66.8% reduction) and Hg (70.7% reduction). Conversely, SZ3 and SZ7 treatments increased metal concentrations, suggesting that certain zeolite applications might enhance metal bioavailability. NBC treatments showed varying effectiveness, with NBC3 being the most effective, substantially reducing As, Pb, and Cd levels.
{"title":"Heavy metal mitigation in soil and plants using organic and inorganic amendments alone and in combination.","authors":"Lei Zhao, Imran","doi":"10.1080/15226514.2024.2430657","DOIUrl":"https://doi.org/10.1080/15226514.2024.2430657","url":null,"abstract":"<p><p>The use of organic and inorganic amendments like stilbite-zeolite (SZ) and nano-biochar (NBC) in phytoremediation holds immense promise, long-term stability, and its effectiveness necessitate comprehensive research. This study aimed to evaluate their potential in mitigating heavy metal contamination in soil and plants. Our results shows that SZ and NBC treatments significantly impacted heavy metal levels, notably reducing arsenic (As), nickel (Ni), lead (Pb), cadmium (Cd), and mercury (Hg) accumulation in plant tissues. The treatments exhibited varying degrees of effectiveness in reducing heavy metal levels. Notably, SZ<sub>2</sub> treatment decreased As and Pb levels by 33.33% and 20%, respectively, while NBC<sub>3</sub> achieved even greater reductions, lowering As by 53.33% and Pb by 30%. Moreover, SZ<sub>2</sub>, SZ<sub>5</sub>, and NBC<sub>3</sub> treatments halved Cd levels, showcasing their potential in mitigating heavy metal contamination in rice. However Hg levels remained largely unaffected, except for NBC<sub>1</sub>, which unexpectedly doubled its concentration. In soil, SZ<sub>2</sub> treatment significantly reduced metal concentrations, particularly Cd (66.8% reduction) and Hg (70.7% reduction). Conversely, SZ<sub>3</sub> and SZ<sub>7</sub> treatments increased metal concentrations, suggesting that certain zeolite applications might enhance metal bioavailability. NBC treatments showed varying effectiveness, with NBC<sub>3</sub> being the most effective, substantially reducing As, Pb, and Cd levels.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-18"},"PeriodicalIF":3.4,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1080/15226514.2024.2427928
Wajeeha Yaseen, Muhammad Iqbal, Muhammad Arslan Ashraf, Muhammad Asif Saleem, Fahad Shafiq, Sehar Shaheen, Samira Khaliq, Razia Gulnaz
Cadmium (Cd) has shown toxicity to reduce growth and productivity in different plants. The Present study investigated the efficacy of menadiol diacetate (MD) to reduce Cd stress on growth and yield of summer squash plants. The experiment was performed under saturated Hoagland's nutrient solution (control) while the other group was supplemented with 0.1 mM CdCl2 (Cd stress). Surface sterilized seeds of summer squash were primed in different concentrations (10, 20 µM) of MD as well as in distilled water for 24 h and sown in the pots. Different morphological and physio-biochemical attributes were determined after 35 d of growth whereas the data for yield attributes was collected after 70 d. Cd concentration was determined in various subcellular compartments i.e., cell walls and cell wall debris, chloroplast, cell membrane and other organelles including vacuoles. The Cd stress decreased photosynthetic pigments, osmoprotectants and ultimately caused reduction in the yield attributes. Further, it increased the secondary metabolites and oxidants (MDA and H2O2) in the summer squash tissues. Cd exposure also altered ions accumulation in the summer squash tissues by increasing the root and shoot Ca2+ (24-93%) and Fe (4-18%) ions while decreasing the Mg2+ (31-39%) ions. The MD-priming, particularly at 10 µM concentration mediated increase in the total phenolics, ascorbic acid, and anthocyanins concentration, and thus enhanced growth and yield attributes of summer squash exposed to Cd toxicity. Further, 10 µM MD-priming facilitated Cd compartmentalization in the subcellular compartments mainly in the cell wall (58%) rather than in the chloroplast (18%), cell membrane (7%) and soluble fractions (18%). In this context, cell wall and vacuole were the key compartments for Cd sequestration. This study highlights MD-priming as a potential strategy to counter Cd toxicity in summer squash plants.
镉(Cd)具有毒性,会降低不同植物的生长和产量。本研究调查了二醋酸甲萘醌(MD)减少镉胁迫对夏季南瓜植物生长和产量的影响。实验在饱和霍格兰营养液(对照组)中进行,而另一组则添加了 0.1 mM CdCl2(镉胁迫)。经过表面消毒的夏南瓜种子在不同浓度(10、20 µM)的 MD 和蒸馏水中浸泡 24 小时后播种在花盆中。在生长 35 d 后测定了不同的形态和生理生化属性,而在 70 d 后收集了产量属性的数据。镉胁迫降低了光合色素和渗透保护剂,最终导致产量属性下降。此外,镉还增加了夏南瓜组织中的次生代谢物和氧化剂(MDA 和 H2O2)。镉暴露还改变了夏南瓜组织中的离子积累,增加了根部和芽部的 Ca2+(24-93%)和 Fe(4-18%)离子,同时减少了 Mg2+(31-39%)离子。MD-priming 尤其是 10 µM 浓度的 MD-priming 能提高总酚、抗坏血酸和花青素的浓度,从而提高受镉毒害的夏南瓜的生长和产量。此外,10 µM MD-priming 还促进了镉在亚细胞区室中的分区,主要是在细胞壁(58%),而不是在叶绿体(18%)、细胞膜(7%)和可溶性部分(18%)。因此,细胞壁和液泡是螯合镉的关键区室。这项研究突出表明,MD-priming 是对抗夏季南瓜植物镉毒性的一种潜在策略。
{"title":"Menadiol diacetate mediated subcellular Cd accumulation and nutrients uptake alleviates Cd toxicity and increases growth and yield of summer squash.","authors":"Wajeeha Yaseen, Muhammad Iqbal, Muhammad Arslan Ashraf, Muhammad Asif Saleem, Fahad Shafiq, Sehar Shaheen, Samira Khaliq, Razia Gulnaz","doi":"10.1080/15226514.2024.2427928","DOIUrl":"https://doi.org/10.1080/15226514.2024.2427928","url":null,"abstract":"<p><p>Cadmium (Cd) has shown toxicity to reduce growth and productivity in different plants. The Present study investigated the efficacy of menadiol diacetate (MD) to reduce Cd stress on growth and yield of summer squash plants. The experiment was performed under saturated Hoagland's nutrient solution (control) while the other group was supplemented with 0.1 mM CdCl<sub>2</sub> (Cd stress). Surface sterilized seeds of summer squash were primed in different concentrations (10, 20 µM) of MD as well as in distilled water for 24 h and sown in the pots. Different morphological and physio-biochemical attributes were determined after 35 d of growth whereas the data for yield attributes was collected after 70 d. Cd concentration was determined in various subcellular compartments <i>i.e.,</i> cell walls and cell wall debris, chloroplast, cell membrane and other organelles including vacuoles. The Cd stress decreased photosynthetic pigments, osmoprotectants and ultimately caused reduction in the yield attributes. Further, it increased the secondary metabolites and oxidants (MDA and H<sub>2</sub>O<sub>2</sub>) in the summer squash tissues. Cd exposure also altered ions accumulation in the summer squash tissues by increasing the root and shoot Ca<sup>2+</sup> (24-93%) and Fe (4-18%) ions while decreasing the Mg<sup>2+</sup> (31-39%) ions. The MD-priming, particularly at 10 µM concentration mediated increase in the total phenolics, ascorbic acid, and anthocyanins concentration, and thus enhanced growth and yield attributes of summer squash exposed to Cd toxicity. Further, 10 µM MD-priming facilitated Cd compartmentalization in the subcellular compartments mainly in the cell wall (58%) rather than in the chloroplast (18%), cell membrane (7%) and soluble fractions (18%). In this context, cell wall and vacuole were the key compartments for Cd sequestration. This study highlights MD-priming as a potential strategy to counter Cd toxicity in summer squash plants.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-13"},"PeriodicalIF":3.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1080/15226514.2024.2428434
Abudu Ballu Duwiejuah, Zubayda Mutawakil, Emmanuel O Oyelude
Adsorption is one of the most efficient ways to eliminate hazardous metals. The study evaluated the effectiveness of banana peel biochar as a cheap adsorbent to remove hazardous metals from landfill leachate. The landfill leachate of 100 mg/L was mixed with banana peel biochar (0.50, 1.50, and 3.00 g each) and placed in a water bath for 15, 30, and 45 min at a constant temperature of 30 °C and 35 °C. The adsorption efficiency of banana peel biochar for nickel in the leachate ranged from 98.76% to 98.96% and chromium ranged from 99.71% to 99.77% at a temperature of 30 °C for 15 mins and 99.07% to 99.27% for Ni and 99.71% to 99.73% for Cr at a temperature of 35 °C for 45 min. Banana peel biochar maximum adsorption capacity of nickel ranged from 1.15 × 10-5 mg/g to 5.27 × 10-6 mg/g, and 1.05 × 10-5 mg/g to 6.76 × 10-6 mg/g for chromium. Adsorbent made from less expensive banana peel can affordably remove nickel and chromium from landfill leachate. To acquire a broad understanding of the adsorbent's application, more adsorptive research utilizing banana peels as an adsorbent to treat various wastes ought to be conducted.
{"title":"Eco-friendly banana peel biochar for adsorption of toxic metals from landfill treatment pond leachate.","authors":"Abudu Ballu Duwiejuah, Zubayda Mutawakil, Emmanuel O Oyelude","doi":"10.1080/15226514.2024.2428434","DOIUrl":"https://doi.org/10.1080/15226514.2024.2428434","url":null,"abstract":"<p><p>Adsorption is one of the most efficient ways to eliminate hazardous metals. The study evaluated the effectiveness of banana peel biochar as a cheap adsorbent to remove hazardous metals from landfill leachate. The landfill leachate of 100 mg/L was mixed with banana peel biochar (0.50, 1.50, and 3.00 g each) and placed in a water bath for 15, 30, and 45 min at a constant temperature of 30 °C and 35 °C. The adsorption efficiency of banana peel biochar for nickel in the leachate ranged from 98.76% to 98.96% and chromium ranged from 99.71% to 99.77% at a temperature of 30 °C for 15 mins and 99.07% to 99.27% for Ni and 99.71% to 99.73% for Cr at a temperature of 35 °C for 45 min. Banana peel biochar maximum adsorption capacity of nickel ranged from 1.15 × 10<sup>-5</sup> mg/g to 5.27 × 10<sup>-6</sup> mg/g, and 1.05 × 10<sup>-5</sup> mg/g to 6.76 × 10<sup>-6</sup> mg/g for chromium. Adsorbent made from less expensive banana peel can affordably remove nickel and chromium from landfill leachate. To acquire a broad understanding of the adsorbent's application, more adsorptive research utilizing banana peels as an adsorbent to treat various wastes ought to be conducted.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-24DOI: 10.1080/15226514.2024.2379610
Jian Yang, Zuyong Chen, Jie Dai, Fang Liu, Jian Zhu
Electrolytic manganese slag (EMR) is a solid waste generated in the manganese hydrometallurgy process. It not only takes up significant land space but also contains Mn2+, which can lead to environmental contamination. There is a need for research on the treatment and utilization of EMR. Improved EMR substrate for Pennisetum sinese Roxb growth was determined in pot planting experiments. The study tested the effects of leaching solution, microorganisms, leaf cell structures, and growth data. Results indicated a substrate of 45% EMR, 40% phosphogypsum, 5% Hericium erinaceus fungi residue, 5% quicklime, and 5% dolomite sand significantly increased the available phosphorus content (135.54 ± 2.88 μg·g-1) by 17.95 times, compared to pure soil, and enhanced the relative abundance of dominant bacteria. After 240 days, the plant height (147.00 ± 0.52 cm), number of tillers (6), and aerial dry weight (144.00 ± 15.99g) of Pennisetum sinese Roxb increased by 5.81%, 200%, and 32.58%, respectively. Analyses of leaves and leaching solution revealed that the highest leaf Mn content (46.84 ± 2.91 μg·g-1) being 3.38 times higher than in pure soil, and the leaching solution Mn content (0.66 ± 0.13 μg·g-1) was lowest. Our study suggested P. sinese Roxb grown in an improved EMR substrate could be a feasible option for solidification treatment and resource utilization of EMR.
{"title":"Research on the optimal ratio of improved electrolytic manganese residue substrate about <i>Pennisetum sinese Roxb</i> growth effects.","authors":"Jian Yang, Zuyong Chen, Jie Dai, Fang Liu, Jian Zhu","doi":"10.1080/15226514.2024.2379610","DOIUrl":"10.1080/15226514.2024.2379610","url":null,"abstract":"<p><p>Electrolytic manganese slag (EMR) is a solid waste generated in the manganese hydrometallurgy process. It not only takes up significant land space but also contains Mn<sup>2+</sup>, which can lead to environmental contamination. There is a need for research on the treatment and utilization of EMR. Improved EMR substrate for <i>Pennisetum sinese Roxb</i> growth was determined in pot planting experiments. The study tested the effects of leaching solution, microorganisms, leaf cell structures, and growth data. Results indicated a substrate of 45% EMR, 40% phosphogypsum, 5% <i>Hericium erinaceus</i> fungi residue, 5% quicklime, and 5% dolomite sand significantly increased the available phosphorus content (135.54 ± 2.88 μg·g<sup>-1</sup>) by 17.95 times, compared to pure soil, and enhanced the relative abundance of dominant bacteria. After 240 days, the plant height (147.00 ± 0.52 cm), number of tillers (6), and aerial dry weight (144.00 ± 15.99g) of <i>Pennisetum sinese Roxb</i> increased by 5.81%, 200%, and 32.58%, respectively. Analyses of leaves and leaching solution revealed that the highest leaf Mn content (46.84 ± 2.91 μg·g<sup>-1</sup>) being 3.38 times higher than in pure soil, and the leaching solution Mn content (0.66 ± 0.13 μg·g<sup>-1</sup>) was lowest. Our study suggested <i>P. sinese Roxb</i> grown in an improved EMR substrate could be a feasible option for solidification treatment and resource utilization of EMR.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"2206-2215"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-05DOI: 10.1080/15226514.2024.2374887
Morish Azabo, Amal Abdelhaleem, Manabu Fujii, Mahmoud Nasr
While phytoremediation has been widely employed for greywater treatment, this system suffers from the transfer of considerable amounts of surfactants to the aquatic environment through partially treated effluent and/or exhausted plant disposal. Hence, this study focuses on greywater phytoremediation followed by recycling the spent plant for preparing an adsorbent material used as post-treatment. P. crassipes was used to operate a phytoremediation unit under 23 °C, 60% relative humidity, plant density (5-30 g/L), dilution (0-50%), pH (4-10), and retention time (3-15 days). The optimum condition was 12.7 g/L density, 34.0% dilution, pH 8.4, and 13 days, giving chemical oxygen demand (COD), surfactant, and NH4-N removal efficiencies of 94.62%, 90.45%, and 88.09%, respectively. The exhausted plant was then thermally treated at 550 °C and 40 min to obtain biochar used as adsorbent to treat the phytoremediation effluent. The optimum adsorption process was biochar dosage of 1.51 g/L, pH of 2.1, and 137 min, providing a surfactant removal efficiency of 92.56%. The final discharge of this phytoremediation/adsorption combined process contained 8.30 mg/L COD, 0.23 mg/L surfactant, and 0.94 mg/L NH4+-N. Interestingly, this approach could be economically feasible with a payback period of 6.5 years, 14 USD net present value, and 8.6% internal rate of return.
{"title":"<i>Pontederia crassipes</i> utilization for dual phytoremediation and adsorption in greywater treatment: a techno-economic and sustainable approach.","authors":"Morish Azabo, Amal Abdelhaleem, Manabu Fujii, Mahmoud Nasr","doi":"10.1080/15226514.2024.2374887","DOIUrl":"10.1080/15226514.2024.2374887","url":null,"abstract":"<p><p>While phytoremediation has been widely employed for greywater treatment, this system suffers from the transfer of considerable amounts of surfactants to the aquatic environment through partially treated effluent and/or exhausted plant disposal. Hence, this study focuses on greywater phytoremediation followed by recycling the spent plant for preparing an adsorbent material used as post-treatment. <i>P. crassipes</i> was used to operate a phytoremediation unit under 23 °C, 60% relative humidity, plant density (5-30 g/L), dilution (0-50%), pH (4-10), and retention time (3-15 days). The optimum condition was 12.7 g/L density, 34.0% dilution, pH 8.4, and 13 days, giving chemical oxygen demand (COD), surfactant, and NH<sub>4</sub>-N removal efficiencies of 94.62%, 90.45%, and 88.09%, respectively. The exhausted plant was then thermally treated at 550 °C and 40 min to obtain biochar used as adsorbent to treat the phytoremediation effluent. The optimum adsorption process was biochar dosage of 1.51 g/L, pH of 2.1, and 137 min, providing a surfactant removal efficiency of 92.56%. The final discharge of this phytoremediation/adsorption combined process contained 8.30 mg/L COD, 0.23 mg/L surfactant, and 0.94 mg/L NH<sub>4</sub><sup>+</sup>-N. Interestingly, this approach could be economically feasible with a payback period of 6.5 years, 14 USD net present value, and 8.6% internal rate of return.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"2113-2126"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-11DOI: 10.1080/15226514.2024.2379007
Denisse Astrid Hernández-Castelán, Florentina Zurita, Oscar Marín-Peña, Erick Arturo Betanzo-Torres, Mayerlin Sandoval-Herazo, Jesús Castellanos-Rivera, Luis Carlos Sandoval Herazo
Partially Saturated Vertical Constructed Wetlands (PSV-CWs) are novel wastewater treatment systems that work through aerobic and anaerobic conditions that favor the removal of pollutants found in high concentrations, such as rivers contaminated with domestic wastewater and landfill leachate. The objective of the study was to evaluate the efficiency of PSV-CWs using monocultures and polycultures of Typha latifolia and Heliconia psittacorum to treat river waters contaminated with leachates from open dumps and domestic wastewater. Six experimental units of PSV-CWs were used; two were planted with Typha latifolia monoculture, two with Heliconia psittacorum monoculture and two with polycultures of both plants. The results indicated better organic matter and nitrogen removal efficiencies (p < 0.05) in systems with polycultures (TSS:95%, BOD5:83%, COD:89%, TN:82% and NH4+:99%). In general, the whole system showed high average removal efficiencies (TSS:93%, BOD5:79%, COD:85%, TN:79%, NH4+:98% and TP:85%). Regarding vegetation, both species developed better in units with monocultures, being Typha latifolia the one that reached a more remarkable development. However, both species showed high resistance to the contaminated environment. These results showed higher removals than those reported in the literature with conventional Free Flow Vertical Constructed Wetlands (FFV-CWs), so PSV-CWs could be a suitable option to treat this type of effluent.
{"title":"Effect of monocultures and polycultures of <i>Typha latifolia</i> and <i>Heliconia psittacorum</i> on the treatment of river waters contaminated with landfill leachate/domestic wastewater in partially saturated vertical constructed wetlands.","authors":"Denisse Astrid Hernández-Castelán, Florentina Zurita, Oscar Marín-Peña, Erick Arturo Betanzo-Torres, Mayerlin Sandoval-Herazo, Jesús Castellanos-Rivera, Luis Carlos Sandoval Herazo","doi":"10.1080/15226514.2024.2379007","DOIUrl":"10.1080/15226514.2024.2379007","url":null,"abstract":"<p><p>Partially Saturated Vertical Constructed Wetlands (PSV-CWs) are novel wastewater treatment systems that work through aerobic and anaerobic conditions that favor the removal of pollutants found in high concentrations, such as rivers contaminated with domestic wastewater and landfill leachate. The objective of the study was to evaluate the efficiency of PSV-CWs using monocultures and polycultures of <i>Typha latifolia</i> and <i>Heliconia psittacorum</i> to treat river waters contaminated with leachates from open dumps and domestic wastewater. Six experimental units of PSV-CWs were used; two were planted with <i>Typha latifolia</i> monoculture, two with <i>Heliconia psittacorum</i> monoculture and two with polycultures of both plants. The results indicated better organic matter and nitrogen removal efficiencies (<i>p</i> < 0.05) in systems with polycultures (TSS:95%, BOD<sub>5</sub>:83%, COD:89%, TN:82% and NH<sub>4+</sub>:99%). In general, the whole system showed high average removal efficiencies (TSS:93%, BOD<sub>5</sub>:79%, COD:85%, TN:79%, NH<sub>4+</sub>:98% and TP:85%). Regarding vegetation, both species developed better in units with monocultures, being <i>Typha latifolia</i> the one that reached a more remarkable development. However, both species showed high resistance to the contaminated environment. These results showed higher removals than those reported in the literature with conventional Free Flow Vertical Constructed Wetlands (FFV-CWs), so PSV-CWs could be a suitable option to treat this type of effluent.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"2163-2174"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-30DOI: 10.1080/15226514.2024.2380039
Albert Kobina Mensah
This study aimed to examine the potential of soil amendment-assisted phytoremediation using ryegrass in reclaiming abandoned gold mine soil in southwestern Ghana, with a specific focus on the soil contamination hazards associated with metals and metalloids. A pot experiment lasting 60 days was carried out to assess the efficacy of soil amendments, such as compost, iron oxide, and poultry manure, in mitigating environmental hazards. Three soil contamination indices (soil contamination = CF, enrichment factor = ER, and pollution load index = PLI) were used to calculate the extent of soil contamination, enrichment, and pollution of the sites with Co, Hg, Ni, Mo, Se, Sb, and Pb. The findings show that Hg made the greatest contribution (with a maximum soil CF of 18.0) to the overall PLI, with a maximum value of 74.4. The sites were averagely and consequently enriched with toxic elements in the decreasing order: Ni (ER = 33.3) > Mo (20.5) > Sb (14.1) > Pb (11.0) > Hg (7.9) > Se (2.1). The bioaccumulation factor (BCF > 1) suggests that ryegrass has the ability to phytostabilize Co, Hg, Mo, and Ni. This means that the plant may store these elements in its roots, potentially decreasing their negative effects on the environment and human health. Ultimately, the addition of combined manure with iron oxides might have augmented the sequestration of these metals in the root. The elements may have accumulated through sorption on manure or Fe surfaces, dissolution from watering the plants in the pot, or mineralization of organic manure. Thus, ryegrass has shown potential for phytostabilisation of Co, Hg, Mo, and Ni when assisted with a combination of manure and iron oxides; and can consequently mitigate the environmental and human health impacts.
本研究旨在考察利用黑麦草进行土壤改良剂辅助植物修复在加纳西南部废弃金矿土壤改良中的潜力,特别关注与金属和类金属相关的土壤污染危害。为评估堆肥、氧化铁和家禽粪便等土壤改良剂在减轻环境危害方面的功效,进行了为期 60 天的盆栽实验。采用三种土壤污染指数(土壤污染指数 = CF、富集因子 = ER 和污染负荷指数 = PLI)来计算钴、汞、镍、钼、硒、锑和铅对土壤的污染、富集和污染程度。结果表明,汞对整个 PLI 的贡献最大(土壤 CF 最大值为 18.0),最大值为 74.4。这些地点有毒元素的平均富集程度依次递减:镍(ER = 33.3)>钼(20.5)>锑(14.1)>铅(11.0)>汞(7.9)>硒(2.1)。生物累积系数(BCF > 1)表明,黑麦草具有植物稳定钴、汞、钼和镍的能力。这意味着黑麦草可以将这些元素储存在根部,从而减少它们对环境和人类健康的负面影响。最终,添加了氧化铁的混合肥料可能会增加这些金属在根部的螯合作用。这些元素可能是通过粪肥或铁表面的吸附作用、盆栽植物浇水时的溶解作用或有机粪肥的矿化作用积累起来的。因此,在粪肥和氧化铁的共同作用下,黑麦草具有植物稳定钴、汞、钼和镍的潜力,从而减轻对环境和人类健康的影响。
{"title":"Soil amendment-assisted phytoremediation with ryegrass offers a promising approach to mitigate environmental health concerns.","authors":"Albert Kobina Mensah","doi":"10.1080/15226514.2024.2380039","DOIUrl":"10.1080/15226514.2024.2380039","url":null,"abstract":"<p><p>This study aimed to examine the potential of soil amendment-assisted phytoremediation using ryegrass in reclaiming abandoned gold mine soil in southwestern Ghana, with a specific focus on the soil contamination hazards associated with metals and metalloids. A pot experiment lasting 60 days was carried out to assess the efficacy of soil amendments, such as compost, iron oxide, and poultry manure, in mitigating environmental hazards. Three soil contamination indices (soil contamination = CF, enrichment factor = ER, and pollution load index = PLI) were used to calculate the extent of soil contamination, enrichment, and pollution of the sites with Co, Hg, Ni, Mo, Se, Sb, and Pb. The findings show that Hg made the greatest contribution (with a maximum soil CF of 18.0) to the overall PLI, with a maximum value of 74.4. The sites were averagely and consequently enriched with toxic elements in the decreasing order: Ni (ER = 33.3) > Mo (20.5) > Sb (14.1) > Pb (11.0) > Hg (7.9) > Se (2.1). The bioaccumulation factor (BCF > 1) suggests that ryegrass has the ability to phytostabilize Co, Hg, Mo, and Ni. This means that the plant may store these elements in its roots, potentially decreasing their negative effects on the environment and human health. Ultimately, the addition of combined manure with iron oxides might have augmented the sequestration of these metals in the root. The elements may have accumulated through sorption on manure or Fe surfaces, dissolution from watering the plants in the pot, or mineralization of organic manure. Thus, ryegrass has shown potential for phytostabilisation of Co, Hg, Mo, and Ni when assisted with a combination of manure and iron oxides; and can consequently mitigate the environmental and human health impacts.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"2216-2233"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}