首页 > 最新文献

Journal of Animal Science and Biotechnology最新文献

英文 中文
Phytobiotics in poultry: revolutionizing broiler chicken nutrition with plant-derived gut health enhancers
IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-12-09 DOI: 10.1186/s40104-024-01101-9
Uchechukwu Edna Obianwuna, Xinyu Chang, Vivian U. Oleforuh-Okoleh, Patience N. Onu, Haijun Zhang, Kai Qiu, Shugeng Wu
As the global population continues to expand, the demand for broiler chicken production to supply safe and high-quality meat is increasing. To meet this ever-growing demand, broiler chickens with enhanced growth performance are being developed, but they often face challenges related to oxidative stress, which can adversely affect gut health. Phytobiotics, which are plant-derived feed additives known for their antimicrobial, antioxidant, immune-modulating, and growth-promoting properties, have emerged as promising natural alternatives to synthetic antibiotics. This review consolidates recent advancements in the use of phytobiotics-derived products from leaves, roots, seeds, flowers, and their extracts in broiler diets reared under standard experimental conditions, without the introduction of stressors. The focus is on elucidating the key mechanisms through which phytobiotics improve gut health, including their effects on gut morphology, integrity, microflora composition, antioxidant capacity, and immune function. The review highlights the potential of phytobiotics to revolutionize broiler nutrition by acting as natural enhancers of gut health. Research findings reveal that phytobiotics significantly improve intestinal health, and boost growth performance, offering a sustainable approach to managing to gut dysfunction. These findings indicate a potential shift in how gut-health related challenges in broilers can be addressed, moving towards natural phytobiotic therapy. However, several challenges persist. Optimizing the dosage of phytobiotics, ensuring consistent performance, and overcoming the limitations related to their extraction and application are key areas requiring further investigation. The review emphasizes the importance of continued research to refine phytobiotic formulations, explore synergistic effects, and incorporate advanced technologies such as AI-driven methods and precision nutrition to tailor feeding strategies more effectively. Additionally, the development of innovative delivery systems, such as nanoencapsulation, is suggested as a way to enhance the effectiveness and reliability of phytobiotics. By highlighting the potential of phytobiotics to revolutionize broiler nutrition, this review supports the poultry industry’s shift towards antibiotic-free and sustainable dietary solutions, offering new perspectives on the future of broiler chicken production.
{"title":"Phytobiotics in poultry: revolutionizing broiler chicken nutrition with plant-derived gut health enhancers","authors":"Uchechukwu Edna Obianwuna, Xinyu Chang, Vivian U. Oleforuh-Okoleh, Patience N. Onu, Haijun Zhang, Kai Qiu, Shugeng Wu","doi":"10.1186/s40104-024-01101-9","DOIUrl":"https://doi.org/10.1186/s40104-024-01101-9","url":null,"abstract":"As the global population continues to expand, the demand for broiler chicken production to supply safe and high-quality meat is increasing. To meet this ever-growing demand, broiler chickens with enhanced growth performance are being developed, but they often face challenges related to oxidative stress, which can adversely affect gut health. Phytobiotics, which are plant-derived feed additives known for their antimicrobial, antioxidant, immune-modulating, and growth-promoting properties, have emerged as promising natural alternatives to synthetic antibiotics. This review consolidates recent advancements in the use of phytobiotics-derived products from leaves, roots, seeds, flowers, and their extracts in broiler diets reared under standard experimental conditions, without the introduction of stressors. The focus is on elucidating the key mechanisms through which phytobiotics improve gut health, including their effects on gut morphology, integrity, microflora composition, antioxidant capacity, and immune function. The review highlights the potential of phytobiotics to revolutionize broiler nutrition by acting as natural enhancers of gut health. Research findings reveal that phytobiotics significantly improve intestinal health, and boost growth performance, offering a sustainable approach to managing to gut dysfunction. These findings indicate a potential shift in how gut-health related challenges in broilers can be addressed, moving towards natural phytobiotic therapy. However, several challenges persist. Optimizing the dosage of phytobiotics, ensuring consistent performance, and overcoming the limitations related to their extraction and application are key areas requiring further investigation. The review emphasizes the importance of continued research to refine phytobiotic formulations, explore synergistic effects, and incorporate advanced technologies such as AI-driven methods and precision nutrition to tailor feeding strategies more effectively. Additionally, the development of innovative delivery systems, such as nanoencapsulation, is suggested as a way to enhance the effectiveness and reliability of phytobiotics. By highlighting the potential of phytobiotics to revolutionize broiler nutrition, this review supports the poultry industry’s shift towards antibiotic-free and sustainable dietary solutions, offering new perspectives on the future of broiler chicken production.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"28 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quercetin mitigates iron-induced cell death in chicken granulosa cell
IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-12-08 DOI: 10.1186/s40104-024-01118-0
Shuo Wei, Felix Kwame Amevor, Xiaxia Du, Linxiang Li, Zhixin Yi, Gang Shu, Yan Wang, Xiaoling Zhao
Granulosa cell (GC) apoptosis, ferroptosis, and other programmed cell death processes are markers of follicular aging. Quercetin has been shown to reduce ferroptosis, however, its effects on ferroptosis in poultry remains unexplored. Our preliminary study identified ferroptosis in aging ovaries. Therefore, in the present study, 540-day-old Mountain Plum-blossom chickens were fed with quercetin supplementation at varying doses (0.2, 0.4, and 0.6 g/kg), and examined its molecular effects on GC ferroptosis using an in vitro Erastin-induced model. The results showed that quercetin supplementation significantly increased egg production, which confirmed its potential to alleviate ferroptosis in chicken ovarian tissue. The in vitro experiment revealed that quercetin and Fer-1 (positive control) mitigated Erastin-induced ferroptosis in GCs. Further, transcriptome analysis revealed that quercetin modulated key genes such as acyl-CoA synthetase long-chain family member 4 (ACSL4), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor (TFRC), involved in ferroptosis regulation. The results further showed that quercetin also reduced Erastin-induced apoptosis and inflammation by modulating the expression of genes and proteins related to apoptosis and inflammatory factors (NF-κB, TNF-α, IL-6, and IL-10). Taken together, the results showed that quercetin improves egg production performance in chickens and mitigates ovarian ferroptosis in aging hens, and inhibits Erastin-induced ferroptosis, inflammation, and apoptosis in GCs. These findings revealed the protective role of quercetin in poultry ovarian tissue and its cellular mechanisms against detrimental factors in poultry production.
{"title":"Quercetin mitigates iron-induced cell death in chicken granulosa cell","authors":"Shuo Wei, Felix Kwame Amevor, Xiaxia Du, Linxiang Li, Zhixin Yi, Gang Shu, Yan Wang, Xiaoling Zhao","doi":"10.1186/s40104-024-01118-0","DOIUrl":"https://doi.org/10.1186/s40104-024-01118-0","url":null,"abstract":"Granulosa cell (GC) apoptosis, ferroptosis, and other programmed cell death processes are markers of follicular aging. Quercetin has been shown to reduce ferroptosis, however, its effects on ferroptosis in poultry remains unexplored. Our preliminary study identified ferroptosis in aging ovaries. Therefore, in the present study, 540-day-old Mountain Plum-blossom chickens were fed with quercetin supplementation at varying doses (0.2, 0.4, and 0.6 g/kg), and examined its molecular effects on GC ferroptosis using an in vitro Erastin-induced model. The results showed that quercetin supplementation significantly increased egg production, which confirmed its potential to alleviate ferroptosis in chicken ovarian tissue. The in vitro experiment revealed that quercetin and Fer-1 (positive control) mitigated Erastin-induced ferroptosis in GCs. Further, transcriptome analysis revealed that quercetin modulated key genes such as acyl-CoA synthetase long-chain family member 4 (ACSL4), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor (TFRC), involved in ferroptosis regulation. The results further showed that quercetin also reduced Erastin-induced apoptosis and inflammation by modulating the expression of genes and proteins related to apoptosis and inflammatory factors (NF-κB, TNF-α, IL-6, and IL-10). Taken together, the results showed that quercetin improves egg production performance in chickens and mitigates ovarian ferroptosis in aging hens, and inhibits Erastin-induced ferroptosis, inflammation, and apoptosis in GCs. These findings revealed the protective role of quercetin in poultry ovarian tissue and its cellular mechanisms against detrimental factors in poultry production. ","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"47 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In ovo sodium butyrate administration differentially impacts growth performance, intestinal barrier function, immune response, and gut microbiota characteristics in low and high hatch-weight broilers
IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-12-07 DOI: 10.1186/s40104-024-01122-4
Muhammad Zeeshan Akram, Nadia Everaert, Aleksandra Dunisławska
Hatch weight (HW) affects broiler growth and low HW (LHW) often leads to suboptimal performance. Sodium butyrate (SB) has been shown to promote growth through enhanced intestinal health. This study investigated how broilers with different HW responded to in ovo SB injection and whether SB could enhance gut health and performance in LHW chicks. Ross 308 broiler eggs were injected on incubation d 12 with physiological saline (control) or SB at 0.1% (SB1), 0.3% (SB3), or 0.5% (SB5). Post-hatch, male chicks from each treatment were categorized as high HW (HHW) or LHW and assigned to 8 groups in a 4 × 2 factorial design. Production parameters were recorded periodically. Intestinal weight, length, and gene expression related to gut barrier function and immune response were examined on d 14 and 42. Cecal microbiota dynamics and predicted functionality were analyzed using 16S rRNA gene sequencing. SB treatments did not affect hatchability. HHW-control group exhibited consistently better weight gain and FCR than LHW-control group. SB dose-dependently influenced performance and gut health in both HW categories, with greater effects in LHW broilers at 0.3%. LHW-SB3 group attained highest body weight on d 42, exceeding controls but not significantly differing from HHW-SB3 group. LHW-SB3 group showed upregulation of gut-barrier genes CLDN1 in ileum, TJP1 in jejunum and anti-inflammatory cytokine IL-10 in both jejunum and ileum on d 14. Additionally, LHW-SB3 group upregulated mucin-producing MUC6 gene in ileum, while HHW-SB5 group increased pro-inflammatory IL-12p40 cytokine in caecum on d 42. LHW-SB3 group demonstrated shorter relative intestinal lengths, while HHW-SB5 had longer lengths. HHW-control group had higher bacterial diversity and growth-promoting bacteria while LHW-control group harbored the potential pathogen Helicobacter. SB reshaped gut microbiota biodiversity, composition, and predicted metabolic pathways in both HW categories. The LHW-SB3 group exhibited highest alpha diversity on d 14 and most beneficial bacteria at all timepoints. HHW-SB5 group presented increased pathogenic Escherichia-Shigella and Campylobacter on d 42. HW significantly affects subsequent performance and SB has differential effects based on HW. LHW chicks benefited more from 0.3% SB, showing improvements in growth, intestinal development, health, and gut microbiota characteristics.
{"title":"In ovo sodium butyrate administration differentially impacts growth performance, intestinal barrier function, immune response, and gut microbiota characteristics in low and high hatch-weight broilers","authors":"Muhammad Zeeshan Akram, Nadia Everaert, Aleksandra Dunisławska","doi":"10.1186/s40104-024-01122-4","DOIUrl":"https://doi.org/10.1186/s40104-024-01122-4","url":null,"abstract":"Hatch weight (HW) affects broiler growth and low HW (LHW) often leads to suboptimal performance. Sodium butyrate (SB) has been shown to promote growth through enhanced intestinal health. This study investigated how broilers with different HW responded to in ovo SB injection and whether SB could enhance gut health and performance in LHW chicks. Ross 308 broiler eggs were injected on incubation d 12 with physiological saline (control) or SB at 0.1% (SB1), 0.3% (SB3), or 0.5% (SB5). Post-hatch, male chicks from each treatment were categorized as high HW (HHW) or LHW and assigned to 8 groups in a 4 × 2 factorial design. Production parameters were recorded periodically. Intestinal weight, length, and gene expression related to gut barrier function and immune response were examined on d 14 and 42. Cecal microbiota dynamics and predicted functionality were analyzed using 16S rRNA gene sequencing. SB treatments did not affect hatchability. HHW-control group exhibited consistently better weight gain and FCR than LHW-control group. SB dose-dependently influenced performance and gut health in both HW categories, with greater effects in LHW broilers at 0.3%. LHW-SB3 group attained highest body weight on d 42, exceeding controls but not significantly differing from HHW-SB3 group. LHW-SB3 group showed upregulation of gut-barrier genes CLDN1 in ileum, TJP1 in jejunum and anti-inflammatory cytokine IL-10 in both jejunum and ileum on d 14. Additionally, LHW-SB3 group upregulated mucin-producing MUC6 gene in ileum, while HHW-SB5 group increased pro-inflammatory IL-12p40 cytokine in caecum on d 42. LHW-SB3 group demonstrated shorter relative intestinal lengths, while HHW-SB5 had longer lengths. HHW-control group had higher bacterial diversity and growth-promoting bacteria while LHW-control group harbored the potential pathogen Helicobacter. SB reshaped gut microbiota biodiversity, composition, and predicted metabolic pathways in both HW categories. The LHW-SB3 group exhibited highest alpha diversity on d 14 and most beneficial bacteria at all timepoints. HHW-SB5 group presented increased pathogenic Escherichia-Shigella and Campylobacter on d 42. HW significantly affects subsequent performance and SB has differential effects based on HW. LHW chicks benefited more from 0.3% SB, showing improvements in growth, intestinal development, health, and gut microbiota characteristics.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"12 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Embelin alleviates weaned piglets intestinal inflammation and barrier dysfunction via PCAF/NF-κB signaling pathway in intestinal epithelial cells
IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-12-06 DOI: 10.1186/s40104-024-01130-4
Weilei Yao, Tongxin Wang, Lu Huang, Zhengxi Bao, Shu Wen, Feiruo Huang
This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1186/s40104-022-00787-z.
{"title":"Retraction Note: Embelin alleviates weaned piglets intestinal inflammation and barrier dysfunction via PCAF/NF-κB signaling pathway in intestinal epithelial cells","authors":"Weilei Yao, Tongxin Wang, Lu Huang, Zhengxi Bao, Shu Wen, Feiruo Huang","doi":"10.1186/s40104-024-01130-4","DOIUrl":"https://doi.org/10.1186/s40104-024-01130-4","url":null,"abstract":"This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1186/s40104-022-00787-z.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"16 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole-genome resequencing to investigate the genetic diversity and mechanisms of plateau adaptation in Tibetan sheep
IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-12-06 DOI: 10.1186/s40104-024-01125-1
Xue Li, Buying Han, Dehui Liu, Song Wang, Lei Wang, Quanbang Pei, Zian Zhang, Jincai Zhao, Bin Huang, Fuqiang Zhang, Kai Zhao, Dehong Tian
Tibetan sheep, economically important animals on the Qinghai–Tibet Plateau, have diversified into numerous local breeds with unique characteristics through prolonged environmental adaptation and selective breeding. However, most current research focuses on one or two breeds, and lacks a comprehensive representation of the genetic diversity across multiple Tibetan sheep breeds. This study aims to fill this gap by investigating the genetic structure, diversity and high-altitude adaptation of 6 Tibetan sheep breeds using whole-genome resequencing data. Six Tibetan sheep breeds were investigated in this study, and whole-genome resequencing data were used to investigate their genetic structure and population diversity. The results showed that the 6 Tibetan sheep breeds exhibited distinct separation in the phylogenetic tree; however, the levels of differentiation among the breeds were minimal, with extensive gene flow observed. Population structure analysis broadly categorized the 6 breeds into 3 distinct ecological types: plateau-type, valley-type and Euler-type. Analysis of unique single-nucleotide polymorphisms (SNPs) and selective sweeps between Argali and Tibetan sheep revealed that Tibetan sheep domestication was associated primarily with sensory and signal transduction, nutrient absorption and metabolism, and growth and reproductive characteristics. Finally, comprehensive analysis of selective sweep and transcriptome data suggested that Tibetan sheep breeds inhabiting different altitudes on the Qinghai–Tibet Plateau adapt by enhancing cardiopulmonary function, regulating body fluid balance through renal reabsorption, and modifying nutrient digestion and absorption pathways. In this study, we investigated the genetic diversity and population structure of 6 Tibetan sheep breeds in Qinghai Province, China. Additionally, we analyzed the domestication traits and investigated the unique adaptation mechanisms residing varying altitudes in the plateau region of Tibetan sheep. This study provides valuable insights into the evolutionary processes of Tibetan sheep in extreme environments. These findings will also contribute to the preservation of genetic diversity and offer a foundation for Tibetan sheep diversity preservation and plateau animal environmental adaptation mechanisms.
{"title":"Whole-genome resequencing to investigate the genetic diversity and mechanisms of plateau adaptation in Tibetan sheep","authors":"Xue Li, Buying Han, Dehui Liu, Song Wang, Lei Wang, Quanbang Pei, Zian Zhang, Jincai Zhao, Bin Huang, Fuqiang Zhang, Kai Zhao, Dehong Tian","doi":"10.1186/s40104-024-01125-1","DOIUrl":"https://doi.org/10.1186/s40104-024-01125-1","url":null,"abstract":"Tibetan sheep, economically important animals on the Qinghai–Tibet Plateau, have diversified into numerous local breeds with unique characteristics through prolonged environmental adaptation and selective breeding. However, most current research focuses on one or two breeds, and lacks a comprehensive representation of the genetic diversity across multiple Tibetan sheep breeds. This study aims to fill this gap by investigating the genetic structure, diversity and high-altitude adaptation of 6 Tibetan sheep breeds using whole-genome resequencing data. Six Tibetan sheep breeds were investigated in this study, and whole-genome resequencing data were used to investigate their genetic structure and population diversity. The results showed that the 6 Tibetan sheep breeds exhibited distinct separation in the phylogenetic tree; however, the levels of differentiation among the breeds were minimal, with extensive gene flow observed. Population structure analysis broadly categorized the 6 breeds into 3 distinct ecological types: plateau-type, valley-type and Euler-type. Analysis of unique single-nucleotide polymorphisms (SNPs) and selective sweeps between Argali and Tibetan sheep revealed that Tibetan sheep domestication was associated primarily with sensory and signal transduction, nutrient absorption and metabolism, and growth and reproductive characteristics. Finally, comprehensive analysis of selective sweep and transcriptome data suggested that Tibetan sheep breeds inhabiting different altitudes on the Qinghai–Tibet Plateau adapt by enhancing cardiopulmonary function, regulating body fluid balance through renal reabsorption, and modifying nutrient digestion and absorption pathways. In this study, we investigated the genetic diversity and population structure of 6 Tibetan sheep breeds in Qinghai Province, China. Additionally, we analyzed the domestication traits and investigated the unique adaptation mechanisms residing varying altitudes in the plateau region of Tibetan sheep. This study provides valuable insights into the evolutionary processes of Tibetan sheep in extreme environments. These findings will also contribute to the preservation of genetic diversity and offer a foundation for Tibetan sheep diversity preservation and plateau animal environmental adaptation mechanisms.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"31 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of maternal feeding of clofibrate on hepatic fatty acid metabolism in suckling piglet
IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-12-05 DOI: 10.1186/s40104-024-01104-6
Jinan Zhao, Brandon Pike, Feng Wang, Lin Yang, Paige Meisner, Yanling Huang, Jack Odle, Xi Lin
Energy deficiency is a leading cause of the high pre-weaning mortality of neonatal piglets in the swine industry. Thus, optimal energy metabolism is of crucial importance for improving the survivability of neonatal piglets. The effective utilization of milk fat as primary energy is indispensably required. Pregnant sows (n = 27) were randomly assigned into 3 treatments. Each treatment received a standard diet (3,265 kcal ME/kg) supplemented with either 0, 0.25% or 0.5% clofibrate (w/w) from d 107 of gestation to d 7 of lactation. The effects of maternal clofibrate on their milk fatty acid (FA) and performance of the piglets were evaluated. The evaluations were performed via measuring sow productive performance, milk FA composition, and hepatic FA oxidation of the piglets at birth and d 1, 7, 14 and 19 after birth. Maternal supplementation of clofibrate had no effect on reproductive performance of the sows at farrowing and weaning (P > 0.05). However, the mortality at weaning was reduced for piglets from sows with 0.25% of clofibrate, and the average weekly (and daily) gain was higher in piglets from sows that received clofibrate than sows without clofibrate in the first week (P < 0.0001). Maternal clofibrate increased percentage of milk C12:0 and C14:0 FAs but decreased C18:2 and n-6 polyunsaturated FAs. Maternal clofibrate also increased plasma ketone body levels and hepatic FA oxidation measured at the first day of birth, but the increase was not detected in piglets on d 7, 14 or 19. Clofibrate was not detected in milk collected from the clofibrate-treated sows. The percentage of FA oxidation decreased, and the percentage of FA esterification increased with increasing in postnatal age. Supplemental carnitine increased FA oxidation regardless of succinate dehydrogenase inhibition, and the increase had no effect on FA esterification. Maternal supplementation of clofibrate during late gestation and early lactation increases hepatic FA oxidative metabolism at birth and improves growth performance of newborn piglets. Maternal clofibrate transfer to suckling piglets via milk was not detected. Carnitine availability is critical for piglets to maintain a high FA oxidation rate during the suckling period.
{"title":"Effects of maternal feeding of clofibrate on hepatic fatty acid metabolism in suckling piglet","authors":"Jinan Zhao, Brandon Pike, Feng Wang, Lin Yang, Paige Meisner, Yanling Huang, Jack Odle, Xi Lin","doi":"10.1186/s40104-024-01104-6","DOIUrl":"https://doi.org/10.1186/s40104-024-01104-6","url":null,"abstract":"Energy deficiency is a leading cause of the high pre-weaning mortality of neonatal piglets in the swine industry. Thus, optimal energy metabolism is of crucial importance for improving the survivability of neonatal piglets. The effective utilization of milk fat as primary energy is indispensably required. Pregnant sows (n = 27) were randomly assigned into 3 treatments. Each treatment received a standard diet (3,265 kcal ME/kg) supplemented with either 0, 0.25% or 0.5% clofibrate (w/w) from d 107 of gestation to d 7 of lactation. The effects of maternal clofibrate on their milk fatty acid (FA) and performance of the piglets were evaluated. The evaluations were performed via measuring sow productive performance, milk FA composition, and hepatic FA oxidation of the piglets at birth and d 1, 7, 14 and 19 after birth. Maternal supplementation of clofibrate had no effect on reproductive performance of the sows at farrowing and weaning (P > 0.05). However, the mortality at weaning was reduced for piglets from sows with 0.25% of clofibrate, and the average weekly (and daily) gain was higher in piglets from sows that received clofibrate than sows without clofibrate in the first week (P < 0.0001). Maternal clofibrate increased percentage of milk C12:0 and C14:0 FAs but decreased C18:2 and n-6 polyunsaturated FAs. Maternal clofibrate also increased plasma ketone body levels and hepatic FA oxidation measured at the first day of birth, but the increase was not detected in piglets on d 7, 14 or 19. Clofibrate was not detected in milk collected from the clofibrate-treated sows. The percentage of FA oxidation decreased, and the percentage of FA esterification increased with increasing in postnatal age. Supplemental carnitine increased FA oxidation regardless of succinate dehydrogenase inhibition, and the increase had no effect on FA esterification. Maternal supplementation of clofibrate during late gestation and early lactation increases hepatic FA oxidative metabolism at birth and improves growth performance of newborn piglets. Maternal clofibrate transfer to suckling piglets via milk was not detected. Carnitine availability is critical for piglets to maintain a high FA oxidation rate during the suckling period.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"87 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of the porcine genome mobile element variations and investigation of its role in population diversity and gene expression
IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-12-04 DOI: 10.1186/s40104-024-01121-5
Jianchao Hu, Lu Gui, Zhongzi Wu, Lusheng Huang
Mobile element variants (MEVs) have a significant and complex impact on genomic diversity and phenotypic traits. However, the quantity, distribution, and relationship with gene expression and complex traits of MEVs in the pig genome remain poorly understood. We constructed the most comprehensive porcine MEV library based on high-depth whole genome sequencing (WGS) data from 747 pigs across 59 breeds worldwide. This database identified a total of 147,993 polymorphic MEVs, including 121,099 short interspersed nuclear elements (SINEs), 26,053 long interspersed nuclear elements (LINEs), 802 long terminal repeats (LTRs), and 39 other transposons, among which 54% are newly discovered. We found that MEVs are unevenly distributed across the genome and are strongly influenced by negative selection effects. Importantly, we identified 514, 530, and 584 candidate MEVs associated with population differentiation, domestication, and breed formation, respectively. For example, a significantly differentiated MEV is located in the ATRX intron between Asian and European pigs, whereas ATRX is also differentially expressed between Asian and European pigs in muscle tissue. In addition, we identified 4,169 expressed MEVs (eMEVs) significantly associated with gene expression and 6,914 splicing MEVs (sMEVs) associated with gene splicing based on RNA-seq data from 266 porcine liver tissues. These eMEVs and sMEVs explain 6.24% and 9.47%, respectively, of the observed cis-heritability and highlight the important role of MEVs in the regulation of gene expression. Finally, we provide a high-quality SNP–MEV reference haplotype panel to impute MEV genotypes from genome-wide SNPs. Notably, we identified a candidate MEV significantly associated with total teat number, demonstrating the functionality of this reference panel. The present investigation demonstrated the importance of MEVs in pigs in terms of population diversity, gene expression and phenotypic traits, which may provide useful resources and theoretical support for pig genetics and breeding.
{"title":"Construction of the porcine genome mobile element variations and investigation of its role in population diversity and gene expression","authors":"Jianchao Hu, Lu Gui, Zhongzi Wu, Lusheng Huang","doi":"10.1186/s40104-024-01121-5","DOIUrl":"https://doi.org/10.1186/s40104-024-01121-5","url":null,"abstract":"Mobile element variants (MEVs) have a significant and complex impact on genomic diversity and phenotypic traits. However, the quantity, distribution, and relationship with gene expression and complex traits of MEVs in the pig genome remain poorly understood. We constructed the most comprehensive porcine MEV library based on high-depth whole genome sequencing (WGS) data from 747 pigs across 59 breeds worldwide. This database identified a total of 147,993 polymorphic MEVs, including 121,099 short interspersed nuclear elements (SINEs), 26,053 long interspersed nuclear elements (LINEs), 802 long terminal repeats (LTRs), and 39 other transposons, among which 54% are newly discovered. We found that MEVs are unevenly distributed across the genome and are strongly influenced by negative selection effects. Importantly, we identified 514, 530, and 584 candidate MEVs associated with population differentiation, domestication, and breed formation, respectively. For example, a significantly differentiated MEV is located in the ATRX intron between Asian and European pigs, whereas ATRX is also differentially expressed between Asian and European pigs in muscle tissue. In addition, we identified 4,169 expressed MEVs (eMEVs) significantly associated with gene expression and 6,914 splicing MEVs (sMEVs) associated with gene splicing based on RNA-seq data from 266 porcine liver tissues. These eMEVs and sMEVs explain 6.24% and 9.47%, respectively, of the observed cis-heritability and highlight the important role of MEVs in the regulation of gene expression. Finally, we provide a high-quality SNP–MEV reference haplotype panel to impute MEV genotypes from genome-wide SNPs. Notably, we identified a candidate MEV significantly associated with total teat number, demonstrating the functionality of this reference panel. The present investigation demonstrated the importance of MEVs in pigs in terms of population diversity, gene expression and phenotypic traits, which may provide useful resources and theoretical support for pig genetics and breeding.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"37 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Necroptosis contributes to deoxynivalenol-induced liver injury and inflammation in weaned piglets
IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-12-03 DOI: 10.1186/s40104-024-01117-1
Qilong Xu, Hanqiu Gong, Mohan Zhou, Junjie Guo, Shaokui Chen, Kan Xiao, Yulan Liu
The aim of this study was to investigate the role of necroptosis in deoxynivalenol (DON)-induced liver injury and inflammation in weaned piglets. In Exp. 1, 12 weaned piglets were divided into 2 groups including pigs fed basal diet and pigs fed diet contaminated with 4 mg/kg DON for 21 d. In Exp. 2, 12 weaned piglets were divided into 2 groups including control piglets and piglets given a gavage of 2 mg/kg body weight (BW) DON. In Exp. 3, 24 weaned piglets were used in a 2 × 2 factorial design and the main factors including necrostatin-1 (Nec-1) (DMSO or 0.5 mg/kg BW Nec-1) and DON challenge (saline or 2 mg/kg BW DON gavage). On 21 d in Exp. 1, or at 6 h post DON gavage in Exp. 2 and 3, pigs were killed for blood samples and liver tissues. Liver histology, blood biochemical indicators, and liver inflammation and necroptosis signals were tested. Dietary or oral gavage with DON caused liver morphological damage in piglets. Dietary DON led to hepatocyte damage indicated by increased aspartate transaminase (AST) activity and AST/alanine aminotransferase (ALT) ratio, and DON gavage also caused hepatocyte damage and cholestasis indicated by increased AST and alkaline phosphatase (AKP) activities. Dietary DON caused liver necroptosis indicated by increased protein abundance of total receptor interacting protein kinase 3 (t-RIP3) and total mixed lineage kinase domain-like protein (t-MLKL). Moreover, DON gavage increased mRNA expression of interleukin (IL)-6 and IL-1β in liver. DON gavage also induced liver necroptosis demonstrated by increased protein abundance of t-RIP3, phosphorylated-RIP3 (p-RIP3), t-MLKL and p-MLKL. However, pretreatment with Nec-1, a specific inhibitor of necroptosis, inhibited liver necroptosis indicated by decreased protein expression of t-RIP3, p-RIP3, t-MLKL and p-MLKL. Nec-1 pretreatment reduced liver morphological damage after DON gavage. Pretreatment with Nec-1 also attenuated liver damage induced by DON indicated by decreased activities of AST and AKP. Furthermore, Nec-1 pretreatment inhibited liver mRNA expression of IL-6 and IL-1β after DON challenge. Our data demonstrate for the first time that necroptosis contributes to DON-induced liver injury and inflammation in piglets.
{"title":"Necroptosis contributes to deoxynivalenol-induced liver injury and inflammation in weaned piglets","authors":"Qilong Xu, Hanqiu Gong, Mohan Zhou, Junjie Guo, Shaokui Chen, Kan Xiao, Yulan Liu","doi":"10.1186/s40104-024-01117-1","DOIUrl":"https://doi.org/10.1186/s40104-024-01117-1","url":null,"abstract":"The aim of this study was to investigate the role of necroptosis in deoxynivalenol (DON)-induced liver injury and inflammation in weaned piglets. In Exp. 1, 12 weaned piglets were divided into 2 groups including pigs fed basal diet and pigs fed diet contaminated with 4 mg/kg DON for 21 d. In Exp. 2, 12 weaned piglets were divided into 2 groups including control piglets and piglets given a gavage of 2 mg/kg body weight (BW) DON. In Exp. 3, 24 weaned piglets were used in a 2 × 2 factorial design and the main factors including necrostatin-1 (Nec-1) (DMSO or 0.5 mg/kg BW Nec-1) and DON challenge (saline or 2 mg/kg BW DON gavage). On 21 d in Exp. 1, or at 6 h post DON gavage in Exp. 2 and 3, pigs were killed for blood samples and liver tissues. Liver histology, blood biochemical indicators, and liver inflammation and necroptosis signals were tested. Dietary or oral gavage with DON caused liver morphological damage in piglets. Dietary DON led to hepatocyte damage indicated by increased aspartate transaminase (AST) activity and AST/alanine aminotransferase (ALT) ratio, and DON gavage also caused hepatocyte damage and cholestasis indicated by increased AST and alkaline phosphatase (AKP) activities. Dietary DON caused liver necroptosis indicated by increased protein abundance of total receptor interacting protein kinase 3 (t-RIP3) and total mixed lineage kinase domain-like protein (t-MLKL). Moreover, DON gavage increased mRNA expression of interleukin (IL)-6 and IL-1β in liver. DON gavage also induced liver necroptosis demonstrated by increased protein abundance of t-RIP3, phosphorylated-RIP3 (p-RIP3), t-MLKL and p-MLKL. However, pretreatment with Nec-1, a specific inhibitor of necroptosis, inhibited liver necroptosis indicated by decreased protein expression of t-RIP3, p-RIP3, t-MLKL and p-MLKL. Nec-1 pretreatment reduced liver morphological damage after DON gavage. Pretreatment with Nec-1 also attenuated liver damage induced by DON indicated by decreased activities of AST and AKP. Furthermore, Nec-1 pretreatment inhibited liver mRNA expression of IL-6 and IL-1β after DON challenge. Our data demonstrate for the first time that necroptosis contributes to DON-induced liver injury and inflammation in piglets.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"198 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142759924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chlorogenic acid alleviates IPEC-J2 pyroptosis induced by deoxynivalenol by inhibiting activation of the NF-κB/NLRP3/caspase-1 pathway
IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-12-02 DOI: 10.1186/s40104-024-01119-z
Yanmei Xue, Fuchang Li, Rui Li, Xinru Zhang, Huijun Guo, Chunyang Wang
Deoxynivalenol (DON) is a mycotoxin that severely pollutes feed ingredients, and methods for reducing DON toxicity have become a significant research direction. Chlorogenic acid (CGA) is an active polyphenol found in some plants, which has anti-inflammatory and antioxidant properties and a protective effect on animal intestinal health. The effects of CGA on DON-induced pyroptosis in the intestinal porcine epithelial cell line-J2 (IPEC-J2) and its potential mechanism were explored in this study. IPEC-J2 cells viability and membrane integrity were inversely correlated with DON concentration. Compared to those in the group treated with DON alone at 2,500 ng/mL, pretreatment with 80 μmol/L CGA for 4 h significantly improved cell viability (P < 0.01), and the alleviation of typical pyroptotic symptoms induced by DON were observed, including reduced cellular DNA fragmentation, decreased release of lactate dehydrogenase (LDH), normalized ROS levels, restoration of extracellular Ca2+ and K+ contents to normal levels (P < 0.01 ), as well as suppressed the enzyme activities of caspase-1 and caspase-4 (P < 0.01). Additionally, the mRNA expression levels of TNF, MDP, NOD2, TLR4, ASC and GSDMD were significantly improved (P < 0.01), while both mRNA and protein expression levels of NF-κB, NLRP3, caspase-1, IL-1β and IL-18 were significantly upregulated (P < 0.01) in the CGA + DON group, compare to those in the DON group. Pretreatment with 80 μmol/L CGA for 4 h effectively alleviated pyroptosis in IPEC-J2 cells induced by 2,500 ng/mL of DON through inhibiting activation of the NF-κB/ NLRP3/capase-1 pathway.
{"title":"Chlorogenic acid alleviates IPEC-J2 pyroptosis induced by deoxynivalenol by inhibiting activation of the NF-κB/NLRP3/caspase-1 pathway","authors":"Yanmei Xue, Fuchang Li, Rui Li, Xinru Zhang, Huijun Guo, Chunyang Wang","doi":"10.1186/s40104-024-01119-z","DOIUrl":"https://doi.org/10.1186/s40104-024-01119-z","url":null,"abstract":"Deoxynivalenol (DON) is a mycotoxin that severely pollutes feed ingredients, and methods for reducing DON toxicity have become a significant research direction. Chlorogenic acid (CGA) is an active polyphenol found in some plants, which has anti-inflammatory and antioxidant properties and a protective effect on animal intestinal health. The effects of CGA on DON-induced pyroptosis in the intestinal porcine epithelial cell line-J2 (IPEC-J2) and its potential mechanism were explored in this study. IPEC-J2 cells viability and membrane integrity were inversely correlated with DON concentration. Compared to those in the group treated with DON alone at 2,500 ng/mL, pretreatment with 80 μmol/L CGA for 4 h significantly improved cell viability (P < 0.01), and the alleviation of typical pyroptotic symptoms induced by DON were observed, including reduced cellular DNA fragmentation, decreased release of lactate dehydrogenase (LDH), normalized ROS levels, restoration of extracellular Ca2+ and K+ contents to normal levels (P < 0.01 ), as well as suppressed the enzyme activities of caspase-1 and caspase-4 (P < 0.01). Additionally, the mRNA expression levels of TNF, MDP, NOD2, TLR4, ASC and GSDMD were significantly improved (P < 0.01), while both mRNA and protein expression levels of NF-κB, NLRP3, caspase-1, IL-1β and IL-18 were significantly upregulated (P < 0.01) in the CGA + DON group, compare to those in the DON group. Pretreatment with 80 μmol/L CGA for 4 h effectively alleviated pyroptosis in IPEC-J2 cells induced by 2,500 ng/mL of DON through inhibiting activation of the NF-κB/ NLRP3/capase-1 pathway.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"3 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Dietary garcinol supplementation improves diarrhea and intestinal barrier function associated with its modulation of gut microbiota in weaned piglets
IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-12-02 DOI: 10.1186/s40104-024-01134-0
Tongxin Wang, Weilei Yao, Juan Li, Yafei Shao, Qiongyu He, Jun Xia, Feiruo Huang
This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1186/s40104-020-0426-6.
{"title":"Retraction Note: Dietary garcinol supplementation improves diarrhea and intestinal barrier function associated with its modulation of gut microbiota in weaned piglets","authors":"Tongxin Wang, Weilei Yao, Juan Li, Yafei Shao, Qiongyu He, Jun Xia, Feiruo Huang","doi":"10.1186/s40104-024-01134-0","DOIUrl":"https://doi.org/10.1186/s40104-024-01134-0","url":null,"abstract":"This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1186/s40104-020-0426-6.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"75 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Animal Science and Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1