首页 > 最新文献

2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)最新文献

英文 中文
Influence of the photoactive layer thickness on the device parameters and their temperature dependence in thin crystalline silicon photovoltaic devices 薄晶硅光电器件中光活性层厚度对器件参数及其温度依赖性的影响
Pub Date : 2016-09-01 DOI: 10.1109/THERMINIC.2016.7749073
B. Plesz, J. Mizsei
One of nowadays crucial questions with crystalline silicon solar cells is the reduction of manufacturing costs. One possible concept of reducing cost is to produce solar cells with thin photoactive layers, in order to use less amount of good quality and thus expensive raw material. In addition photovoltaic devices are one of the most obvious solutions for on-chip energy harvesting. There are basically two approaches: the monolithically integrated photovoltaic devices, and photovoltaic devices that are attached to the chip surface and connected to the integrated circuit. These devices also feature a thin photoactive layer in the majority of the cases. This paper aims to investigate the influence of the photoactive layer thickness on the on the photocurrent and the spectral response. It was found that the temperature dependence of these parameters increases with decreasing photoactive layer thickness. A possible explanation for this phenomenon is also presented.
目前晶体硅太阳能电池的关键问题之一是降低制造成本。降低成本的一个可能的概念是生产具有薄光活性层的太阳能电池,以便使用较少数量的高质量原材料,因此价格昂贵。此外,光电器件是片上能量收集最明显的解决方案之一。基本上有两种方式:单片集成光伏器件,以及附着在芯片表面并连接到集成电路上的光伏器件。在大多数情况下,这些器件还具有薄的光活性层。本文旨在研究光敏层厚度对光电流和光谱响应的影响。结果表明,随着光活性层厚度的减小,这些参数的温度依赖性增大。对这一现象也提出了一种可能的解释。
{"title":"Influence of the photoactive layer thickness on the device parameters and their temperature dependence in thin crystalline silicon photovoltaic devices","authors":"B. Plesz, J. Mizsei","doi":"10.1109/THERMINIC.2016.7749073","DOIUrl":"https://doi.org/10.1109/THERMINIC.2016.7749073","url":null,"abstract":"One of nowadays crucial questions with crystalline silicon solar cells is the reduction of manufacturing costs. One possible concept of reducing cost is to produce solar cells with thin photoactive layers, in order to use less amount of good quality and thus expensive raw material. In addition photovoltaic devices are one of the most obvious solutions for on-chip energy harvesting. There are basically two approaches: the monolithically integrated photovoltaic devices, and photovoltaic devices that are attached to the chip surface and connected to the integrated circuit. These devices also feature a thin photoactive layer in the majority of the cases. This paper aims to investigate the influence of the photoactive layer thickness on the on the photocurrent and the spectral response. It was found that the temperature dependence of these parameters increases with decreasing photoactive layer thickness. A possible explanation for this phenomenon is also presented.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125226655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Modelling and measurement of the thermal conductivity of composites with silver particles 银颗粒复合材料导热系数的建模与测量
Pub Date : 2016-09-01 DOI: 10.1109/THERMINIC.2016.7749038
J. Ordonez-Miranda, M. A. Ras, B. Wunderle, S. Volz
The effective thermal conductivity of composites made up of silver micro-particles embedded in a resin matrix is modelled and measured. This is done for spherical and flake-like particles to analyse the effects of the particles geometry and concentration on the composite thermal performance. It is experimentally found that spherical particles yield a higher thermal conductivity than the one given by flakes, such that it takes the value of 16 Wm-1 K-1 for a 50% volume fraction of particles. Furthermore, this behaviour is well described by a simple and analytical model, which takes into account the particle-particle interactions through a crowding factor. The obtained results could be useful to optimize the design and manufacture of composites with metallic particles.
本文模拟并测量了银微粒嵌入树脂基体的复合材料的有效导热系数。这是对球形和片状颗粒进行的,以分析颗粒几何形状和浓度对复合材料热性能的影响。实验发现,球形颗粒的导热系数比片状颗粒的导热系数高,当颗粒体积分数为50%时,其导热系数为16 Wm-1 K-1。此外,这种行为可以用一个简单的解析模型很好地描述,该模型考虑了通过拥挤因子的粒子-粒子相互作用。所得结果可为金属颗粒复合材料的优化设计和制造提供参考。
{"title":"Modelling and measurement of the thermal conductivity of composites with silver particles","authors":"J. Ordonez-Miranda, M. A. Ras, B. Wunderle, S. Volz","doi":"10.1109/THERMINIC.2016.7749038","DOIUrl":"https://doi.org/10.1109/THERMINIC.2016.7749038","url":null,"abstract":"The effective thermal conductivity of composites made up of silver micro-particles embedded in a resin matrix is modelled and measured. This is done for spherical and flake-like particles to analyse the effects of the particles geometry and concentration on the composite thermal performance. It is experimentally found that spherical particles yield a higher thermal conductivity than the one given by flakes, such that it takes the value of 16 Wm-1 K-1 for a 50% volume fraction of particles. Furthermore, this behaviour is well described by a simple and analytical model, which takes into account the particle-particle interactions through a crowding factor. The obtained results could be useful to optimize the design and manufacture of composites with metallic particles.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128735621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Modelling of thermal processes in heat flux sensors 热通量传感器中热过程的建模
Pub Date : 2016-09-01 DOI: 10.1109/THERMINIC.2016.7749078
A. Kozlov
The method of modelling the temperature and heat flux distribution in the structure consisting of the heat flux sensor and the object with the investigated heat flux is presented. In the structure, the domain of modelling is marked out and is replaced by the equivalent structure with three rectangular regions. For each region, the analytical expression for the temperature distribution is determined using the eigenfunction method. Heat flux densities on boundaries of regions are defined as the sums of orthogonal functions with unknown weighting coefficients. To find the unknown weighting coefficients the boundary conditions on boundaries of the regions are used. In general, the determination of the weighting coefficients is reduced to solving a system of linear equations. The present method is applied to determine the temperature distribution in the structure with the heat flux sensor and the thermally conductive wall and the heat flux densities on their surfaces.
提出了热流传感器与所研究热流的物体组成的结构中温度和热流分布的建模方法。在结构中,划出建模域,用三个矩形区域的等效结构代替。对于每个区域,用特征函数法确定了温度分布的解析表达式。区域边界上的热流密度定义为加权系数未知的正交函数和。利用区域边界上的边界条件求未知的加权系数。一般来说,权重系数的确定可以简化为求解一个线性方程组。应用该方法确定了带有热流传感器和导热壁的结构内部的温度分布及其表面的热流密度。
{"title":"Modelling of thermal processes in heat flux sensors","authors":"A. Kozlov","doi":"10.1109/THERMINIC.2016.7749078","DOIUrl":"https://doi.org/10.1109/THERMINIC.2016.7749078","url":null,"abstract":"The method of modelling the temperature and heat flux distribution in the structure consisting of the heat flux sensor and the object with the investigated heat flux is presented. In the structure, the domain of modelling is marked out and is replaced by the equivalent structure with three rectangular regions. For each region, the analytical expression for the temperature distribution is determined using the eigenfunction method. Heat flux densities on boundaries of regions are defined as the sums of orthogonal functions with unknown weighting coefficients. To find the unknown weighting coefficients the boundary conditions on boundaries of the regions are used. In general, the determination of the weighting coefficients is reduced to solving a system of linear equations. The present method is applied to determine the temperature distribution in the structure with the heat flux sensor and the thermally conductive wall and the heat flux densities on their surfaces.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124596940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Closing the power delivery/heat removal cycle for heterogeneous multi-scale systems 关闭异构多尺度系统的电力输送/热量去除周期
Pub Date : 2016-09-01 DOI: 10.1109/THERMINIC.2016.7749034
M. Stan, Ke Wang, K. Skadron
The semiconductor industry is poised to continue the historic Moore's law trend of doubling the level of integration every 1.5-2 years, even as the virtuous cycle benefits of Dennard scaling are quickly vanishing. Once devices no longer scale laterally, the only way to continue to increase areal density is by going vertical using 3D-IC. However, 3D-IC raises several fundamental difficulties in addition to the clear fabrication challenges: as the number of physical layers in a 3D-IC stack increases, from the present 2.5D multi-layer solutions (with an interposer, or only a couple of layers), to true 3D many-layer stacks, the energy cycle problem of delivering power to and removing heat from the 3D stack become daunting. The main reason for this power wall is the mismatch between the volumetric (cubic) power consumption and heat dissipation in 3D-IC, and the areal (quadratic) power delivery and heat removal through a 2D surface (top and/or bottom of the stack). In this paper we propose MultiSpot, a framework to provide fundamental solutions to the 3D-IC power wall that are also practical.
半导体行业正准备继续摩尔定律的历史性趋势,即每1.5-2年将集成水平提高一倍,即使登纳德缩放的良性循环优势正在迅速消失。一旦设备不再横向扩展,继续增加面密度的唯一方法就是使用3D-IC进行垂直扩展。然而,除了明确的制造挑战之外,3D- ic还提出了几个基本的困难:随着3D- ic堆栈中的物理层数量的增加,从目前的2.5D多层解决方案(带有中间层,或只有几层)到真正的3D多层堆栈,向3D堆栈输送功率和从3D堆栈中去除热量的能量循环问题变得令人生畏。产生这种功率墙的主要原因是3D-IC的体积(立方)功耗和散热与通过2D表面(堆栈顶部和/或底部)的面积(二次)功率输送和散热之间的不匹配。在本文中,我们提出MultiSpot,这是一个为3D-IC电源墙提供基本解决方案的框架,也是实用的。
{"title":"Closing the power delivery/heat removal cycle for heterogeneous multi-scale systems","authors":"M. Stan, Ke Wang, K. Skadron","doi":"10.1109/THERMINIC.2016.7749034","DOIUrl":"https://doi.org/10.1109/THERMINIC.2016.7749034","url":null,"abstract":"The semiconductor industry is poised to continue the historic Moore's law trend of doubling the level of integration every 1.5-2 years, even as the virtuous cycle benefits of Dennard scaling are quickly vanishing. Once devices no longer scale laterally, the only way to continue to increase areal density is by going vertical using 3D-IC. However, 3D-IC raises several fundamental difficulties in addition to the clear fabrication challenges: as the number of physical layers in a 3D-IC stack increases, from the present 2.5D multi-layer solutions (with an interposer, or only a couple of layers), to true 3D many-layer stacks, the energy cycle problem of delivering power to and removing heat from the 3D stack become daunting. The main reason for this power wall is the mismatch between the volumetric (cubic) power consumption and heat dissipation in 3D-IC, and the areal (quadratic) power delivery and heat removal through a 2D surface (top and/or bottom of the stack). In this paper we propose MultiSpot, a framework to provide fundamental solutions to the 3D-IC power wall that are also practical.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127899919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Implementation of moisture diffusion model in multi-material system including air cavities 含空腔的多材料系统中水分扩散模型的实现
Pub Date : 2016-09-01 DOI: 10.1109/THERMINIC.2016.7749056
N. Peter, Péter Tóth, Boldizsár Kovács, G. Kristóf
Polymeric materials are often used in assembling and packaging MEMS devices. Polymers are prone to absorb moisture which can lead to reliability issues and different types of failures of the package. In contrast to the IC components cavities are usually essential part of the MEMS devices. The gas tightness of these cavities must be ensured for proper operation. This paper presents an extension of the moisture diffusion simulation methodology towards gas filled cavities embedded in multi material systems. The formulation involves the transformation of convection diffusion vapour transport equation into the form of a general transport equation which is solved by a commercially available simulation package. The implementation allows the coupling of additional physical models to the simulation such as condensation models.
聚合物材料通常用于组装和封装MEMS器件。聚合物容易吸收水分,这可能导致可靠性问题和不同类型的封装故障。与集成电路元件相比,空腔通常是MEMS器件的重要组成部分。必须保证这些腔体的气密性才能正常工作。本文将水分扩散模拟方法扩展到多材料系统中嵌入的充气腔。该公式涉及将对流扩散蒸汽输运方程转换为一般输运方程的形式,并由市售模拟软件包求解。该实现允许将附加的物理模型耦合到模拟中,例如冷凝模型。
{"title":"Implementation of moisture diffusion model in multi-material system including air cavities","authors":"N. Peter, Péter Tóth, Boldizsár Kovács, G. Kristóf","doi":"10.1109/THERMINIC.2016.7749056","DOIUrl":"https://doi.org/10.1109/THERMINIC.2016.7749056","url":null,"abstract":"Polymeric materials are often used in assembling and packaging MEMS devices. Polymers are prone to absorb moisture which can lead to reliability issues and different types of failures of the package. In contrast to the IC components cavities are usually essential part of the MEMS devices. The gas tightness of these cavities must be ensured for proper operation. This paper presents an extension of the moisture diffusion simulation methodology towards gas filled cavities embedded in multi material systems. The formulation involves the transformation of convection diffusion vapour transport equation into the form of a general transport equation which is solved by a commercially available simulation package. The implementation allows the coupling of additional physical models to the simulation such as condensation models.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130039548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A novel approach to Heatsink mass minimisation 散热片质量最小化的新方法
Pub Date : 2016-09-01 DOI: 10.1109/THERMINIC.2016.7749043
R. Bornoff, J. Parry, John Wilson
Typical Heatsink design includes deciding base and fin thickness, fin height, and fin gap optimization. In situations where material cost or mass of the heat sink are also a design priority, further optimization with respect to mass removal can be significant. This paper discusses a `Subtractive Design' method to further evolve the heat sink topology by the systematic removal of heat sink mass where the Thermal BottleNeck (BN) Number [1] was found to be lowest. The aim is to identify topologies that optimise the use of material but do not unduly affect thermal performance.
典型的散热器设计包括决定基座和翅片厚度,翅片高度和翅片间隙优化。在材料成本或散热器质量也是设计优先考虑的情况下,进一步优化质量去除可能是重要的。本文讨论了一种“减法设计”方法,通过系统地去除热瓶颈(BN)数[1]最低的散热器质量,进一步发展散热器拓扑结构。目的是确定拓扑结构,优化材料的使用,但不会过度影响热性能。
{"title":"A novel approach to Heatsink mass minimisation","authors":"R. Bornoff, J. Parry, John Wilson","doi":"10.1109/THERMINIC.2016.7749043","DOIUrl":"https://doi.org/10.1109/THERMINIC.2016.7749043","url":null,"abstract":"Typical Heatsink design includes deciding base and fin thickness, fin height, and fin gap optimization. In situations where material cost or mass of the heat sink are also a design priority, further optimization with respect to mass removal can be significant. This paper discusses a `Subtractive Design' method to further evolve the heat sink topology by the systematic removal of heat sink mass where the Thermal BottleNeck (BN) Number [1] was found to be lowest. The aim is to identify topologies that optimise the use of material but do not unduly affect thermal performance.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131165712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Methodology to achieve the thermal management of a 6U conduction-cooled board with 130W power dissipation and an operating temperature of 85°C 介绍了一块功耗130W、工作温度85℃的6U导冷板的热管理方法
Pub Date : 2016-09-01 DOI: 10.1109/THERMINIC.2016.7749047
J. Maquet
We are presenting a methodology to optimize the design of a thermally challenging Single Board Computer (SBC) in order to achieve ambitious thermal management goals at reasonable cost. The case study presented describes the design of a conduction cooled SBC in 6U-VPX [1] form factor, dissipating up to 130 W (2 high performance CPUs) and presenting a high density of components (ca 4500 on 640cm2). In order to achieve high reliability (low MTBF), all components must be operated at least 5°C below their maximum rating, while the board's thermal interface, i.e. the upper and lower board edges, are kept at 85°C. Any “active” cooling (including heat pipes) is prohibited. This puts tight constraints on the allowable temperature gradients between the board edges and any of the thermally critical components. It turns out that a heat frame design based on advanced composite materials (aluminium, copper and graphite) can meet these constraints even in the presence of layout constraints that impose a less-than-optimal placement of thermally critical components.
我们提出了一种方法来优化热挑战性的单板计算机(SBC)的设计,以便以合理的成本实现雄心勃勃的热管理目标。该案例研究描述了6U-VPX[1]形式的传导冷却SBC的设计,耗散高达130 W(2个高性能cpu),并呈现高密度的组件(约4500在640cm2上)。为了实现高可靠性(低MTBF),所有组件必须在低于其最大额定值至少5°C的温度下运行,而电路板的热接口,即上下板边缘,保持在85°C。禁止任何“主动”冷却(包括热管)。这对电路板边缘和任何热临界组件之间的允许温度梯度施加了严格的限制。事实证明,基于先进复合材料(铝、铜和石墨)的热框架设计可以满足这些限制,即使在布局限制的情况下,热关键部件的位置也不是最佳的。
{"title":"Methodology to achieve the thermal management of a 6U conduction-cooled board with 130W power dissipation and an operating temperature of 85°C","authors":"J. Maquet","doi":"10.1109/THERMINIC.2016.7749047","DOIUrl":"https://doi.org/10.1109/THERMINIC.2016.7749047","url":null,"abstract":"We are presenting a methodology to optimize the design of a thermally challenging Single Board Computer (SBC) in order to achieve ambitious thermal management goals at reasonable cost. The case study presented describes the design of a conduction cooled SBC in 6U-VPX [1] form factor, dissipating up to 130 W (2 high performance CPUs) and presenting a high density of components (ca 4500 on 640cm2). In order to achieve high reliability (low MTBF), all components must be operated at least 5°C below their maximum rating, while the board's thermal interface, i.e. the upper and lower board edges, are kept at 85°C. Any “active” cooling (including heat pipes) is prohibited. This puts tight constraints on the allowable temperature gradients between the board edges and any of the thermally critical components. It turns out that a heat frame design based on advanced composite materials (aluminium, copper and graphite) can meet these constraints even in the presence of layout constraints that impose a less-than-optimal placement of thermally critical components.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131903315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Digital thermal sensor based on ring-oscillators in Zynq SoC technology 基于Zynq SoC技术的环形振荡器数字热传感器
Pub Date : 2016-09-01 DOI: 10.1109/THERMINIC.2016.7749065
Charles-Alexis Lefebvre, Leire Rubio, Jose Luis Montero
The impact of the temperature is one of the most critical issues when designing an industrial embedded systems. Plenty of them are centered on a System-on-Chip, composed of a programmable logic similar to a FPGA and a processing system with one or more processors. Ring oscillators are often used to measure physical parameter such as the temperature in a FPGA. Therefore, this paper presents a ring-oscillator-based digital temperature sensor implemented as an AXI-Lite Intellectual Property on a Xilinx Zynq Z-7020 28 nm System-on-Chip. Both the impact of the measurement time and the number of gates are studied with the objective of getting a fast sensor to give the chip a fast thermal protection. The sensor is then calibrated with a thermal chamber. As a conclusion, even though its architecture is somewhat different from past works, the designed sensor was found to be functional for the targeted application.
温度的影响是设计工业嵌入式系统时最关键的问题之一。它们中的许多都以片上系统为中心,由类似于FPGA的可编程逻辑和具有一个或多个处理器的处理系统组成。环形振荡器通常用于测量FPGA中的温度等物理参数。因此,本文提出了一种基于环振的数字温度传感器,作为axis - lite知识产权在Xilinx Zynq Z-7020 28纳米片上实现。研究了测量时间和门数的影响,目的是得到一个快速的传感器,给芯片提供快速的热保护。然后用热室校准传感器。综上所述,尽管其架构与过去的作品有所不同,但设计的传感器被发现可以用于目标应用。
{"title":"Digital thermal sensor based on ring-oscillators in Zynq SoC technology","authors":"Charles-Alexis Lefebvre, Leire Rubio, Jose Luis Montero","doi":"10.1109/THERMINIC.2016.7749065","DOIUrl":"https://doi.org/10.1109/THERMINIC.2016.7749065","url":null,"abstract":"The impact of the temperature is one of the most critical issues when designing an industrial embedded systems. Plenty of them are centered on a System-on-Chip, composed of a programmable logic similar to a FPGA and a processing system with one or more processors. Ring oscillators are often used to measure physical parameter such as the temperature in a FPGA. Therefore, this paper presents a ring-oscillator-based digital temperature sensor implemented as an AXI-Lite Intellectual Property on a Xilinx Zynq Z-7020 28 nm System-on-Chip. Both the impact of the measurement time and the number of gates are studied with the objective of getting a fast sensor to give the chip a fast thermal protection. The sensor is then calibrated with a thermal chamber. As a conclusion, even though its architecture is somewhat different from past works, the designed sensor was found to be functional for the targeted application.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129651212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Relibability assessment of wafer level chip scale package (WLCSP) based on distance-to-neutral point (DNP) 基于中性点距离(DNP)的晶圆级芯片级封装(WLCSP)可靠性评估
Pub Date : 2016-09-01 DOI: 10.1109/THERMINIC.2016.7749063
Tung Ching Lui, B. Muthuraman
Wafer Level Chip Scale Package (WLCSP) is one of the most compact packages which provide good electrical and thermal performance depending on the reliability of the solder joint interconnections to the printed circuit board (PCB). Due to rapid advancements in integrated circuit (IC) fabrication, lower cost per die is achieved when the die count per wafer is high. With the number of IOs (input/output) per die increase which induces the die size and distance to neutral point also increases. Board-level reliability is always a main concern for WLCSP especially without underfill (UF). A common failure mechanism would be solder joint fatigue due to the coefficient of thermal expansion (CTE) mismatch. This would become worse by increasing the distance-to-neutral point (DNP). To improve the reliability, understanding of DNP limitation is necessary. In this paper, different wafer level package configurations are analysed through thermo-mechanical finite element method (FEM) simulation and validated with the thermal cyclic test.
晶圆级芯片规模封装(WLCSP)是最紧凑的封装之一,它提供良好的电气和热性能,这取决于与印刷电路板(PCB)的焊点互连的可靠性。由于集成电路(IC)制造的快速发展,当每个晶圆的芯片数量高时,每个芯片的成本就会降低。随着每个模具的io(输入/输出)数量的增加,导致模具尺寸和到中立点的距离也会增加。板级可靠性一直是WLCSP的主要关注点,特别是无底填(UF)的情况下。常见的失效机制是由于热膨胀系数(CTE)失配引起的焊点疲劳。如果增加到中性点的距离(DNP),情况会变得更糟。为了提高可靠性,有必要了解DNP的限制。本文通过热-机械有限元法(FEM)模拟分析了不同晶圆级封装结构,并通过热循环试验进行了验证。
{"title":"Relibability assessment of wafer level chip scale package (WLCSP) based on distance-to-neutral point (DNP)","authors":"Tung Ching Lui, B. Muthuraman","doi":"10.1109/THERMINIC.2016.7749063","DOIUrl":"https://doi.org/10.1109/THERMINIC.2016.7749063","url":null,"abstract":"Wafer Level Chip Scale Package (WLCSP) is one of the most compact packages which provide good electrical and thermal performance depending on the reliability of the solder joint interconnections to the printed circuit board (PCB). Due to rapid advancements in integrated circuit (IC) fabrication, lower cost per die is achieved when the die count per wafer is high. With the number of IOs (input/output) per die increase which induces the die size and distance to neutral point also increases. Board-level reliability is always a main concern for WLCSP especially without underfill (UF). A common failure mechanism would be solder joint fatigue due to the coefficient of thermal expansion (CTE) mismatch. This would become worse by increasing the distance-to-neutral point (DNP). To improve the reliability, understanding of DNP limitation is necessary. In this paper, different wafer level package configurations are analysed through thermo-mechanical finite element method (FEM) simulation and validated with the thermal cyclic test.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130109819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Fabrication, performance and reliability of a thermally enhanced wafer level fan out demonstrator with integrated heatsink 集成散热器的热增强晶圆级扇出演示器的制造、性能和可靠性
Pub Date : 2016-09-01 DOI: 10.1109/THERMINIC.2016.7749079
A. Cardoso, Hugo Barros, G. Hantos
The leading Fan-Out Wafer-Level Packaging technology, WLFO by NANIUM, stemmed from Infineon's embedded Wafer-Level BGA (eWLB) technology, has limited heat dissipation capability, as the materials used in, namely the epoxy mold compound (EMC), originally aimed process ability and mechanical stability, but not heat conduction. As WLFO technology expands to WLSiP (Wafer-Level System-in-Package) for very high-density system integration, the thermal performance becomes a critical factor. In a broader scope, improving heat dissipation capabilities opens WLFO technology platform to power applications. The main challenge for power dissipation on WLSiP packaging is that the EMC must be electrical insulator, placing challenges on both heat conduction and bonding to metallic heat spreader. Whereas mold compounds are typically organic resins filled with inorganic fillers, high performance thermal interface material (TIM) are designed for metal-metal interfaces, not for organic-metal interface as required for chip backside overmolded WLFO package. Another challenge is the assembly of an integrated heatsink, over and larger than the package, on a volume manufacturing capable process, to yield both good thermal conduction and reliable thermomechanical bonding. The work done is part of the collaborative European FP7-ICT project NANOTHERM (Innovative Nano and Micro Technologies for Advanced Thermo and Mechanical Interfaces), together with a consortium of leading IDM, OEM, OSAT, material suppliers and academic/institutes.
基于英飞凌的嵌入式晶圆级BGA (eWLB)技术,NANIUM的WLFO是领先的扇出晶圆级封装技术,其散热能力有限,因为所使用的材料,即环氧模具化合物(EMC),最初的目标是工艺能力和机械稳定性,而不是热传导。随着WLFO技术扩展到WLSiP(晶圆级系统级封装)以实现非常高密度的系统集成,热性能成为一个关键因素。在更广泛的范围内,提高散热能力为WLFO技术平台打开了电源应用的大门。WLSiP封装功耗的主要挑战是EMC必须是电绝缘体,这对热传导和与金属散热器的粘合都提出了挑战。模具化合物通常是填充无机填料的有机树脂,而高性能热界面材料(TIM)是为金属-金属界面而设计的,而不是芯片背面复模WLFO封装所需的有机-金属界面。另一个挑战是集成散热器的组装,比封装更大,在批量制造的过程中,产生良好的热传导和可靠的热机械键合。这项工作是欧洲FP7-ICT合作项目NANOTHERM(先进热机械界面的创新纳米和微技术)的一部分,该项目与领先的IDM、OEM、OSAT、材料供应商和学术/研究所组成的联盟一起完成。
{"title":"Fabrication, performance and reliability of a thermally enhanced wafer level fan out demonstrator with integrated heatsink","authors":"A. Cardoso, Hugo Barros, G. Hantos","doi":"10.1109/THERMINIC.2016.7749079","DOIUrl":"https://doi.org/10.1109/THERMINIC.2016.7749079","url":null,"abstract":"The leading Fan-Out Wafer-Level Packaging technology, WLFO by NANIUM, stemmed from Infineon's embedded Wafer-Level BGA (eWLB) technology, has limited heat dissipation capability, as the materials used in, namely the epoxy mold compound (EMC), originally aimed process ability and mechanical stability, but not heat conduction. As WLFO technology expands to WLSiP (Wafer-Level System-in-Package) for very high-density system integration, the thermal performance becomes a critical factor. In a broader scope, improving heat dissipation capabilities opens WLFO technology platform to power applications. The main challenge for power dissipation on WLSiP packaging is that the EMC must be electrical insulator, placing challenges on both heat conduction and bonding to metallic heat spreader. Whereas mold compounds are typically organic resins filled with inorganic fillers, high performance thermal interface material (TIM) are designed for metal-metal interfaces, not for organic-metal interface as required for chip backside overmolded WLFO package. Another challenge is the assembly of an integrated heatsink, over and larger than the package, on a volume manufacturing capable process, to yield both good thermal conduction and reliable thermomechanical bonding. The work done is part of the collaborative European FP7-ICT project NANOTHERM (Innovative Nano and Micro Technologies for Advanced Thermo and Mechanical Interfaces), together with a consortium of leading IDM, OEM, OSAT, material suppliers and academic/institutes.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131004995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1