Purpose: Our previous work indicated the greater magnitude of damage to the thoracic aorta at 6 months after starting 5 Gy irradiation in descending order of exposure to X-rays in 25 fractions > acute X-rays > acute γ-rays > X-rays in 100 fractions ≫ chronic γ-rays, in which the limitations of the study included a lack of data for fractionated γ-ray exposure. To better understand effects of dose protraction and radiation quality, the present study examined changes after exposure to γ-rays in 25 fractions, and compared its biological effectiveness with five other irradiation regimens.
Materials and methods: Male C57BL/6J mice received 5 Gy of 137Cs γ-rays delivered in 25 fractions spread over six weeks. At 6 months after starting irradiation, mice were subjected to echocardiography, followed by tissue sampling. The descending thoracic aorta underwent scanning electron microscopy, immunofluorescence staining and histochemical staining. The integrative analysis of multiple aortic endpoints was conducted for inter-regimen comparisons.
Results: Exposure to γ-rays in 25 fractions induced vascular damage (evidenced by increases in endothelial detachment and vascular endothelial cell death, decreases in endothelial waviness, CD31, endothelial nitric oxide synthase and vascular endothelial cadherin), inflammation (evidenced by increases in tumor necrosis factor α, CD68 and F4/80) and fibrosis (evidenced by increases in transforming growth factor β1, alanine blue stain and intima-media thickness). The integrative analysis revealed biological effectiveness in descending order of exposure to X-rays in 25 fractions > acute X-rays > γ-rays in 25 fractions > acute γ-rays > X-rays in 100 fractions ≫ chronic γ-rays.
Conclusions: The results suggest that dose protraction effects on aortic damage depend on radiation quality, and are not a simple function of dose rate and the number of fractions.
{"title":"Sparing and enhancing dose protraction effects for radiation damage to the aorta of wild-type mice.","authors":"Nobuyuki Hamada, Ki-Ichiro Kawano, Seiko Hirota, Yusuke Saito, Farina Mohamad Yusoff, Tatsuya Maruhashi, Makoto Maeda, Takaharu Nomura, Ayumu Nakashima, Shinji Yoshinaga, Yukihito Higashi","doi":"10.1080/09553002.2023.2242939","DOIUrl":"10.1080/09553002.2023.2242939","url":null,"abstract":"<p><strong>Purpose: </strong>Our previous work indicated the greater magnitude of damage to the thoracic aorta at 6 months after starting 5 Gy irradiation in descending order of exposure to X-rays in 25 fractions > acute X-rays > acute γ-rays > X-rays in 100 fractions ≫ chronic γ-rays, in which the limitations of the study included a lack of data for fractionated γ-ray exposure. To better understand effects of dose protraction and radiation quality, the present study examined changes after exposure to γ-rays in 25 fractions, and compared its biological effectiveness with five other irradiation regimens.</p><p><strong>Materials and methods: </strong>Male C57BL/6J mice received 5 Gy of <sup>137</sup>Cs γ-rays delivered in 25 fractions spread over six weeks. At 6 months after starting irradiation, mice were subjected to echocardiography, followed by tissue sampling. The descending thoracic aorta underwent scanning electron microscopy, immunofluorescence staining and histochemical staining. The integrative analysis of multiple aortic endpoints was conducted for inter-regimen comparisons.</p><p><strong>Results: </strong>Exposure to γ-rays in 25 fractions induced vascular damage (evidenced by increases in endothelial detachment and vascular endothelial cell death, decreases in endothelial waviness, CD31, endothelial nitric oxide synthase and vascular endothelial cadherin), inflammation (evidenced by increases in tumor necrosis factor α, CD68 and F4/80) and fibrosis (evidenced by increases in transforming growth factor β1, alanine blue stain and intima-media thickness). The integrative analysis revealed biological effectiveness in descending order of exposure to X-rays in 25 fractions > acute X-rays > γ-rays in 25 fractions > acute γ-rays > X-rays in 100 fractions ≫ chronic γ-rays.</p><p><strong>Conclusions: </strong>The results suggest that dose protraction effects on aortic damage depend on radiation quality, and are not a simple function of dose rate and the number of fractions.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10301330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-08-21DOI: 10.1080/09553002.2023.2242937
Reid D Landes, Chenghui Li, Vijayalakshmi Sridharan, Carmen Bergom, Marjan Boerma
Purpose: Over the years, animal models of local heart irradiation have provided insight into mechanisms of and treatments for radiation-induced heart disease in human populations. However, it is not completely clear which manifestations of radiation injury are most commonly seen after whole heart irradiation, and whether certain biological factors impact experimental results. Combining 9 homogeneous studies in rat models of whole heart irradiation from one laboratory, we sought to identify experimental and/or biological factors that impact heart outcomes. We evaluated the usefulness of including (1) heart rate and (2) bodyweight as covariates when analyzing biological parameters, and (3) we determined which echocardiography, histological, and immunohistochemistry parameters are most susceptible to radiation effects. Finally, (4) as an educational example, we illustrate a hypothetical sample size calculation for a study design commonly used in evaluating radiation modifiers, using the pooled estimates from the 9 rat studies only for context. The results may assist investigators in the design and analyses of pre-clinical studies of whole heart irradiation.
Materials and methods: We made use of data from 9 rat studies from our labs, 8 published elsewhere in 2008-2017, and one unpublished study. Echocardiography, histological, and immunohistochemical parameters were collected from these studies. Using mixed effects analysis of covariance models, we estimated slopes for heart rate and bodyweight and estimated the radiation effect on each of the parameters.
Results: Bodyweight was related to most echocardiography parameters, and heart rate had an effect on echocardiography parameters related to the diameter of the left ventricle. For some parameters, there was evidence that heart rate and bodyweight relationships with the parameter depended on whether the rats were irradiated. Radiation effects were found in systolic measures of echocardiography parameters related to the diameter of the left ventricle, with ejection fraction and fractional shortening, with atrial wall thickness, and with histological measures of capillary density, collagen deposition, and mast cells infiltration in the heart.
Conclusion: Accounting for bodyweight, as well as heart rate, in analyses of echocardiography parameters should reduce variability in estimated radiation effects. Several echocardiography and histological parameters were particularly susceptible to whole heart irradiation, showing robust effects compared to sham-irradiation. Lastly, we provide an example approach for a sample size calculation that will contribute to a rigorous study design and reproducibility in experiments studying radiation modifiers.
{"title":"A pooled analysis of nine studies in one institution to assess effects of whole heart irradiation in rat models.","authors":"Reid D Landes, Chenghui Li, Vijayalakshmi Sridharan, Carmen Bergom, Marjan Boerma","doi":"10.1080/09553002.2023.2242937","DOIUrl":"10.1080/09553002.2023.2242937","url":null,"abstract":"<p><strong>Purpose: </strong>Over the years, animal models of local heart irradiation have provided insight into mechanisms of and treatments for radiation-induced heart disease in human populations. However, it is not completely clear which manifestations of radiation injury are most commonly seen after whole heart irradiation, and whether certain biological factors impact experimental results. Combining 9 homogeneous studies in rat models of whole heart irradiation from one laboratory, we sought to identify experimental and/or biological factors that impact heart outcomes. We evaluated the usefulness of including (1) heart rate and (2) bodyweight as covariates when analyzing biological parameters, and (3) we determined which echocardiography, histological, and immunohistochemistry parameters are most susceptible to radiation effects. Finally, (4) as an educational example, we illustrate a hypothetical sample size calculation for a study design commonly used in evaluating radiation modifiers, using the pooled estimates from the 9 rat studies only for context. The results may assist investigators in the design and analyses of pre-clinical studies of whole heart irradiation.</p><p><strong>Materials and methods: </strong>We made use of data from 9 rat studies from our labs, 8 published elsewhere in 2008-2017, and one unpublished study. Echocardiography, histological, and immunohistochemical parameters were collected from these studies. Using mixed effects analysis of covariance models, we estimated slopes for heart rate and bodyweight and estimated the radiation effect on each of the parameters.</p><p><strong>Results: </strong>Bodyweight was related to most echocardiography parameters, and heart rate had an effect on echocardiography parameters related to the diameter of the left ventricle. For some parameters, there was evidence that heart rate and bodyweight relationships with the parameter depended on whether the rats were irradiated. Radiation effects were found in systolic measures of echocardiography parameters related to the diameter of the left ventricle, with ejection fraction and fractional shortening, with atrial wall thickness, and with histological measures of capillary density, collagen deposition, and mast cells infiltration in the heart.</p><p><strong>Conclusion: </strong>Accounting for bodyweight, as well as heart rate, in analyses of echocardiography parameters should reduce variability in estimated radiation effects. Several echocardiography and histological parameters were particularly susceptible to whole heart irradiation, showing robust effects compared to sham-irradiation. Lastly, we provide an example approach for a sample size calculation that will contribute to a rigorous study design and reproducibility in experiments studying radiation modifiers.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843572/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10029585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-11DOI: 10.1080/09553002.2023.2283088
Mohammed Abderrafi Benotmane, Klaus Ruediger Trott
It has been known for many decades that radiation exposure of the developing embryo or fetus may cause two fundamentally different types of severe health effects: on the one hand, radiation may int...
{"title":"Epidemiological and experimental evidence for radiation-induced health effects in the progeny after exposure in utero","authors":"Mohammed Abderrafi Benotmane, Klaus Ruediger Trott","doi":"10.1080/09553002.2023.2283088","DOIUrl":"https://doi.org/10.1080/09553002.2023.2283088","url":null,"abstract":"It has been known for many decades that radiation exposure of the developing embryo or fetus may cause two fundamentally different types of severe health effects: on the one hand, radiation may int...","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138683376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Task Group (TG121) of the International Commission on Radiological Protection (ICRP) Committee 1 was launched in 2021 to study the effects of ionizing radiation in offspring and next generations....
{"title":"Ionizing radiation exposure effects across multiple generations: evidence and lessons from non-human biota","authors":"Shayenthiran Sreetharan, Sandrine Frelon, Nele Horemans, Patrick Laloi, Sisko Salomaa, Christelle Adam-Guillermin","doi":"10.1080/09553002.2023.2281512","DOIUrl":"https://doi.org/10.1080/09553002.2023.2281512","url":null,"abstract":"A Task Group (TG121) of the International Commission on Radiological Protection (ICRP) Committee 1 was launched in 2021 to study the effects of ionizing radiation in offspring and next generations....","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138569826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-03-31DOI: 10.1080/09553002.2023.2194398
Kensuke Otsuka, Toshiyasu Iwasaki
Purpose: Increasing epidemiological and biological evidence suggests that radiation exposure enhances cancer risk in a dose-dependent manner. This can be attributed to the 'dose-rate effect,' where the biological effect of low dose-rate radiation is lower than that of the same dose at a high dose-rate. This effect has been reported in epidemiological studies and experimental biology, although the underlying biological mechanisms are not completely understood. In this review, we aim to propose a suitable model for radiation carcinogenesis based on the dose-rate effect in tissue stem cells.
Methods: We surveyed and summarized the latest studies on the mechanisms of carcinogenesis. Next, we summarized the radiosensitivity of intestinal stem cells and the role of dose-rate in the modulation of stem-cell dynamics after irradiation.
Results: Consistently, driver mutations can be detected in most cancers from past to present, supporting the hypothesis that cancer progression is initiated by the accumulation of driver mutations. Recent reports demonstrated that driver mutations can be observed even in normal tissues, which suggests that the accumulation of mutations is a necessary condition for cancer progression. In addition, driver mutations in tissue stem cells can cause tumors, whereas they are not sufficient when they occur in non-stem cells. For non-stem cells, tissue remodeling induced by marked inflammation after the loss of tissue cells is important in addition to the accumulation of mutations. Therefore, the mechanism of carcinogenesis differs according to the cell type and magnitude of stress. In addition, our results indicated that non-irradiated stem cells tend to be eliminated from three-dimensional cultures of intestinal stem cells (organoids) composed of irradiated and non-irradiated stem cells, supporting the stem-cell competition.
Conclusions: We propose a unique scheme in which the dose-rate dependent response of intestinal stem cells incorporates the concept of the threshold of stem-cell competition and context-dependent target shift from stem cells to whole tissue. The concept highlights four key issues that should be considered in radiation carcinogenesis: i.e. accumulation of mutations; tissue reconstitution; stem-cell competition; and environmental factors like epigenetic modifications.
{"title":"Insights into radiation carcinogenesis based on dose-rate effects in tissue stem cells.","authors":"Kensuke Otsuka, Toshiyasu Iwasaki","doi":"10.1080/09553002.2023.2194398","DOIUrl":"10.1080/09553002.2023.2194398","url":null,"abstract":"<p><strong>Purpose: </strong>Increasing epidemiological and biological evidence suggests that radiation exposure enhances cancer risk in a dose-dependent manner. This can be attributed to the 'dose-rate effect,' where the biological effect of low dose-rate radiation is lower than that of the same dose at a high dose-rate. This effect has been reported in epidemiological studies and experimental biology, although the underlying biological mechanisms are not completely understood. In this review, we aim to propose a suitable model for radiation carcinogenesis based on the dose-rate effect in tissue stem cells.</p><p><strong>Methods: </strong>We surveyed and summarized the latest studies on the mechanisms of carcinogenesis. Next, we summarized the radiosensitivity of intestinal stem cells and the role of dose-rate in the modulation of stem-cell dynamics after irradiation.</p><p><strong>Results: </strong>Consistently, driver mutations can be detected in most cancers from past to present, supporting the hypothesis that cancer progression is initiated by the accumulation of driver mutations. Recent reports demonstrated that driver mutations can be observed even in normal tissues, which suggests that the accumulation of mutations is a necessary condition for cancer progression. In addition, driver mutations in tissue stem cells can cause tumors, whereas they are not sufficient when they occur in non-stem cells. For non-stem cells, tissue remodeling induced by marked inflammation after the loss of tissue cells is important in addition to the accumulation of mutations. Therefore, the mechanism of carcinogenesis differs according to the cell type and magnitude of stress. In addition, our results indicated that non-irradiated stem cells tend to be eliminated from three-dimensional cultures of intestinal stem cells (organoids) composed of irradiated and non-irradiated stem cells, supporting the stem-cell competition.</p><p><strong>Conclusions: </strong>We propose a unique scheme in which the dose-rate dependent response of intestinal stem cells incorporates the concept of the threshold of stem-cell competition and context-dependent target shift from stem cells to whole tissue. The concept highlights four key issues that should be considered in radiation carcinogenesis: i.e. accumulation of mutations; tissue reconstitution; stem-cell competition; and environmental factors like epigenetic modifications.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9229469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/09553002.2022.2094017
An Wang, Zhongyu Shi, Lei Wang, Yan Wang, Xiaoying Chen, Changhao He, Xiaomeng Zhang, Wenhui Xu, Qian Fu, Tieshan Wang, Shujing Zhang, Yushan Gao, Sumin Hu
Purpose: The aim of the present study was to investigate the injuries of spleen and intestinal immune system induced by 2 Gy 60Co γ ray in mice.
Materials and methods: A total of 120 Balb/c mice were randomly divided into two groups: blank control (Ctrl) and model (IR). The IR mice were exposed to a single dose of total body irradiation (2 Gy, dose rate: 1 Gy/min) and sacrificed on 1st, 3rd, 7th, 14th and 21st day after irradiation. The indicators including general observations and body weight, the changes in peripheral hemogram, spleen index, histopathology examination and lymphocyte subsets of spleen. As well as the count and subsets of lymphocyte in gut-associated lymphoid tissue.
Results: Compared with the Ctrl group, the body weight, spleen index, peripheral blood cell and splenocyte amounts, intraepithelial lymphocytes number decreased significantly after exposure, accompanied by a notable decreased count of lymphocytes in Peyer's patch and mesenteric lymph nodes. Moreover, ionizing radiation also broke the balance of CD4+/CD8+ and increased the Treg proportion in spleen, which then triggered immune imbalance and immunosuppression. In general, the spleen injuries occurred on 1st day after exposure, worse on 3rd day, and were relieved on 7th day. The intestinal immune injuries were observed on 1st day, and attenuated on 3rd day. On 21st day after exposure, the spleen volume and index have returned to normal, except for the distribution of lymphocyte subpopulations. Furthermore, all indicators of gut-associated lymphoid tissue, except for mesenteric lymph nodes lymphocyte count, had returned to normal levels on 21st day.
Conclusion: In conclusion, our data showed the injuries of spleen and intestinal immune system induced by 2 Gy 60Co γ ray whole-body irradiation. These findings may provide the bases for further radiation protection in the immunity.
{"title":"The injuries of spleen and intestinal immune system induced by 2-Gy <sup>60</sup>Co <b>γ</b>-ray whole-body irradiation.","authors":"An Wang, Zhongyu Shi, Lei Wang, Yan Wang, Xiaoying Chen, Changhao He, Xiaomeng Zhang, Wenhui Xu, Qian Fu, Tieshan Wang, Shujing Zhang, Yushan Gao, Sumin Hu","doi":"10.1080/09553002.2022.2094017","DOIUrl":"https://doi.org/10.1080/09553002.2022.2094017","url":null,"abstract":"<p><strong>Purpose: </strong>The aim of the present study was to investigate the injuries of spleen and intestinal immune system induced by 2 Gy <sup>60</sup>Co γ ray in mice.</p><p><strong>Materials and methods: </strong>A total of 120 Balb/c mice were randomly divided into two groups: blank control (Ctrl) and model (IR). The IR mice were exposed to a single dose of total body irradiation (2 Gy, dose rate: 1 Gy/min) and sacrificed on 1st, 3rd, 7th, 14th and 21st day after irradiation. The indicators including general observations and body weight, the changes in peripheral hemogram, spleen index, histopathology examination and lymphocyte subsets of spleen. As well as the count and subsets of lymphocyte in gut-associated lymphoid tissue.</p><p><strong>Results: </strong>Compared with the Ctrl group, the body weight, spleen index, peripheral blood cell and splenocyte amounts, intraepithelial lymphocytes number decreased significantly after exposure, accompanied by a notable decreased count of lymphocytes in Peyer's patch and mesenteric lymph nodes. Moreover, ionizing radiation also broke the balance of CD4+/CD8+ and increased the Treg proportion in spleen, which then triggered immune imbalance and immunosuppression. In general, the spleen injuries occurred on 1st day after exposure, worse on 3rd day, and were relieved on 7th day. The intestinal immune injuries were observed on 1st day, and attenuated on 3rd day. On 21st day after exposure, the spleen volume and index have returned to normal, except for the distribution of lymphocyte subpopulations. Furthermore, all indicators of gut-associated lymphoid tissue, except for mesenteric lymph nodes lymphocyte count, had returned to normal levels on 21st day.</p><p><strong>Conclusion: </strong>In conclusion, our data showed the injuries of spleen and intestinal immune system induced by 2 Gy <sup>60</sup>Co γ ray whole-body irradiation. These findings may provide the bases for further radiation protection in the immunity.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9498849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/09553002.2022.2121871
Min Hong, Xiaoqian Li, Yulan Liu, Wei Mo, Bin Shi, Shigao Chen, Tao Yan, Yuhong Shi, Daojiang Yu, Shuyu Zhang
Purpose: Keloids are benign dermal tumors that arise from abnormal wound healing processes following skin lesions. Surgical excision followed by radiotherapy plays an important role in the treatment of keloids. Nevertheless, radioresistance remains a serious impediment to treatment efficacy. Investigation of the molecular response of keloids to radiation may contribute to radiosensitizing strategies.
Materials and methods: Primary keloid fibroblasts from human keloids were isolated and irradiated with X-ray. The expression profiles of messenger RNA (mRNA) in nonradiated and irradiated primary keloid fibroblasts were measured by mRNA sequencing analysis. Then, we identified common motifs and corresponding transcription factors of dysregulated mRNAs by using bioinformatic analysis of the proximal promoters. Whereafter, GO and KEGG were used to analyze the functional enrichment of the differentially expressed genes.
Results: We found that radiation not only suppressed proliferation but also increased cell senescence of primary keloid fibroblasts. There were 184 mRNAs and 204 mRNAs that showed significant changes in 4 and 8 Gy irradiated primary keloid fibroblasts, respectively. Among them, 8 upregulated and 30 downregulated mRNAs showed consistent alterations in 4 and 8 Gy irradiated primary keloid fibroblasts. More importantly, the xForkhead box O1 (FOXO1) signaling pathway was involved in the irradiation response. Pretreatment with the FOXO1 signaling inhibitor AS1842856 significantly promoted LDH release, apoptosis and senescence of primary keloid fibroblasts following irradiation.
Conclusion: Our findings illustrated the molecular changes in human keloid fibroblasts in response to radiation, and FOXO1 pathway inhibition is expected to provide a novel strategy for the radiosensitization of keloids.
{"title":"Molecular response of keloids to ionizing radiation: targeting FOXO1 radiosensitizes keloids.","authors":"Min Hong, Xiaoqian Li, Yulan Liu, Wei Mo, Bin Shi, Shigao Chen, Tao Yan, Yuhong Shi, Daojiang Yu, Shuyu Zhang","doi":"10.1080/09553002.2022.2121871","DOIUrl":"https://doi.org/10.1080/09553002.2022.2121871","url":null,"abstract":"<p><strong>Purpose: </strong>Keloids are benign dermal tumors that arise from abnormal wound healing processes following skin lesions. Surgical excision followed by radiotherapy plays an important role in the treatment of keloids. Nevertheless, radioresistance remains a serious impediment to treatment efficacy. Investigation of the molecular response of keloids to radiation may contribute to radiosensitizing strategies.</p><p><strong>Materials and methods: </strong>Primary keloid fibroblasts from human keloids were isolated and irradiated with X-ray. The expression profiles of messenger RNA (mRNA) in nonradiated and irradiated primary keloid fibroblasts were measured by mRNA sequencing analysis. Then, we identified common motifs and corresponding transcription factors of dysregulated mRNAs by using bioinformatic analysis of the proximal promoters. Whereafter, GO and KEGG were used to analyze the functional enrichment of the differentially expressed genes.</p><p><strong>Results: </strong>We found that radiation not only suppressed proliferation but also increased cell senescence of primary keloid fibroblasts. There were 184 mRNAs and 204 mRNAs that showed significant changes in 4 and 8 Gy irradiated primary keloid fibroblasts, respectively. Among them, 8 upregulated and 30 downregulated mRNAs showed consistent alterations in 4 and 8 Gy irradiated primary keloid fibroblasts. More importantly, the xForkhead box O1 (FOXO1) signaling pathway was involved in the irradiation response. Pretreatment with the FOXO1 signaling inhibitor AS1842856 significantly promoted LDH release, apoptosis and senescence of primary keloid fibroblasts following irradiation.</p><p><strong>Conclusion: </strong>Our findings illustrated the molecular changes in human keloid fibroblasts in response to radiation, and FOXO1 pathway inhibition is expected to provide a novel strategy for the radiosensitization of keloids.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9498863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2020-07-02DOI: 10.1080/09553002.2020.1781283
Thomas C Wilson, Stephen A Jannetti, Navjot Guru, Nagavarakishore Pillarsetty, Thomas Reiner, Giacomo Pirovano
Purpose: 123I-MAPi, a novel PARP1-targeted Auger radiotherapeutic has shown promising results in pre-clinical glioma model. Currently, 123I-MAPi is synthesized using multistep synthesis that results in modest yields and low molar activities (MA) that limits the ability to translate this technology for human studies where high doses are administered. Therefore, new methods are needed to synthesize 123I-MAPi in high activity yields (AY) and improved MA to facilitate clinical translation and multicenter trials.
Materials and methods: 123I-MAPi was prepared in a single step via 123I-iododetannylation of the corresponding tributylstannane precursor. In vitro internalization assay, subcellular fractionation and confocal microscopy where used to evaluate the performance of 123I-MAPi in a small cell lung cancer model.
Results: 123I-MAPi was synthesized in a single step from the corresponding stannane precursor in AY of 45 ± 2% and MA of 11.8 ± 4.8 GBq µmol-1. In vitro in LX22 cells showed rapid internalization (5 min) with accumulation found predominantly in the membrane, nucleus and chromatin of the cell as determined by subcellular fractionation.
Conclusions: Here, we have developed an improved radiosynthesis of 123I-MAPi, an Auger theranostic agent. This process was achieved using a single step, 123I-iododestannylation reaction from the corresponding stannane precursor in good AY and MA. 123I-MAPi was evaluated in vitro in a small cell lung cancer model with high PARP expression, rapid internalization and high nuclear uptake shown.
{"title":"Improved radiosynthesis of <sup>123</sup>I-MAPi, an auger theranostic agent.","authors":"Thomas C Wilson, Stephen A Jannetti, Navjot Guru, Nagavarakishore Pillarsetty, Thomas Reiner, Giacomo Pirovano","doi":"10.1080/09553002.2020.1781283","DOIUrl":"10.1080/09553002.2020.1781283","url":null,"abstract":"<p><strong>Purpose: </strong><sup>123</sup>I-MAPi, a novel PARP1-targeted Auger radiotherapeutic has shown promising results in pre-clinical glioma model. Currently, <sup>123</sup>I-MAPi is synthesized using multistep synthesis that results in modest yields and low molar activities (MA) that limits the ability to translate this technology for human studies where high doses are administered. Therefore, new methods are needed to synthesize <sup>123</sup>I-MAPi in high activity yields (AY) and improved MA to facilitate clinical translation and multicenter trials.</p><p><strong>Materials and methods: </strong><sup>123</sup>I-MAPi was prepared in a single step via <sup>123</sup>I-iododetannylation of the corresponding tributylstannane precursor. In vitro internalization assay, subcellular fractionation and confocal microscopy where used to evaluate the performance of <sup>123</sup>I-MAPi in a small cell lung cancer model.</p><p><strong>Results: </strong><sup>123</sup>I-MAPi was synthesized in a single step from the corresponding stannane precursor in AY of 45 ± 2% and MA of 11.8 ± 4.8 GBq <i>µ</i>mol<sup>-1</sup>. In vitro in LX22 cells showed rapid internalization (5 min) with accumulation found predominantly in the membrane, nucleus and chromatin of the cell as determined by subcellular fractionation.</p><p><strong>Conclusions: </strong>Here, we have developed an improved radiosynthesis of <sup>123</sup>I-MAPi, an Auger theranostic agent. This process was achieved using a single step, <sup>123</sup>I-iododestannylation reaction from the corresponding stannane precursor in good AY and MA. <sup>123</sup>I-MAPi was evaluated in vitro in a small cell lung cancer model with high PARP expression, rapid internalization and high nuclear uptake shown.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09553002.2020.1781283","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10715777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/09553002.2022.2047822
Mario Enrique Alcocer Ávila, Elif Hindié, Christophe Champion
Purpose: Auger emitters exhibit interesting features due to their emission of a cascade of short-range Auger electrons. Maximum DNA breakage efficacy is achieved when decays occur near DNA. Studies of double-strand breaks (DSBs) yields in plasmids revealed cutoff distances from DNA axis of 10.5 Å-12 Å, beyond which the mechanism of DSBs moves from direct to indirect effects, and the yield decreases rapidly. Some authors suggested that the average energy deposited in a DNA cylinder could explain such cutoffs. We aimed to study this hypothesis in further detail.
Materials and methods: Using the Monte Carlo code CELLDOSE, we investigated the influence of the 125I atom position on energy deposits and absorbed doses per decay not only in a DNA cylinder, but also in individual strands, each modeled as 10 spheres encompassing the fragility sites for phosphodiester bond cleavage.
Results: The dose per decay decreased much more rapidly for a sphere in the proximal strand than for the DNA cylinder. For example, when moving the 125I source from 10.5 Å to 11.5 Å, the average dose to the sphere dropped by 43%, compared to only 13% in the case of the cylinder.
Conclusions: Explaining variations in DSBs yields with 125I position should consider the probability of inducing damage in the proximal strand (nearest to the 125I atom). The energy received by fragility sites in this strand is highly influenced by the isotropic (4π) emission of 125I low-energy Auger electrons. The positioning of Auger emitters for targeted radionuclide therapy can be envisioned accordingly.
{"title":"How to explain the sensitivity of DNA double-strand breaks yield to <sup>125</sup>I position?","authors":"Mario Enrique Alcocer Ávila, Elif Hindié, Christophe Champion","doi":"10.1080/09553002.2022.2047822","DOIUrl":"https://doi.org/10.1080/09553002.2022.2047822","url":null,"abstract":"<p><strong>Purpose: </strong>Auger emitters exhibit interesting features due to their emission of a cascade of short-range Auger electrons. Maximum DNA breakage efficacy is achieved when decays occur near DNA. Studies of double-strand breaks (DSBs) yields in plasmids revealed cutoff distances from DNA axis of 10.5 Å-12 Å, beyond which the mechanism of DSBs moves from direct to indirect effects, and the yield decreases rapidly. Some authors suggested that the average energy deposited in a DNA cylinder could explain such cutoffs. We aimed to study this hypothesis in further detail.</p><p><strong>Materials and methods: </strong>Using the Monte Carlo code CELLDOSE, we investigated the influence of the <sup>125</sup>I atom position on energy deposits and absorbed doses per decay not only in a DNA cylinder, but also in individual strands, each modeled as 10 spheres encompassing the fragility sites for phosphodiester bond cleavage.</p><p><strong>Results: </strong>The dose per decay decreased much more rapidly for a sphere in the proximal strand than for the DNA cylinder. For example, when moving the <sup>125</sup>I source from 10.5 Å to 11.5 Å, the average dose to the sphere dropped by 43%, compared to only 13% in the case of the cylinder.</p><p><strong>Conclusions: </strong>Explaining variations in DSBs yields with <sup>125</sup>I position should consider the probability of inducing damage in the proximal strand (nearest to the <sup>125</sup>I atom). The energy received by fragility sites in this strand is highly influenced by the isotropic (4π) emission of <sup>125</sup>I low-energy Auger electrons. The positioning of Auger emitters for targeted radionuclide therapy can be envisioned accordingly.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10717397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}