Pub Date : 2024-05-06DOI: 10.1186/s40104-024-01027-2
Daoliang Lan, Wei Fu, Wenhui Ji, Tserang-Donko Mipam, Xianrong Xiong, Shi Ying, Yan Xiong, Peng Sheng, Jiangping Ni, Lijun Bai, Tongling Shan, Xiangdong Kong, Jian Li
The genetic diversity of yak, a key domestic animal on the Qinghai-Tibetan Plateau (QTP), is a vital resource for domestication and breeding efforts. This study presents the first yak pangenome obtained through the de novo assembly of 16 yak genomes. We discovered 290 Mb of nonreference sequences and 504 new genes. Our pangenome-wide presence and absence variation (PAV) analysis revealed 5,120 PAV-related genes, highlighting a wide range of variety-specific genes and genes with varying frequencies across yak populations. Principal component analysis (PCA) based on binary gene PAV data classified yaks into three new groups: wild, domestic, and Jinchuan. Moreover, we proposed a ‘two-haplotype genomic hybridization model’ for understanding the hybridization patterns among breeds by integrating gene frequency, heterozygosity, and gene PAV data. A gene PAV-GWAS identified a novel gene (BosGru3G009179) that may be associated with the multirib trait in Jinchuan yaks. Furthermore, an integrated transcriptome and pangenome analysis highlighted the significant differences in the expression of core genes and the mutational burden of differentially expressed genes between yaks from high and low altitudes. Transcriptome analysis across multiple species revealed that yaks have the most unique differentially expressed mRNAs and lncRNAs (between high- and low-altitude regions), especially in the heart and lungs, when comparing high- and low-altitude adaptations. The yak pangenome offers a comprehensive resource and new insights for functional genomic studies, supporting future biological research and breeding strategies.
{"title":"Pangenome and multi-tissue gene atlas provide new insights into the domestication and highland adaptation of yaks","authors":"Daoliang Lan, Wei Fu, Wenhui Ji, Tserang-Donko Mipam, Xianrong Xiong, Shi Ying, Yan Xiong, Peng Sheng, Jiangping Ni, Lijun Bai, Tongling Shan, Xiangdong Kong, Jian Li","doi":"10.1186/s40104-024-01027-2","DOIUrl":"https://doi.org/10.1186/s40104-024-01027-2","url":null,"abstract":"The genetic diversity of yak, a key domestic animal on the Qinghai-Tibetan Plateau (QTP), is a vital resource for domestication and breeding efforts. This study presents the first yak pangenome obtained through the de novo assembly of 16 yak genomes. We discovered 290 Mb of nonreference sequences and 504 new genes. Our pangenome-wide presence and absence variation (PAV) analysis revealed 5,120 PAV-related genes, highlighting a wide range of variety-specific genes and genes with varying frequencies across yak populations. Principal component analysis (PCA) based on binary gene PAV data classified yaks into three new groups: wild, domestic, and Jinchuan. Moreover, we proposed a ‘two-haplotype genomic hybridization model’ for understanding the hybridization patterns among breeds by integrating gene frequency, heterozygosity, and gene PAV data. A gene PAV-GWAS identified a novel gene (BosGru3G009179) that may be associated with the multirib trait in Jinchuan yaks. Furthermore, an integrated transcriptome and pangenome analysis highlighted the significant differences in the expression of core genes and the mutational burden of differentially expressed genes between yaks from high and low altitudes. Transcriptome analysis across multiple species revealed that yaks have the most unique differentially expressed mRNAs and lncRNAs (between high- and low-altitude regions), especially in the heart and lungs, when comparing high- and low-altitude adaptations. The yak pangenome offers a comprehensive resource and new insights for functional genomic studies, supporting future biological research and breeding strategies.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"18 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140845039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-05DOI: 10.1186/s40104-024-01021-8
Hyunjun Choi, Yesid Garavito Duarte, Guilherme A. M. Pasquali, Sung Woo Kim
Xylanase and β-glucanase combination (XG) hydrolyzes soluble non-starch polysaccharides that are anti-nutritional compounds. This study aimed to evaluate the effects of increasing levels of XG on intestinal health and growth performance of nursery pigs. Forty pigs (6.5 ± 0.4 kg) were assigned to 5 dietary treatments and fed for 35 d in 3 phases (11, 9, and 15 d, respectively). Basal diets mainly included corn, soybean meal, and corn distiller’s dried grains with solubles, contained phytase (750 FTU/kg), and were supplemented with 5 levels of XG at (1) 0, (2) 280 TXU/kg xylanase and 125 TGU/kg β-glucanase, (3) 560 and 250, (4) 840 and 375, or (5) 1,120 and 500, respectively. Growth performance was measured. On d 35, all pigs were euthanized and jejunal mucosa, jejunal digesta, jejunal tissues, and ileal digesta were collected to determine the effects of increasing XG levels and XG intake on intestinal health. Increasing XG intake tended to quadratically decrease (P = 0.059) viscosity of jejunal digesta (min: 1.74 mPa·s at 751/335 (TXU/TGU)/kg). Increasing levels of XG quadratically decreased (P < 0.05) Prevotellaceae (min: 0.6% at 630/281 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically increased (P < 0.05) Lactobacillaceae (max: 40.3% at 608/271 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically decreased (P < 0.05) Helicobacteraceae (min: 1.6% at 560/250 (TXU/TGU)/kg) in the jejunal mucosa. Increasing levels of XG tended to linearly decrease (P = 0.073) jejunal IgG and tended to quadratically increase (P = 0.085) jejunal villus height to crypt depth ratio (max: 2.62 at 560/250 (TXU/TGU)/kg). Increasing XG intake tended to linearly increase the apparent ileal digestibility of dry matter (P = 0.087) and ether extract (P = 0.065). Increasing XG intake linearly increased (P < 0.05) average daily gain. A combinational use of xylanase and β-glucanase would hydrolyze the non-starch polysaccharides fractions, positively modulating the jejunal mucosa-associated microbiota. Increased intake of these enzyme combination possibly reduced digesta viscosity and humoral immune response in the jejunum resulting in improved intestinal structure, and ileal digestibility of nutrients, and finally improving growth of nursery pigs. The beneficial effects were maximized at a combination of 550 to 800 TXU/kg xylanase and 250 to 360 TGU/kg β-glucanase.
{"title":"Investigation of the nutritional and functional roles of a combinational use of xylanase and β-glucanase on intestinal health and growth of nursery pigs","authors":"Hyunjun Choi, Yesid Garavito Duarte, Guilherme A. M. Pasquali, Sung Woo Kim","doi":"10.1186/s40104-024-01021-8","DOIUrl":"https://doi.org/10.1186/s40104-024-01021-8","url":null,"abstract":"Xylanase and β-glucanase combination (XG) hydrolyzes soluble non-starch polysaccharides that are anti-nutritional compounds. This study aimed to evaluate the effects of increasing levels of XG on intestinal health and growth performance of nursery pigs. Forty pigs (6.5 ± 0.4 kg) were assigned to 5 dietary treatments and fed for 35 d in 3 phases (11, 9, and 15 d, respectively). Basal diets mainly included corn, soybean meal, and corn distiller’s dried grains with solubles, contained phytase (750 FTU/kg), and were supplemented with 5 levels of XG at (1) 0, (2) 280 TXU/kg xylanase and 125 TGU/kg β-glucanase, (3) 560 and 250, (4) 840 and 375, or (5) 1,120 and 500, respectively. Growth performance was measured. On d 35, all pigs were euthanized and jejunal mucosa, jejunal digesta, jejunal tissues, and ileal digesta were collected to determine the effects of increasing XG levels and XG intake on intestinal health. Increasing XG intake tended to quadratically decrease (P = 0.059) viscosity of jejunal digesta (min: 1.74 mPa·s at 751/335 (TXU/TGU)/kg). Increasing levels of XG quadratically decreased (P < 0.05) Prevotellaceae (min: 0.6% at 630/281 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically increased (P < 0.05) Lactobacillaceae (max: 40.3% at 608/271 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically decreased (P < 0.05) Helicobacteraceae (min: 1.6% at 560/250 (TXU/TGU)/kg) in the jejunal mucosa. Increasing levels of XG tended to linearly decrease (P = 0.073) jejunal IgG and tended to quadratically increase (P = 0.085) jejunal villus height to crypt depth ratio (max: 2.62 at 560/250 (TXU/TGU)/kg). Increasing XG intake tended to linearly increase the apparent ileal digestibility of dry matter (P = 0.087) and ether extract (P = 0.065). Increasing XG intake linearly increased (P < 0.05) average daily gain. A combinational use of xylanase and β-glucanase would hydrolyze the non-starch polysaccharides fractions, positively modulating the jejunal mucosa-associated microbiota. Increased intake of these enzyme combination possibly reduced digesta viscosity and humoral immune response in the jejunum resulting in improved intestinal structure, and ileal digestibility of nutrients, and finally improving growth of nursery pigs. The beneficial effects were maximized at a combination of 550 to 800 TXU/kg xylanase and 250 to 360 TGU/kg β-glucanase.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"12 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dietary supplementation of xylooligosaccharides (XOS) has been found to influence gut health by manipulating cecal microbiota and producing microbe-origin metabolites. But no study investigated and compared the effect of in ovo feeding of xylobiose (XOS2) and xylotriose (XOS3) in chickens. This study investigated the effect of in ovo feeding of these XOS compounds on post-hatch gut health parameters in chickens. A total of 144 fertilized chicken eggs were divided into three groups: a) non-injected control (CON), b) XOS2, and c) XOS3. On the 17th embryonic day, the eggs of the XOS2 and XOS3 groups were injected with 3 mg of XOS2 and XOS3 diluted in 0.5 mL of 0.85% normal saline through the amniotic sac. After hatching, the chicks were raised for 21 d. Blood was collected on d 14 to measure plasma immunoglobulin. Cecal digesta were collected for measuring short-chain fatty acids (SCFA) on d 14 and 21, and for microbial ecology and microbial metabolic pathway analyses on d 7 and 21. The results were considered significantly different at P < 0.05. ELISA quantified plasma IgA and IgG on d 14 chickens, revealing no differences among the treatments. Gas chromatography results showed no significant differences in the concentrations of cecal SCFAs on d 14 but significant differences on d 21. However, the SCFA concentrations were lower in the XOS3 than in the CON group on d 21. The cecal metagenomics data showed that the abundance of the family Clostridiaceae significantly decreased on d 7, and the abundance of the family Oscillospiraceae increased on d 21 in the XOS2 compared to the CON. There was a reduction in the relative abundance of genus Clostridium sensu stricto 1 in the XOS2 compared to the CON on d 7 and the genus Ruminococcus torques in both XOS2 and XOS3 groups compared to the CON on d 21. The XOS2 and XOS3 groups reduced the genes for chondroitin sulfate degradation I and L-histidine degradation I pathways, which contribute to improved gut health, respectively, in the microbiome on d 7. In contrast, on d 21, the XOS2 and XOS3 groups enriched the thiamin salvage II, L-isoleucine biosynthesis IV, and O-antigen building blocks biosynthesis (E. coli) pathways, which are indicative of improved gut health. Unlike the XOS3 and CON, the microbiome enriched the pathways associated with energy enhancement, including flavin biosynthesis I, sucrose degradation III, and Calvin-Benson-Bassham cycle pathways, in the XOS2 group on d 21. In ovo XOS2 and XOS3 feeding promoted beneficial bacterial growth and reduced harmful bacteria at the family and genus levels. The metagenomic-based microbial metabolic pathway profiling predicted a favorable change in the availability of cecal metabolites in the XOS2 and XOS3 groups. The modulation of microbiota and metabolic pathways suggests that in ovo XOS2 and XOS3 feeding improved gut health during the post-hatch period of broilers.
研究发现,膳食中补充木寡糖(XOS)可通过调节盲肠微生物群和产生微生物源代谢物来影响肠道健康。但还没有研究调查和比较在鸡体内饲喂木寡糖(XOS2)和木三糖(XOS3)的效果。本研究调查了蛋内饲喂这些 XOS 复合物对鸡孵化后肠道健康参数的影响。总共 144 枚受精鸡蛋被分为三组:a)未注射对照组(CON);b)XOS2;c)XOS3。在胚胎第 17 天,向 XOS2 组和 XOS3 组的受精卵经羊膜囊注射 3 毫克 XOS2 和 XOS3(用 0.5 毫升 0.85% 生理盐水稀释)。雏鸡孵化后饲养 21 d,第 14 d 采血测定血浆免疫球蛋白。在第 14 天和第 21 天收集盲肠消化物以测定短链脂肪酸 (SCFA),在第 7 天和第 21 天收集盲肠消化物以进行微生物生态学和微生物代谢途径分析。结果以 P < 0.05 为差异显著。ELISA 对第 14 天的血浆 IgA 和 IgG 进行了定量分析,结果显示各处理之间没有差异。气相色谱法结果表明,第 14 d 的粪便 SCFAs 浓度无显著差异,但第 21 d 的差异显著。不过,在第 21 天,XOS3 组的 SCFA 浓度低于 CON 组。盲肠元基因组学数据显示,与对照组相比,XOS2 组梭子蟹科动物的丰度在第 7 天显著下降,而在第 21 天,鹅膏菌科动物的丰度有所上升。与对照组相比,XOS2 组中严格意义上的梭菌属 1 在第 7 天的相对丰度有所降低,而 XOS2 和 XOS3 组中的瘤胃球菌属在第 21 天的相对丰度均低于对照组。在第 7 天,XOS2 组和 XOS3 组减少了硫酸软骨素降解 I 和 L 组氨酸降解 I 途径的基因,这两种途径分别有助于改善微生物群的肠道健康。相比之下,在第 21 天,XOS2 和 XOS3 组富集了硫胺素挽救 II、L-异亮氨酸生物合成 IV 和 O-抗原结构单元生物合成(大肠杆菌)途径,这表明肠道健康得到了改善。与 XOS3 和 CON 不同,XOS2 组的微生物组在第 21 天富集了与能量增强相关的途径,包括黄素生物合成 I、蔗糖降解 III 和卡尔文-本森-巴塞尔循环途径。在卵内喂养 XOS2 和 XOS3 在科和属的水平上促进了有益细菌的生长,减少了有害细菌的数量。基于元基因组的微生物代谢途径分析预测,XOS2和XOS3组的盲肠代谢物的可用性将发生有利的变化。对微生物群和代谢途径的调节表明,在孵化后的肉鸡体内饲喂 XOS2 和 XOS3 可改善肠道健康。
{"title":"Effect of in ovo feeding of xylobiose and xylotriose on plasma immunoglobulin, cecal metabolites production, microbial ecology, and metabolic pathways in broiler chickens","authors":"Razib Das, Pravin Mishra, Birendra Mishra, Rajesh Jha","doi":"10.1186/s40104-024-01022-7","DOIUrl":"https://doi.org/10.1186/s40104-024-01022-7","url":null,"abstract":"Dietary supplementation of xylooligosaccharides (XOS) has been found to influence gut health by manipulating cecal microbiota and producing microbe-origin metabolites. But no study investigated and compared the effect of in ovo feeding of xylobiose (XOS2) and xylotriose (XOS3) in chickens. This study investigated the effect of in ovo feeding of these XOS compounds on post-hatch gut health parameters in chickens. A total of 144 fertilized chicken eggs were divided into three groups: a) non-injected control (CON), b) XOS2, and c) XOS3. On the 17th embryonic day, the eggs of the XOS2 and XOS3 groups were injected with 3 mg of XOS2 and XOS3 diluted in 0.5 mL of 0.85% normal saline through the amniotic sac. After hatching, the chicks were raised for 21 d. Blood was collected on d 14 to measure plasma immunoglobulin. Cecal digesta were collected for measuring short-chain fatty acids (SCFA) on d 14 and 21, and for microbial ecology and microbial metabolic pathway analyses on d 7 and 21. The results were considered significantly different at P < 0.05. ELISA quantified plasma IgA and IgG on d 14 chickens, revealing no differences among the treatments. Gas chromatography results showed no significant differences in the concentrations of cecal SCFAs on d 14 but significant differences on d 21. However, the SCFA concentrations were lower in the XOS3 than in the CON group on d 21. The cecal metagenomics data showed that the abundance of the family Clostridiaceae significantly decreased on d 7, and the abundance of the family Oscillospiraceae increased on d 21 in the XOS2 compared to the CON. There was a reduction in the relative abundance of genus Clostridium sensu stricto 1 in the XOS2 compared to the CON on d 7 and the genus Ruminococcus torques in both XOS2 and XOS3 groups compared to the CON on d 21. The XOS2 and XOS3 groups reduced the genes for chondroitin sulfate degradation I and L-histidine degradation I pathways, which contribute to improved gut health, respectively, in the microbiome on d 7. In contrast, on d 21, the XOS2 and XOS3 groups enriched the thiamin salvage II, L-isoleucine biosynthesis IV, and O-antigen building blocks biosynthesis (E. coli) pathways, which are indicative of improved gut health. Unlike the XOS3 and CON, the microbiome enriched the pathways associated with energy enhancement, including flavin biosynthesis I, sucrose degradation III, and Calvin-Benson-Bassham cycle pathways, in the XOS2 group on d 21. In ovo XOS2 and XOS3 feeding promoted beneficial bacterial growth and reduced harmful bacteria at the family and genus levels. The metagenomic-based microbial metabolic pathway profiling predicted a favorable change in the availability of cecal metabolites in the XOS2 and XOS3 groups. The modulation of microbiota and metabolic pathways suggests that in ovo XOS2 and XOS3 feeding improved gut health during the post-hatch period of broilers.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"17 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1186/s40104-024-01018-3
Heng Yang, Xiangqi Fan, Xiangbing Mao, Bing Yu, Jun He, Hui Yan, Jianping Wang
Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines have no obvious efficiency in some countries. Via analyzing the pathogenesis of rotavirus, it inducing diarrhea is mainly due to disturb enteric nervous system, destroy gut mucosal integrity, induce intracellular electrolyte imbalance, and impair gut microbiota and immunity. Many studies have already proved that prebiotics and probiotics can mitigate the damage and diarrhea induced by rotavirus infection in hosts. Based on these, the current review summarizes and discusses the effects and mechanisms of prebiotics and probiotics on rotavirus-induced diarrhea in piglets. This information will highlight the basis for the swine production utilization of prebiotics and probiotics in the prevention or treatment of rotavirus infection in the future.
{"title":"The protective role of prebiotics and probiotics on diarrhea and gut damage in the rotavirus-infected piglets","authors":"Heng Yang, Xiangqi Fan, Xiangbing Mao, Bing Yu, Jun He, Hui Yan, Jianping Wang","doi":"10.1186/s40104-024-01018-3","DOIUrl":"https://doi.org/10.1186/s40104-024-01018-3","url":null,"abstract":"Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines have no obvious efficiency in some countries. Via analyzing the pathogenesis of rotavirus, it inducing diarrhea is mainly due to disturb enteric nervous system, destroy gut mucosal integrity, induce intracellular electrolyte imbalance, and impair gut microbiota and immunity. Many studies have already proved that prebiotics and probiotics can mitigate the damage and diarrhea induced by rotavirus infection in hosts. Based on these, the current review summarizes and discusses the effects and mechanisms of prebiotics and probiotics on rotavirus-induced diarrhea in piglets. This information will highlight the basis for the swine production utilization of prebiotics and probiotics in the prevention or treatment of rotavirus infection in the future.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02DOI: 10.1186/s40104-024-01016-5
Guangliang Gao, Rui Liu, Silu Hu, Mengnan He, Jiaman Zhang, Dengfeng Gao, Jing Li, Jiwei Hu, Jiwen Wang, Qigui Wang, Mingzhou Li, Long Jin
Goose, descendants of migratory ancestors, have undergone extensive selective breeding, resulting in their remarkable ability to accumulate fat in the liver and exhibit a high tolerance for significant energy intake. As a result, goose offers an excellent model for studying obesity, metabolic disorders, and liver diseases in mammals. Although the impact of the three-dimensional arrangement of chromatin within the cell nucleus on gene expression and transcriptional regulation is widely acknowledged, the precise functions of chromatin architecture reorganization during fat deposition in goose liver tissues still need to be fully comprehended. In this study, geese exhibited more pronounced changes in the liver index and triglyceride (TG) content following the consumption of the high-fat diet (HFD) than mice without significant signs of inflammation. Additionally, we performed comprehensive analyses on 10 goose liver tissues (5 HFD, 5 normal), including generating high-resolution maps of chromatin architecture, conducting whole-genome gene expression profiling, and identifying H3K27ac peaks in the livers of geese and mice subjected to the HFD. Our results unveiled a multiscale restructuring of chromatin architecture, encompassing Compartment A/B, topologically associated domains, and interactions between promoters and enhancers. The dynamism of the three-dimensional genome architecture, prompted by the HFD, assumed a pivotal role in the transcriptional regulation of crucial genes. Furthermore, we identified genes that regulate chromatin conformation changes, contributing to the metabolic adaptation process of lipid deposition and hepatic fat changes in geese in response to excessive energy intake. Moreover, we conducted a cross-species analysis comparing geese and mice exposed to the HFD, revealing unique characteristics specific to the goose liver compared to a mouse. These chromatin conformation changes help elucidate the observed characteristics of fat deposition and hepatic fat regulation in geese under conditions of excessive energy intake. We examined the dynamic modifications in three-dimensional chromatin architecture and gene expression induced by an HFD in goose liver tissues. We conducted a cross-species analysis comparing that of mice. Our results contribute significant insights into the chromatin architecture of goose liver tissues, offering a novel perspective for investigating mammal liver diseases.
{"title":"Exploring the dynamic three-dimensional chromatin architecture and transcriptional landscape in goose liver tissues underlying metabolic adaptations induced by a high-fat diet","authors":"Guangliang Gao, Rui Liu, Silu Hu, Mengnan He, Jiaman Zhang, Dengfeng Gao, Jing Li, Jiwei Hu, Jiwen Wang, Qigui Wang, Mingzhou Li, Long Jin","doi":"10.1186/s40104-024-01016-5","DOIUrl":"https://doi.org/10.1186/s40104-024-01016-5","url":null,"abstract":"Goose, descendants of migratory ancestors, have undergone extensive selective breeding, resulting in their remarkable ability to accumulate fat in the liver and exhibit a high tolerance for significant energy intake. As a result, goose offers an excellent model for studying obesity, metabolic disorders, and liver diseases in mammals. Although the impact of the three-dimensional arrangement of chromatin within the cell nucleus on gene expression and transcriptional regulation is widely acknowledged, the precise functions of chromatin architecture reorganization during fat deposition in goose liver tissues still need to be fully comprehended. In this study, geese exhibited more pronounced changes in the liver index and triglyceride (TG) content following the consumption of the high-fat diet (HFD) than mice without significant signs of inflammation. Additionally, we performed comprehensive analyses on 10 goose liver tissues (5 HFD, 5 normal), including generating high-resolution maps of chromatin architecture, conducting whole-genome gene expression profiling, and identifying H3K27ac peaks in the livers of geese and mice subjected to the HFD. Our results unveiled a multiscale restructuring of chromatin architecture, encompassing Compartment A/B, topologically associated domains, and interactions between promoters and enhancers. The dynamism of the three-dimensional genome architecture, prompted by the HFD, assumed a pivotal role in the transcriptional regulation of crucial genes. Furthermore, we identified genes that regulate chromatin conformation changes, contributing to the metabolic adaptation process of lipid deposition and hepatic fat changes in geese in response to excessive energy intake. Moreover, we conducted a cross-species analysis comparing geese and mice exposed to the HFD, revealing unique characteristics specific to the goose liver compared to a mouse. These chromatin conformation changes help elucidate the observed characteristics of fat deposition and hepatic fat regulation in geese under conditions of excessive energy intake. We examined the dynamic modifications in three-dimensional chromatin architecture and gene expression induced by an HFD in goose liver tissues. We conducted a cross-species analysis comparing that of mice. Our results contribute significant insights into the chromatin architecture of goose liver tissues, offering a novel perspective for investigating mammal liver diseases.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"10 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Finding out how diet impacts health and metabolism while concentrating on the functional qualities and bioactive components of food is the crucial scientific objective of nutritional research. The complex relationship between metabolism and nutrition could be investigated with cutting-edge "omics" and bioinformatics techniques. This review paper provides an overview of the use of omics technologies in nutritional research, with a particular emphasis on the new applications of transcriptomics, proteomics, metabolomics, and genomes in functional and biological activity research on ruminant livestock and products in the tropical regions. A wealth of knowledge has been uncovered regarding the regulation and use of numerous physiological and pathological processes by gene, mRNA, protein, and metabolite expressions under various physiological situations and guidelines. In particular, the components of meat and milk were assessed using omics research utilizing the various methods of transcriptomics, proteomics, metabolomics, and genomes. The goal of this review is to use omics technologies—which have been steadily gaining popularity as technological tools—to develop new nutritional, genetic, and leadership strategies to improve animal products and their quality control. We also present an overview of the new applications of omics technologies in cattle production and employ nutriomics and foodomics technologies to investigate the microbes in the rumen ecology. Thus, the application of state-of-the-art omics technology may aid in our understanding of how species and/or breeds adapt, and the sustainability of tropical animal production, in the long run, is becoming increasingly important as a means of mitigating the consequences of climate change.
{"title":"The application of omics technologies for understanding tropical plants-based bioactive compounds in ruminants: a review","authors":"Metha Wanapat, Gamonmas Dagaew, Sukruthai Sommai, Maharach Matra, Chaichana Suriyapha, Rittikeard Prachumchai, Uswatun Muslykhah, Srisan Phupaboon","doi":"10.1186/s40104-024-01017-4","DOIUrl":"https://doi.org/10.1186/s40104-024-01017-4","url":null,"abstract":"Finding out how diet impacts health and metabolism while concentrating on the functional qualities and bioactive components of food is the crucial scientific objective of nutritional research. The complex relationship between metabolism and nutrition could be investigated with cutting-edge \"omics\" and bioinformatics techniques. This review paper provides an overview of the use of omics technologies in nutritional research, with a particular emphasis on the new applications of transcriptomics, proteomics, metabolomics, and genomes in functional and biological activity research on ruminant livestock and products in the tropical regions. A wealth of knowledge has been uncovered regarding the regulation and use of numerous physiological and pathological processes by gene, mRNA, protein, and metabolite expressions under various physiological situations and guidelines. In particular, the components of meat and milk were assessed using omics research utilizing the various methods of transcriptomics, proteomics, metabolomics, and genomes. The goal of this review is to use omics technologies—which have been steadily gaining popularity as technological tools—to develop new nutritional, genetic, and leadership strategies to improve animal products and their quality control. We also present an overview of the new applications of omics technologies in cattle production and employ nutriomics and foodomics technologies to investigate the microbes in the rumen ecology. Thus, the application of state-of-the-art omics technology may aid in our understanding of how species and/or breeds adapt, and the sustainability of tropical animal production, in the long run, is becoming increasingly important as a means of mitigating the consequences of climate change.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"131 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.1186/s40104-024-01035-2
Rosane Mazzarella, Karina Cañón-Beltrán, Yulia N. Cajas, Meriem Hamdi, Encina M. González, Juliano C. da Silveira, Claudia L. V. Leal, D. Rizos
Correction: J Animal Sci Biotechnol 15, 51 (2024)
https://doi.org/10.1186/s40104-024-01008-5
Following publication of the original article [1], the authors reported that the last two sentences were mistakenly placed at the end of the Results section in the Abstract which should have been placed at the beginning of this section.
The original Results section in the Abstract was:
From the 20 differentially expressed miRNAs, 19 up-regulated in UF-EVs (bta-miR-134, bta-miR-151-3p, bta-miR-155, bta-miR-188, bta-miR-181b, bta-miR-181d, bta-miR-224, bta-miR-23b-3p, bta-miR-24-3p, bta-miR-27a-3p, bta-miR-29a, bta-miR-324, bta-miR-326, bta-miR-345-3p, bta-miR-410, bta-miR-652, bta-miR-677, bta-miR-873 and bta-miR-708) and one (bta-miR-148b) in OF-EVs. These miRNAs were predicted to modulate several pathways such as Wnt, Hippo, MAPK, and lipid metabolism and degradation. Differences in miRNAs found in OF-EVs from the early luteal phase and UF-EVs from mid-luteal phase may reflect different environments to meet the changing needs of the embryo. Additionally, miRNAs may be involved, particularly in the uterus, in the regulation of embryo lipid metabolism, immune system, and implantation. This study evaluated miRNA cargo in OF-EVs from the early luteal phase and UF-EVs from the mid-luteal phase, coinciding with embryo transit within oviduct and uterus in vivo, and its possible influence on LMGs and signaling pathways crucial for early embryo development. A total of 333 miRNAs were detected, with 11 exclusive to OF, 59 to UF, and 263 were common between both groups.
The correct Results section in the Abstract should read:
This study evaluated miRNA cargo in OF-EVs from the early luteal phase and UF-EVs from the mid-luteal phase, coinciding with embryo transit within oviduct and uterus in vivo, and its possible influence on LMGs and signaling pathways crucial for early embryo development. A total of 333 miRNAs were detected, with 11 exclusive to OF, 59 to UF, and 263 were common between both groups. From the 20 differentially expressed miRNAs, 19 up-regulated in UF-EVs (bta-miR-134, bta-miR-151-3p, bta-miR-155, bta-miR-188, bta-miR-181b, bta-miR-181d, bta-miR-224, bta-miR-23b-3p, bta-miR-24-3p, bta-miR-27a-3p, bta-miR-29a, bta-miR-324, bta-miR-326, bta-miR-345-3p, bta-miR-410, bta-miR-652, bta-miR-677, bta-miR-873 and bta-miR-708) and one (bta-miR-148b) in OF-EVs. These miRNAs were predicted to modulate several pathways such as Wnt, Hippo, MAPK, and lipid metabolism and degradation. Differences in miRNAs found in OF-EVs from the early luteal phase and UF-EVs from mid-luteal phase may reflect different environments to meet the changing needs of the embryo. Additionally, miRNAs may be involved, particularly in the uterus, in the regulation of embryo lipid metabolism, immune system, and implantation.
The original article [1] has been updated.
更正:J Animal Sci Biotechnol 15, 51 (2024)https://doi.org/10.1186/s40104-024-01008-5Following 原文[1]发表后,作者报告说最后两句话被误放在了摘要中结果部分的末尾,而这两句话本应放在该部分的开头。摘要中结果部分的原文是在 20 个差异表达的 miRNA 中,19 个在 UF-EV 中上调(bta-miR-134、bta-miR-151-3p、bta-miR-155、bta-miR-188、bta-miR-181b、bta-miR-181d、bta-miR-224、bta-miR-23b-3p、bta-miR-181b、bta-miR-181d、bta-miR-224、bta-miR-23b-3p、bta-miR-24-3p、bta-miR-27a-3p、bta-miR-29a、bta-miR-324、bta-miR-326、bta-miR-345-3p、bta-miR-410、bta-miR-652、bta-miR-677、bta-miR-873 和 bta-miR-708)以及 OF-EV 中的一个 miRNA(bta-miR-148b)。据预测,这些 miRNA 可调节多种途径,如 Wnt、Hippo、MAPK 和脂质代谢与降解。在黄体早期的 OF-EVs 和黄体中期的 UF-EVs 中发现的 miRNAs 的差异可能反映了不同的环境以满足胚胎不断变化的需求。此外,miRNA 还可能参与胚胎脂质代谢、免疫系统和着床的调控,尤其是在子宫内。本研究评估了黄体早期的OF-EV和黄体中期的UF-EV中的miRNA货物,这两个阶段恰好是胚胎在体内输卵管和子宫内的转运期,评估了miRNA对LMGs和对早期胚胎发育至关重要的信号通路可能产生的影响。共检测到333个miRNA,其中11个为OF组独有,59个为UF组独有,263个为两组共有。摘要中正确的结果部分应为:本研究评估了黄体早期的OF-EVs和黄体中期的UF-EVs中的miRNA货物,这两个阶段恰好是胚胎在体内输卵管和子宫内转运的阶段,以及它们对LMGs和对早期胚胎发育至关重要的信号通路可能产生的影响。共检测到 333 个 miRNA,其中 11 个为 OF 专有,59 个为 UF 专有,263 个为两组共有。在 20 个差异表达的 miRNA 中,19 个在 UF-EV 中上调(bta-miR-134、bta-miR-151-3p、bta-miR-155、bta-miR-188、bta-miR-181b、bta-miR-181d、bta-miR-224、bta-miR-23b-3p、bta-miR-181b、bta-miR-181d、bta-miR-224、bta-miR-23b-3p、bta-miR-24-3p、bta-miR-27a-3p、bta-miR-29a、bta-miR-324、bta-miR-326、bta-miR-345-3p、bta-miR-410、bta-miR-652、bta-miR-677、bta-miR-873 和 bta-miR-708)以及 OF-EV 中的一个 miRNA(bta-miR-148b)。据预测,这些 miRNA 可调节多种途径,如 Wnt、Hippo、MAPK 和脂质代谢与降解。在黄体早期的 OF-EVs 和黄体中期的 UF-EVs 中发现的 miRNAs 的差异可能反映了不同的环境以满足胚胎不断变化的需求。Mazzarella R, Cañón-Beltrán K, Cajas YN, et al. Extracellular vesicles-coupled miRNAs from oviduct and uterus modulate signaling pathways related to lipid metabolism and bovine early embryo development.J Animal Sci Biotechnol.2024;15:51. https://doi.org/10.1186/s40104-024-01008-5.Article CAS Google Scholar 下载参考文献作者简介Claudia L. V. Leal 和 D. Rizos 对本研究做出了同样的贡献。作者及所属单位西班牙马德里 INIA-CSIC 动物繁殖系Rosane Mazzarella、Meriem Hamdi、Claudia L. V. Leal & D. Rizos。RizosDepartment of Biochemistry and Molecular Biology,Veterinary Faculty,Complutense University of Madrid (UCM),Madrid,SpainKarina Cañón-BeltránDepartment Agrarian Production,Technical University of Madrid,UPM,Madrid,SpainYulia N.CajasDepartamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, UTPL, Loja, EcuadorYulia N. CajasDepartment of Anatomy and Embryology, FV-UCM, Madrid, SpainEncina M. GonzálezDepartment of Veterinary Medicine, FZEA-USP, Pirassununga, BrazilJuliano C.da Silveira & Claudia L. V. Leal作者Rosane Mazzarella查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Karina Cañón-Beltrán 查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Yulia N. Cajas查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Meriem Hamdi查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Encina M.GonzálezView 作者发表作品您也可以在 PubMed Google ScholarJuliano C. da SilveiraView 作者发表作品您也可以在 PubMed Google ScholarClaudia L. V. LealView 作者发表作品您也可以在 PubMed Google ScholarD.RizosView author publications您还可以在PubMed Google Scholar中搜索该作者Corresponding authorCorrespondence to D. Rizos.开放存取本文采用知识共享署名 4.0(Cre
{"title":"Correction: Extracellular vesicles-coupled miRNAs from oviduct and uterus modulate signaling pathways related to lipid metabolism and bovine early embryo development","authors":"Rosane Mazzarella, Karina Cañón-Beltrán, Yulia N. Cajas, Meriem Hamdi, Encina M. González, Juliano C. da Silveira, Claudia L. V. Leal, D. Rizos","doi":"10.1186/s40104-024-01035-2","DOIUrl":"https://doi.org/10.1186/s40104-024-01035-2","url":null,"abstract":"<p><b>Correction</b><b>: </b><b>J Animal Sci Biotechnol 15, 51 (2024)</b></p><p><b>https://doi.org/10.1186/s40104-024-01008-5</b></p><br/><p>Following publication of the original article [1], the authors reported that the last two sentences were mistakenly placed at the end of the Results section in the Abstract which should have been placed at the beginning of this section.</p><p>The original Results section in the Abstract was:</p><p>From the 20 differentially expressed miRNAs, 19 up-regulated in UF-EVs (bta-miR-134, bta-miR-151-3p, bta-miR-155, bta-miR-188, bta-miR-181b, bta-miR-181d, bta-miR-224, bta-miR-23b-3p, bta-miR-24-3p, bta-miR-27a-3p, bta-miR-29a, bta-miR-324, bta-miR-326, bta-miR-345-3p, bta-miR-410, bta-miR-652, bta-miR-677, bta-miR-873 and bta-miR-708) and one (bta-miR-148b) in OF-EVs. These miRNAs were predicted to modulate several pathways such as Wnt, Hippo, MAPK, and lipid metabolism and degradation. Differences in miRNAs found in OF-EVs from the early luteal phase and UF-EVs from mid-luteal phase may reflect different environments to meet the changing needs of the embryo. Additionally, miRNAs may be involved, particularly in the uterus, in the regulation of embryo lipid metabolism, immune system, and implantation. This study evaluated miRNA cargo in OF-EVs from the early luteal phase and UF-EVs from the mid-luteal phase, coinciding with embryo transit within oviduct and uterus in vivo, and its possible influence on LMGs and signaling pathways crucial for early embryo development. A total of 333 miRNAs were detected, with 11 exclusive to OF, 59 to UF, and 263 were common between both groups.</p><p>The correct Results section in the Abstract should read:</p><p>This study evaluated miRNA cargo in OF-EVs from the early luteal phase and UF-EVs from the mid-luteal phase, coinciding with embryo transit within oviduct and uterus in vivo, and its possible influence on LMGs and signaling pathways crucial for early embryo development. A total of 333 miRNAs were detected, with 11 exclusive to OF, 59 to UF, and 263 were common between both groups. From the 20 differentially expressed miRNAs, 19 up-regulated in UF-EVs (bta-miR-134, bta-miR-151-3p, bta-miR-155, bta-miR-188, bta-miR-181b, bta-miR-181d, bta-miR-224, bta-miR-23b-3p, bta-miR-24-3p, bta-miR-27a-3p, bta-miR-29a, bta-miR-324, bta-miR-326, bta-miR-345-3p, bta-miR-410, bta-miR-652, bta-miR-677, bta-miR-873 and bta-miR-708) and one (bta-miR-148b) in OF-EVs. These miRNAs were predicted to modulate several pathways such as Wnt, Hippo, MAPK, and lipid metabolism and degradation. Differences in miRNAs found in OF-EVs from the early luteal phase and UF-EVs from mid-luteal phase may reflect different environments to meet the changing needs of the embryo. Additionally, miRNAs may be involved, particularly in the uterus, in the regulation of embryo lipid metabolism, immune system, and implantation.</p><p>The original article [1] has been updated.</p><ol data-track-component=\"outbound referenc","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"31 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140640413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1186/s40104-024-01010-x
Sungbo Cho, Shanmugam Suresh Kumar, Santiago Ramirez, Rolando Valientes, In Ho Kim
Optimal gut health is important to maximize growth performance and feed efficiency in broiler chickens. A total of 1,365 one-day-old male Ross 308 broiler chickens were randomly divided into 5 treatments groups with 21 replicates, 13 birds per replicate. The present research investigated effects of microbial muramidase or a precision glycan alone or in combination on growth performance, apparent total tract digestibility, total blood carotenoid content, intestinal villus length, meat quality and gut microbiota in broiler chickens. Treatments included: NC: negative control (basal diet group); PC: positive control (basal diet + 0.02% probiotics); MR: basal diet + 0.035% microbial muramidase; PG: basal diet + 0.1% precision glycan; and MRPG: basal diet + 0.025% MR + 0.1% PG, respectively. MRPG group increased the body weight gain and feed intake (P < 0.05) compared with NC group. Moreover, it significantly increased total serum carotenoid (P < 0.05) and MRPG altered the microbial diversity in ileum contents. The MRPG treatment group increased the abundance of the phylum Firmicutes, and family Lachnospiraceae, Ruminococcaceae, Oscillospiraceae, Lactobacillaceae, Peptostreptococcaceae and decreased the abundance of the phylum Campilobacterota, Bacteroidota and family Bacteroidaceae. Compared with the NC group, the chickens fed MRPG showed significantly increased in duodenum villus length at end the trial. In this study, overall results showed that the synergetic effects of MR and PG showed enhancing growth performance, total serum carotenoid level and altering gut microbiota composition of broilers. The current research indicates that co-supplementation of MR and PG in broiler diets enhances intestinal health, consequently leading to an increased broiler production.
{"title":"Dietary eubiotics of microbial muramidase and glycan improve intestinal villi, ileum microbiota composition and production trait of broiler","authors":"Sungbo Cho, Shanmugam Suresh Kumar, Santiago Ramirez, Rolando Valientes, In Ho Kim","doi":"10.1186/s40104-024-01010-x","DOIUrl":"https://doi.org/10.1186/s40104-024-01010-x","url":null,"abstract":"Optimal gut health is important to maximize growth performance and feed efficiency in broiler chickens. A total of 1,365 one-day-old male Ross 308 broiler chickens were randomly divided into 5 treatments groups with 21 replicates, 13 birds per replicate. The present research investigated effects of microbial muramidase or a precision glycan alone or in combination on growth performance, apparent total tract digestibility, total blood carotenoid content, intestinal villus length, meat quality and gut microbiota in broiler chickens. Treatments included: NC: negative control (basal diet group); PC: positive control (basal diet + 0.02% probiotics); MR: basal diet + 0.035% microbial muramidase; PG: basal diet + 0.1% precision glycan; and MRPG: basal diet + 0.025% MR + 0.1% PG, respectively. MRPG group increased the body weight gain and feed intake (P < 0.05) compared with NC group. Moreover, it significantly increased total serum carotenoid (P < 0.05) and MRPG altered the microbial diversity in ileum contents. The MRPG treatment group increased the abundance of the phylum Firmicutes, and family Lachnospiraceae, Ruminococcaceae, Oscillospiraceae, Lactobacillaceae, Peptostreptococcaceae and decreased the abundance of the phylum Campilobacterota, Bacteroidota and family Bacteroidaceae. Compared with the NC group, the chickens fed MRPG showed significantly increased in duodenum villus length at end the trial. In this study, overall results showed that the synergetic effects of MR and PG showed enhancing growth performance, total serum carotenoid level and altering gut microbiota composition of broilers. The current research indicates that co-supplementation of MR and PG in broiler diets enhances intestinal health, consequently leading to an increased broiler production.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"33 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140541669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1186/s40104-024-01012-9
Qi Huang, Jiashuo Liu, Can Peng, Xuefeng Han, Zhiliang Tan
Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells (bMECs) exposed to oxidative stress have not been elucidated. In this study, we investigated the effects of hesperidin on H2O2-induced oxidative stress in bMECs and the underlying molecular mechanism. We found that hesperidin attenuated H2O2-induced cell damage by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, increasing catalase (CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent. Our results suggest that hesperidin could protect bMECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary.
{"title":"Hesperidin ameliorates H2O2-induced bovine mammary epithelial cell oxidative stress via the Nrf2 signaling pathway","authors":"Qi Huang, Jiashuo Liu, Can Peng, Xuefeng Han, Zhiliang Tan","doi":"10.1186/s40104-024-01012-9","DOIUrl":"https://doi.org/10.1186/s40104-024-01012-9","url":null,"abstract":"Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells (bMECs) exposed to oxidative stress have not been elucidated. In this study, we investigated the effects of hesperidin on H2O2-induced oxidative stress in bMECs and the underlying molecular mechanism. We found that hesperidin attenuated H2O2-induced cell damage by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, increasing catalase (CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent. Our results suggest that hesperidin could protect bMECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary. ","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"58 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1186/s40104-024-01014-7
Wei He, Xinyu Liu, Ye Feng, Hongwei Ding, Haoyang Sun, Zhongyu Li, Baoming Shi
Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase (AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation. Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver; dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation. Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we highlight the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.
{"title":"Dietary fat supplementation relieves cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis in pigs","authors":"Wei He, Xinyu Liu, Ye Feng, Hongwei Ding, Haoyang Sun, Zhongyu Li, Baoming Shi","doi":"10.1186/s40104-024-01014-7","DOIUrl":"https://doi.org/10.1186/s40104-024-01014-7","url":null,"abstract":"Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase (AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation. Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver; dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation. Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we highlight the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"78 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140534180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}