Pub Date : 2024-05-03DOI: 10.1186/s40104-024-01018-3
Heng Yang, Xiangqi Fan, Xiangbing Mao, Bing Yu, Jun He, Hui Yan, Jianping Wang
Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines have no obvious efficiency in some countries. Via analyzing the pathogenesis of rotavirus, it inducing diarrhea is mainly due to disturb enteric nervous system, destroy gut mucosal integrity, induce intracellular electrolyte imbalance, and impair gut microbiota and immunity. Many studies have already proved that prebiotics and probiotics can mitigate the damage and diarrhea induced by rotavirus infection in hosts. Based on these, the current review summarizes and discusses the effects and mechanisms of prebiotics and probiotics on rotavirus-induced diarrhea in piglets. This information will highlight the basis for the swine production utilization of prebiotics and probiotics in the prevention or treatment of rotavirus infection in the future.
{"title":"The protective role of prebiotics and probiotics on diarrhea and gut damage in the rotavirus-infected piglets","authors":"Heng Yang, Xiangqi Fan, Xiangbing Mao, Bing Yu, Jun He, Hui Yan, Jianping Wang","doi":"10.1186/s40104-024-01018-3","DOIUrl":"https://doi.org/10.1186/s40104-024-01018-3","url":null,"abstract":"Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines have no obvious efficiency in some countries. Via analyzing the pathogenesis of rotavirus, it inducing diarrhea is mainly due to disturb enteric nervous system, destroy gut mucosal integrity, induce intracellular electrolyte imbalance, and impair gut microbiota and immunity. Many studies have already proved that prebiotics and probiotics can mitigate the damage and diarrhea induced by rotavirus infection in hosts. Based on these, the current review summarizes and discusses the effects and mechanisms of prebiotics and probiotics on rotavirus-induced diarrhea in piglets. This information will highlight the basis for the swine production utilization of prebiotics and probiotics in the prevention or treatment of rotavirus infection in the future.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02DOI: 10.1186/s40104-024-01016-5
Guangliang Gao, Rui Liu, Silu Hu, Mengnan He, Jiaman Zhang, Dengfeng Gao, Jing Li, Jiwei Hu, Jiwen Wang, Qigui Wang, Mingzhou Li, Long Jin
Goose, descendants of migratory ancestors, have undergone extensive selective breeding, resulting in their remarkable ability to accumulate fat in the liver and exhibit a high tolerance for significant energy intake. As a result, goose offers an excellent model for studying obesity, metabolic disorders, and liver diseases in mammals. Although the impact of the three-dimensional arrangement of chromatin within the cell nucleus on gene expression and transcriptional regulation is widely acknowledged, the precise functions of chromatin architecture reorganization during fat deposition in goose liver tissues still need to be fully comprehended. In this study, geese exhibited more pronounced changes in the liver index and triglyceride (TG) content following the consumption of the high-fat diet (HFD) than mice without significant signs of inflammation. Additionally, we performed comprehensive analyses on 10 goose liver tissues (5 HFD, 5 normal), including generating high-resolution maps of chromatin architecture, conducting whole-genome gene expression profiling, and identifying H3K27ac peaks in the livers of geese and mice subjected to the HFD. Our results unveiled a multiscale restructuring of chromatin architecture, encompassing Compartment A/B, topologically associated domains, and interactions between promoters and enhancers. The dynamism of the three-dimensional genome architecture, prompted by the HFD, assumed a pivotal role in the transcriptional regulation of crucial genes. Furthermore, we identified genes that regulate chromatin conformation changes, contributing to the metabolic adaptation process of lipid deposition and hepatic fat changes in geese in response to excessive energy intake. Moreover, we conducted a cross-species analysis comparing geese and mice exposed to the HFD, revealing unique characteristics specific to the goose liver compared to a mouse. These chromatin conformation changes help elucidate the observed characteristics of fat deposition and hepatic fat regulation in geese under conditions of excessive energy intake. We examined the dynamic modifications in three-dimensional chromatin architecture and gene expression induced by an HFD in goose liver tissues. We conducted a cross-species analysis comparing that of mice. Our results contribute significant insights into the chromatin architecture of goose liver tissues, offering a novel perspective for investigating mammal liver diseases.
{"title":"Exploring the dynamic three-dimensional chromatin architecture and transcriptional landscape in goose liver tissues underlying metabolic adaptations induced by a high-fat diet","authors":"Guangliang Gao, Rui Liu, Silu Hu, Mengnan He, Jiaman Zhang, Dengfeng Gao, Jing Li, Jiwei Hu, Jiwen Wang, Qigui Wang, Mingzhou Li, Long Jin","doi":"10.1186/s40104-024-01016-5","DOIUrl":"https://doi.org/10.1186/s40104-024-01016-5","url":null,"abstract":"Goose, descendants of migratory ancestors, have undergone extensive selective breeding, resulting in their remarkable ability to accumulate fat in the liver and exhibit a high tolerance for significant energy intake. As a result, goose offers an excellent model for studying obesity, metabolic disorders, and liver diseases in mammals. Although the impact of the three-dimensional arrangement of chromatin within the cell nucleus on gene expression and transcriptional regulation is widely acknowledged, the precise functions of chromatin architecture reorganization during fat deposition in goose liver tissues still need to be fully comprehended. In this study, geese exhibited more pronounced changes in the liver index and triglyceride (TG) content following the consumption of the high-fat diet (HFD) than mice without significant signs of inflammation. Additionally, we performed comprehensive analyses on 10 goose liver tissues (5 HFD, 5 normal), including generating high-resolution maps of chromatin architecture, conducting whole-genome gene expression profiling, and identifying H3K27ac peaks in the livers of geese and mice subjected to the HFD. Our results unveiled a multiscale restructuring of chromatin architecture, encompassing Compartment A/B, topologically associated domains, and interactions between promoters and enhancers. The dynamism of the three-dimensional genome architecture, prompted by the HFD, assumed a pivotal role in the transcriptional regulation of crucial genes. Furthermore, we identified genes that regulate chromatin conformation changes, contributing to the metabolic adaptation process of lipid deposition and hepatic fat changes in geese in response to excessive energy intake. Moreover, we conducted a cross-species analysis comparing geese and mice exposed to the HFD, revealing unique characteristics specific to the goose liver compared to a mouse. These chromatin conformation changes help elucidate the observed characteristics of fat deposition and hepatic fat regulation in geese under conditions of excessive energy intake. We examined the dynamic modifications in three-dimensional chromatin architecture and gene expression induced by an HFD in goose liver tissues. We conducted a cross-species analysis comparing that of mice. Our results contribute significant insights into the chromatin architecture of goose liver tissues, offering a novel perspective for investigating mammal liver diseases.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"10 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Finding out how diet impacts health and metabolism while concentrating on the functional qualities and bioactive components of food is the crucial scientific objective of nutritional research. The complex relationship between metabolism and nutrition could be investigated with cutting-edge "omics" and bioinformatics techniques. This review paper provides an overview of the use of omics technologies in nutritional research, with a particular emphasis on the new applications of transcriptomics, proteomics, metabolomics, and genomes in functional and biological activity research on ruminant livestock and products in the tropical regions. A wealth of knowledge has been uncovered regarding the regulation and use of numerous physiological and pathological processes by gene, mRNA, protein, and metabolite expressions under various physiological situations and guidelines. In particular, the components of meat and milk were assessed using omics research utilizing the various methods of transcriptomics, proteomics, metabolomics, and genomes. The goal of this review is to use omics technologies—which have been steadily gaining popularity as technological tools—to develop new nutritional, genetic, and leadership strategies to improve animal products and their quality control. We also present an overview of the new applications of omics technologies in cattle production and employ nutriomics and foodomics technologies to investigate the microbes in the rumen ecology. Thus, the application of state-of-the-art omics technology may aid in our understanding of how species and/or breeds adapt, and the sustainability of tropical animal production, in the long run, is becoming increasingly important as a means of mitigating the consequences of climate change.
{"title":"The application of omics technologies for understanding tropical plants-based bioactive compounds in ruminants: a review","authors":"Metha Wanapat, Gamonmas Dagaew, Sukruthai Sommai, Maharach Matra, Chaichana Suriyapha, Rittikeard Prachumchai, Uswatun Muslykhah, Srisan Phupaboon","doi":"10.1186/s40104-024-01017-4","DOIUrl":"https://doi.org/10.1186/s40104-024-01017-4","url":null,"abstract":"Finding out how diet impacts health and metabolism while concentrating on the functional qualities and bioactive components of food is the crucial scientific objective of nutritional research. The complex relationship between metabolism and nutrition could be investigated with cutting-edge \"omics\" and bioinformatics techniques. This review paper provides an overview of the use of omics technologies in nutritional research, with a particular emphasis on the new applications of transcriptomics, proteomics, metabolomics, and genomes in functional and biological activity research on ruminant livestock and products in the tropical regions. A wealth of knowledge has been uncovered regarding the regulation and use of numerous physiological and pathological processes by gene, mRNA, protein, and metabolite expressions under various physiological situations and guidelines. In particular, the components of meat and milk were assessed using omics research utilizing the various methods of transcriptomics, proteomics, metabolomics, and genomes. The goal of this review is to use omics technologies—which have been steadily gaining popularity as technological tools—to develop new nutritional, genetic, and leadership strategies to improve animal products and their quality control. We also present an overview of the new applications of omics technologies in cattle production and employ nutriomics and foodomics technologies to investigate the microbes in the rumen ecology. Thus, the application of state-of-the-art omics technology may aid in our understanding of how species and/or breeds adapt, and the sustainability of tropical animal production, in the long run, is becoming increasingly important as a means of mitigating the consequences of climate change.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"131 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.1186/s40104-024-01035-2
Rosane Mazzarella, Karina Cañón-Beltrán, Yulia N. Cajas, Meriem Hamdi, Encina M. González, Juliano C. da Silveira, Claudia L. V. Leal, D. Rizos
Correction: J Animal Sci Biotechnol 15, 51 (2024)
https://doi.org/10.1186/s40104-024-01008-5
Following publication of the original article [1], the authors reported that the last two sentences were mistakenly placed at the end of the Results section in the Abstract which should have been placed at the beginning of this section.
The original Results section in the Abstract was:
From the 20 differentially expressed miRNAs, 19 up-regulated in UF-EVs (bta-miR-134, bta-miR-151-3p, bta-miR-155, bta-miR-188, bta-miR-181b, bta-miR-181d, bta-miR-224, bta-miR-23b-3p, bta-miR-24-3p, bta-miR-27a-3p, bta-miR-29a, bta-miR-324, bta-miR-326, bta-miR-345-3p, bta-miR-410, bta-miR-652, bta-miR-677, bta-miR-873 and bta-miR-708) and one (bta-miR-148b) in OF-EVs. These miRNAs were predicted to modulate several pathways such as Wnt, Hippo, MAPK, and lipid metabolism and degradation. Differences in miRNAs found in OF-EVs from the early luteal phase and UF-EVs from mid-luteal phase may reflect different environments to meet the changing needs of the embryo. Additionally, miRNAs may be involved, particularly in the uterus, in the regulation of embryo lipid metabolism, immune system, and implantation. This study evaluated miRNA cargo in OF-EVs from the early luteal phase and UF-EVs from the mid-luteal phase, coinciding with embryo transit within oviduct and uterus in vivo, and its possible influence on LMGs and signaling pathways crucial for early embryo development. A total of 333 miRNAs were detected, with 11 exclusive to OF, 59 to UF, and 263 were common between both groups.
The correct Results section in the Abstract should read:
This study evaluated miRNA cargo in OF-EVs from the early luteal phase and UF-EVs from the mid-luteal phase, coinciding with embryo transit within oviduct and uterus in vivo, and its possible influence on LMGs and signaling pathways crucial for early embryo development. A total of 333 miRNAs were detected, with 11 exclusive to OF, 59 to UF, and 263 were common between both groups. From the 20 differentially expressed miRNAs, 19 up-regulated in UF-EVs (bta-miR-134, bta-miR-151-3p, bta-miR-155, bta-miR-188, bta-miR-181b, bta-miR-181d, bta-miR-224, bta-miR-23b-3p, bta-miR-24-3p, bta-miR-27a-3p, bta-miR-29a, bta-miR-324, bta-miR-326, bta-miR-345-3p, bta-miR-410, bta-miR-652, bta-miR-677, bta-miR-873 and bta-miR-708) and one (bta-miR-148b) in OF-EVs. These miRNAs were predicted to modulate several pathways such as Wnt, Hippo, MAPK, and lipid metabolism and degradation. Differences in miRNAs found in OF-EVs from the early luteal phase and UF-EVs from mid-luteal phase may reflect different environments to meet the changing needs of the embryo. Additionally, miRNAs may be involved, particularly in the uterus, in the regulation of embryo lipid metabolism, immune system, and implantation.
The original article [1] has been updated.
更正:J Animal Sci Biotechnol 15, 51 (2024)https://doi.org/10.1186/s40104-024-01008-5Following 原文[1]发表后,作者报告说最后两句话被误放在了摘要中结果部分的末尾,而这两句话本应放在该部分的开头。摘要中结果部分的原文是在 20 个差异表达的 miRNA 中,19 个在 UF-EV 中上调(bta-miR-134、bta-miR-151-3p、bta-miR-155、bta-miR-188、bta-miR-181b、bta-miR-181d、bta-miR-224、bta-miR-23b-3p、bta-miR-181b、bta-miR-181d、bta-miR-224、bta-miR-23b-3p、bta-miR-24-3p、bta-miR-27a-3p、bta-miR-29a、bta-miR-324、bta-miR-326、bta-miR-345-3p、bta-miR-410、bta-miR-652、bta-miR-677、bta-miR-873 和 bta-miR-708)以及 OF-EV 中的一个 miRNA(bta-miR-148b)。据预测,这些 miRNA 可调节多种途径,如 Wnt、Hippo、MAPK 和脂质代谢与降解。在黄体早期的 OF-EVs 和黄体中期的 UF-EVs 中发现的 miRNAs 的差异可能反映了不同的环境以满足胚胎不断变化的需求。此外,miRNA 还可能参与胚胎脂质代谢、免疫系统和着床的调控,尤其是在子宫内。本研究评估了黄体早期的OF-EV和黄体中期的UF-EV中的miRNA货物,这两个阶段恰好是胚胎在体内输卵管和子宫内的转运期,评估了miRNA对LMGs和对早期胚胎发育至关重要的信号通路可能产生的影响。共检测到333个miRNA,其中11个为OF组独有,59个为UF组独有,263个为两组共有。摘要中正确的结果部分应为:本研究评估了黄体早期的OF-EVs和黄体中期的UF-EVs中的miRNA货物,这两个阶段恰好是胚胎在体内输卵管和子宫内转运的阶段,以及它们对LMGs和对早期胚胎发育至关重要的信号通路可能产生的影响。共检测到 333 个 miRNA,其中 11 个为 OF 专有,59 个为 UF 专有,263 个为两组共有。在 20 个差异表达的 miRNA 中,19 个在 UF-EV 中上调(bta-miR-134、bta-miR-151-3p、bta-miR-155、bta-miR-188、bta-miR-181b、bta-miR-181d、bta-miR-224、bta-miR-23b-3p、bta-miR-181b、bta-miR-181d、bta-miR-224、bta-miR-23b-3p、bta-miR-24-3p、bta-miR-27a-3p、bta-miR-29a、bta-miR-324、bta-miR-326、bta-miR-345-3p、bta-miR-410、bta-miR-652、bta-miR-677、bta-miR-873 和 bta-miR-708)以及 OF-EV 中的一个 miRNA(bta-miR-148b)。据预测,这些 miRNA 可调节多种途径,如 Wnt、Hippo、MAPK 和脂质代谢与降解。在黄体早期的 OF-EVs 和黄体中期的 UF-EVs 中发现的 miRNAs 的差异可能反映了不同的环境以满足胚胎不断变化的需求。Mazzarella R, Cañón-Beltrán K, Cajas YN, et al. Extracellular vesicles-coupled miRNAs from oviduct and uterus modulate signaling pathways related to lipid metabolism and bovine early embryo development.J Animal Sci Biotechnol.2024;15:51. https://doi.org/10.1186/s40104-024-01008-5.Article CAS Google Scholar 下载参考文献作者简介Claudia L. V. Leal 和 D. Rizos 对本研究做出了同样的贡献。作者及所属单位西班牙马德里 INIA-CSIC 动物繁殖系Rosane Mazzarella、Meriem Hamdi、Claudia L. V. Leal & D. Rizos。RizosDepartment of Biochemistry and Molecular Biology,Veterinary Faculty,Complutense University of Madrid (UCM),Madrid,SpainKarina Cañón-BeltránDepartment Agrarian Production,Technical University of Madrid,UPM,Madrid,SpainYulia N.CajasDepartamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, UTPL, Loja, EcuadorYulia N. CajasDepartment of Anatomy and Embryology, FV-UCM, Madrid, SpainEncina M. GonzálezDepartment of Veterinary Medicine, FZEA-USP, Pirassununga, BrazilJuliano C.da Silveira & Claudia L. V. Leal作者Rosane Mazzarella查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Karina Cañón-Beltrán 查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Yulia N. Cajas查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Meriem Hamdi查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Encina M.GonzálezView 作者发表作品您也可以在 PubMed Google ScholarJuliano C. da SilveiraView 作者发表作品您也可以在 PubMed Google ScholarClaudia L. V. LealView 作者发表作品您也可以在 PubMed Google ScholarD.RizosView author publications您还可以在PubMed Google Scholar中搜索该作者Corresponding authorCorrespondence to D. Rizos.开放存取本文采用知识共享署名 4.0(Cre
{"title":"Correction: Extracellular vesicles-coupled miRNAs from oviduct and uterus modulate signaling pathways related to lipid metabolism and bovine early embryo development","authors":"Rosane Mazzarella, Karina Cañón-Beltrán, Yulia N. Cajas, Meriem Hamdi, Encina M. González, Juliano C. da Silveira, Claudia L. V. Leal, D. Rizos","doi":"10.1186/s40104-024-01035-2","DOIUrl":"https://doi.org/10.1186/s40104-024-01035-2","url":null,"abstract":"<p><b>Correction</b><b>: </b><b>J Animal Sci Biotechnol 15, 51 (2024)</b></p><p><b>https://doi.org/10.1186/s40104-024-01008-5</b></p><br/><p>Following publication of the original article [1], the authors reported that the last two sentences were mistakenly placed at the end of the Results section in the Abstract which should have been placed at the beginning of this section.</p><p>The original Results section in the Abstract was:</p><p>From the 20 differentially expressed miRNAs, 19 up-regulated in UF-EVs (bta-miR-134, bta-miR-151-3p, bta-miR-155, bta-miR-188, bta-miR-181b, bta-miR-181d, bta-miR-224, bta-miR-23b-3p, bta-miR-24-3p, bta-miR-27a-3p, bta-miR-29a, bta-miR-324, bta-miR-326, bta-miR-345-3p, bta-miR-410, bta-miR-652, bta-miR-677, bta-miR-873 and bta-miR-708) and one (bta-miR-148b) in OF-EVs. These miRNAs were predicted to modulate several pathways such as Wnt, Hippo, MAPK, and lipid metabolism and degradation. Differences in miRNAs found in OF-EVs from the early luteal phase and UF-EVs from mid-luteal phase may reflect different environments to meet the changing needs of the embryo. Additionally, miRNAs may be involved, particularly in the uterus, in the regulation of embryo lipid metabolism, immune system, and implantation. This study evaluated miRNA cargo in OF-EVs from the early luteal phase and UF-EVs from the mid-luteal phase, coinciding with embryo transit within oviduct and uterus in vivo, and its possible influence on LMGs and signaling pathways crucial for early embryo development. A total of 333 miRNAs were detected, with 11 exclusive to OF, 59 to UF, and 263 were common between both groups.</p><p>The correct Results section in the Abstract should read:</p><p>This study evaluated miRNA cargo in OF-EVs from the early luteal phase and UF-EVs from the mid-luteal phase, coinciding with embryo transit within oviduct and uterus in vivo, and its possible influence on LMGs and signaling pathways crucial for early embryo development. A total of 333 miRNAs were detected, with 11 exclusive to OF, 59 to UF, and 263 were common between both groups. From the 20 differentially expressed miRNAs, 19 up-regulated in UF-EVs (bta-miR-134, bta-miR-151-3p, bta-miR-155, bta-miR-188, bta-miR-181b, bta-miR-181d, bta-miR-224, bta-miR-23b-3p, bta-miR-24-3p, bta-miR-27a-3p, bta-miR-29a, bta-miR-324, bta-miR-326, bta-miR-345-3p, bta-miR-410, bta-miR-652, bta-miR-677, bta-miR-873 and bta-miR-708) and one (bta-miR-148b) in OF-EVs. These miRNAs were predicted to modulate several pathways such as Wnt, Hippo, MAPK, and lipid metabolism and degradation. Differences in miRNAs found in OF-EVs from the early luteal phase and UF-EVs from mid-luteal phase may reflect different environments to meet the changing needs of the embryo. Additionally, miRNAs may be involved, particularly in the uterus, in the regulation of embryo lipid metabolism, immune system, and implantation.</p><p>The original article [1] has been updated.</p><ol data-track-component=\"outbound referenc","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"31 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140640413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1186/s40104-024-01010-x
Sungbo Cho, Shanmugam Suresh Kumar, Santiago Ramirez, Rolando Valientes, In Ho Kim
Optimal gut health is important to maximize growth performance and feed efficiency in broiler chickens. A total of 1,365 one-day-old male Ross 308 broiler chickens were randomly divided into 5 treatments groups with 21 replicates, 13 birds per replicate. The present research investigated effects of microbial muramidase or a precision glycan alone or in combination on growth performance, apparent total tract digestibility, total blood carotenoid content, intestinal villus length, meat quality and gut microbiota in broiler chickens. Treatments included: NC: negative control (basal diet group); PC: positive control (basal diet + 0.02% probiotics); MR: basal diet + 0.035% microbial muramidase; PG: basal diet + 0.1% precision glycan; and MRPG: basal diet + 0.025% MR + 0.1% PG, respectively. MRPG group increased the body weight gain and feed intake (P < 0.05) compared with NC group. Moreover, it significantly increased total serum carotenoid (P < 0.05) and MRPG altered the microbial diversity in ileum contents. The MRPG treatment group increased the abundance of the phylum Firmicutes, and family Lachnospiraceae, Ruminococcaceae, Oscillospiraceae, Lactobacillaceae, Peptostreptococcaceae and decreased the abundance of the phylum Campilobacterota, Bacteroidota and family Bacteroidaceae. Compared with the NC group, the chickens fed MRPG showed significantly increased in duodenum villus length at end the trial. In this study, overall results showed that the synergetic effects of MR and PG showed enhancing growth performance, total serum carotenoid level and altering gut microbiota composition of broilers. The current research indicates that co-supplementation of MR and PG in broiler diets enhances intestinal health, consequently leading to an increased broiler production.
{"title":"Dietary eubiotics of microbial muramidase and glycan improve intestinal villi, ileum microbiota composition and production trait of broiler","authors":"Sungbo Cho, Shanmugam Suresh Kumar, Santiago Ramirez, Rolando Valientes, In Ho Kim","doi":"10.1186/s40104-024-01010-x","DOIUrl":"https://doi.org/10.1186/s40104-024-01010-x","url":null,"abstract":"Optimal gut health is important to maximize growth performance and feed efficiency in broiler chickens. A total of 1,365 one-day-old male Ross 308 broiler chickens were randomly divided into 5 treatments groups with 21 replicates, 13 birds per replicate. The present research investigated effects of microbial muramidase or a precision glycan alone or in combination on growth performance, apparent total tract digestibility, total blood carotenoid content, intestinal villus length, meat quality and gut microbiota in broiler chickens. Treatments included: NC: negative control (basal diet group); PC: positive control (basal diet + 0.02% probiotics); MR: basal diet + 0.035% microbial muramidase; PG: basal diet + 0.1% precision glycan; and MRPG: basal diet + 0.025% MR + 0.1% PG, respectively. MRPG group increased the body weight gain and feed intake (P < 0.05) compared with NC group. Moreover, it significantly increased total serum carotenoid (P < 0.05) and MRPG altered the microbial diversity in ileum contents. The MRPG treatment group increased the abundance of the phylum Firmicutes, and family Lachnospiraceae, Ruminococcaceae, Oscillospiraceae, Lactobacillaceae, Peptostreptococcaceae and decreased the abundance of the phylum Campilobacterota, Bacteroidota and family Bacteroidaceae. Compared with the NC group, the chickens fed MRPG showed significantly increased in duodenum villus length at end the trial. In this study, overall results showed that the synergetic effects of MR and PG showed enhancing growth performance, total serum carotenoid level and altering gut microbiota composition of broilers. The current research indicates that co-supplementation of MR and PG in broiler diets enhances intestinal health, consequently leading to an increased broiler production.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"33 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140541669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1186/s40104-024-01012-9
Qi Huang, Jiashuo Liu, Can Peng, Xuefeng Han, Zhiliang Tan
Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells (bMECs) exposed to oxidative stress have not been elucidated. In this study, we investigated the effects of hesperidin on H2O2-induced oxidative stress in bMECs and the underlying molecular mechanism. We found that hesperidin attenuated H2O2-induced cell damage by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, increasing catalase (CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent. Our results suggest that hesperidin could protect bMECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary.
{"title":"Hesperidin ameliorates H2O2-induced bovine mammary epithelial cell oxidative stress via the Nrf2 signaling pathway","authors":"Qi Huang, Jiashuo Liu, Can Peng, Xuefeng Han, Zhiliang Tan","doi":"10.1186/s40104-024-01012-9","DOIUrl":"https://doi.org/10.1186/s40104-024-01012-9","url":null,"abstract":"Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells (bMECs) exposed to oxidative stress have not been elucidated. In this study, we investigated the effects of hesperidin on H2O2-induced oxidative stress in bMECs and the underlying molecular mechanism. We found that hesperidin attenuated H2O2-induced cell damage by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, increasing catalase (CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent. Our results suggest that hesperidin could protect bMECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary. ","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"58 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1186/s40104-024-01014-7
Wei He, Xinyu Liu, Ye Feng, Hongwei Ding, Haoyang Sun, Zhongyu Li, Baoming Shi
Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase (AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation. Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver; dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation. Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we highlight the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.
{"title":"Dietary fat supplementation relieves cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis in pigs","authors":"Wei He, Xinyu Liu, Ye Feng, Hongwei Ding, Haoyang Sun, Zhongyu Li, Baoming Shi","doi":"10.1186/s40104-024-01014-7","DOIUrl":"https://doi.org/10.1186/s40104-024-01014-7","url":null,"abstract":"Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase (AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation. Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver; dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation. Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we highlight the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"78 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140534180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal (CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain (YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia (Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated. A total of 270 Nile tilapia (2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON (control diet), GOS (control diet containing 300 mg/kg gossypol) and GP (control diet containing 300 mg/kg gossypol and 108 colony-forming unit (CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and siRNA interference experiments demonstrated that NOD-like receptors (NLR) family caspase recruitment domain (CARD) domain containing 3 (Nlrc3) inhibition might promote intestinal stem cell (ISC) proliferation, as well as maintaining gut barrier integrity. 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate’s function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model. The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations.
{"title":"Probiotic Pediococcus pentosaceus restored gossypol-induced intestinal barrier injury by increasing propionate content in Nile tilapia","authors":"Feifei Ding, Nannan Zhou, Yuan Luo, Tong Wang, Weijie Li, Fang Qiao, Zhenyu Du, Meiling Zhang","doi":"10.1186/s40104-024-01011-w","DOIUrl":"https://doi.org/10.1186/s40104-024-01011-w","url":null,"abstract":"Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal (CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain (YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia (Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated. A total of 270 Nile tilapia (2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON (control diet), GOS (control diet containing 300 mg/kg gossypol) and GP (control diet containing 300 mg/kg gossypol and 108 colony-forming unit (CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and siRNA interference experiments demonstrated that NOD-like receptors (NLR) family caspase recruitment domain (CARD) domain containing 3 (Nlrc3) inhibition might promote intestinal stem cell (ISC) proliferation, as well as maintaining gut barrier integrity. 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate’s function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model. The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations. ","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"56 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140534320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-06DOI: 10.1186/s40104-024-01013-8
Miguel Chirivi, G. Andres Contreras
During the periparturient period, dairy cows exhibit negative energy balance due to limited appetite and increased energy requirements for lactogenesis. The delicate equilibrium between energy availability and expenditure puts cows in a state of metabolic stress characterized by excessive lipolysis in white adipose tissues (AT), increased production of reactive oxygen species, and immune cell dysfunction. Metabolic stress, especially in AT, increases the risk for metabolic and inflammatory diseases. Around parturition, cows are also susceptible to endotoxemia. Bacterial-derived toxins cause endotoxemia by promoting inflammatory processes and immune cell infiltration in different organs and systems while impacting metabolic function by altering lipolysis, mitochondrial activity, and insulin sensitivity. In dairy cows, endotoxins enter the bloodstream after overcoming the defense mechanisms of the epithelial barriers, particularly during common periparturient conditions such as mastitis, metritis, and pneumonia, or after abrupt changes in the gut microbiome. In the bovine AT, endotoxins induce a pro-inflammatory response and stimulate lipolysis in AT, leading to the release of free fatty acids into the bloodstream. When excessive and protracted, endotoxin-induced lipolysis can impair adipocyte’s insulin signaling pathways and lipid synthesis. Endotoxin exposure can also induce oxidative stress in AT through the production of reactive oxygen species by inflammatory cells and other cellular components. This review provides insights into endotoxins’ impact on AT function, highlighting the gaps in our knowledge of the mechanisms underlying AT dysfunction, its connection with periparturient cows’ disease risk, and the need to develop effective interventions to prevent and treat endotoxemia-related inflammatory conditions in dairy cattle.
{"title":"Endotoxin-induced alterations of adipose tissue function: a pathway to bovine metabolic stress","authors":"Miguel Chirivi, G. Andres Contreras","doi":"10.1186/s40104-024-01013-8","DOIUrl":"https://doi.org/10.1186/s40104-024-01013-8","url":null,"abstract":"During the periparturient period, dairy cows exhibit negative energy balance due to limited appetite and increased energy requirements for lactogenesis. The delicate equilibrium between energy availability and expenditure puts cows in a state of metabolic stress characterized by excessive lipolysis in white adipose tissues (AT), increased production of reactive oxygen species, and immune cell dysfunction. Metabolic stress, especially in AT, increases the risk for metabolic and inflammatory diseases. Around parturition, cows are also susceptible to endotoxemia. Bacterial-derived toxins cause endotoxemia by promoting inflammatory processes and immune cell infiltration in different organs and systems while impacting metabolic function by altering lipolysis, mitochondrial activity, and insulin sensitivity. In dairy cows, endotoxins enter the bloodstream after overcoming the defense mechanisms of the epithelial barriers, particularly during common periparturient conditions such as mastitis, metritis, and pneumonia, or after abrupt changes in the gut microbiome. In the bovine AT, endotoxins induce a pro-inflammatory response and stimulate lipolysis in AT, leading to the release of free fatty acids into the bloodstream. When excessive and protracted, endotoxin-induced lipolysis can impair adipocyte’s insulin signaling pathways and lipid synthesis. Endotoxin exposure can also induce oxidative stress in AT through the production of reactive oxygen species by inflammatory cells and other cellular components. This review provides insights into endotoxins’ impact on AT function, highlighting the gaps in our knowledge of the mechanisms underlying AT dysfunction, its connection with periparturient cows’ disease risk, and the need to develop effective interventions to prevent and treat endotoxemia-related inflammatory conditions in dairy cattle.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"38 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140534542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1186/s40104-024-01004-9
Su A Lee, Diego A. Rodriguez, Chad B. Paulk, Hans H. Stein
Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy. Pelleting may also reduce particle size of grain, but it is not known if there are interactions between particle size reduction and pelleting. The objective of this experiment was to test the hypothesis that particle size reduction and pelleting, separately or in combination, increase N balance, apparent total tract digestibility (ATTD) of fiber and fat, and net energy (NE) in corn-soybean meal diets fed to group-housed pigs. Six corn-soybean meal-based diets were used in a 3 × 2 factorial design with 3 particle sizes of corn (i.e., 700, 500, or 300 μm) and 2 diet forms (i.e., meal or pelleted). Pigs were allowed ad libitum access to feed and water. Twenty-four castrated male pigs (initial weight: 29.52 kg; standard diviation: 1.40) were allotted to the 6 diets using a 6 × 6 Latin square design with 6 calorimeter chambers (i.e., 4 pigs/chamber) and 6 periods. Oxygen consumption and CO2 and CH4 productions were measured during fed and fasting states and fecal and urine samples were collected. Regardless of particle size of corn, the ATTD of gross energy (GE), N, and acid-hydrolyzed ether extract (AEE), and the concentration of NE were greater (P < 0.05) in pelleted diets than in meal diets. Regardless of diet form, the ATTD of GE, N, and AEE, and the concentration of NE were increased (linear; P < 0.05) by reducing the particle size of corn, but the increase was greater in meal diets than in pelleted diets (interaction; P < 0.05). Both pelleting and reduction of corn particle size increased nutrient digestibility and NE, but increases were greater in meal diets than in pelleted diets.
{"title":"Pelleting and particle size reduction of corn increase net energy and digestibility of fiber, protein, and fat in corn-soybean meal diets fed to group-housed pigs","authors":"Su A Lee, Diego A. Rodriguez, Chad B. Paulk, Hans H. Stein","doi":"10.1186/s40104-024-01004-9","DOIUrl":"https://doi.org/10.1186/s40104-024-01004-9","url":null,"abstract":"Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy. Pelleting may also reduce particle size of grain, but it is not known if there are interactions between particle size reduction and pelleting. The objective of this experiment was to test the hypothesis that particle size reduction and pelleting, separately or in combination, increase N balance, apparent total tract digestibility (ATTD) of fiber and fat, and net energy (NE) in corn-soybean meal diets fed to group-housed pigs. Six corn-soybean meal-based diets were used in a 3 × 2 factorial design with 3 particle sizes of corn (i.e., 700, 500, or 300 μm) and 2 diet forms (i.e., meal or pelleted). Pigs were allowed ad libitum access to feed and water. Twenty-four castrated male pigs (initial weight: 29.52 kg; standard diviation: 1.40) were allotted to the 6 diets using a 6 × 6 Latin square design with 6 calorimeter chambers (i.e., 4 pigs/chamber) and 6 periods. Oxygen consumption and CO2 and CH4 productions were measured during fed and fasting states and fecal and urine samples were collected. Regardless of particle size of corn, the ATTD of gross energy (GE), N, and acid-hydrolyzed ether extract (AEE), and the concentration of NE were greater (P < 0.05) in pelleted diets than in meal diets. Regardless of diet form, the ATTD of GE, N, and AEE, and the concentration of NE were increased (linear; P < 0.05) by reducing the particle size of corn, but the increase was greater in meal diets than in pelleted diets (interaction; P < 0.05). Both pelleting and reduction of corn particle size increased nutrient digestibility and NE, but increases were greater in meal diets than in pelleted diets.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"32 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140534325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}