首页 > 最新文献

Journal of applied glycoscience最新文献

英文 中文
Hyaluronidase-inhibiting Polysaccharide from Caulerpa lentillifera. 小扁豆透明质酸酶抑制多糖。
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-01-01 DOI: 10.5458/jag.jag.JAG-2022_0004
Mahanama Geegana Gamage Awanthi, Saki Nagamoto, Hirosuke Oku, Kanefumi Kitahara, Teruko Konishi

Algal sulfated polysaccharides are known to be effective hyaluronidase inhibitors. We evaluated hyaluronidase inhibitory activity of sulfated polysaccharide (SP) from Caulerpa lentillifera. Results showed that SP with IC50 of 163 µg/mL appears to allosterically inhibit the hyaluronidase activity. Main sugar composition and sulfate content of SP was estimated to be Gal, Glc, Xyl, Man, uronic acids, and sulfate in the weight percent of 27.7: 28.9: 14.6: 22.5: 3.4: 21.7. We modified the SP by desulfation and partial hydrolysis with trifluoroacetic acid (TFA) to investigate the effect of sulfate content and molecular weight on inhibition. Hyaluronidase inhibitory activity of desulfated SP, 0.1 M TFA-hydrolyzed SP and 0.5 M TFA-hydrolyzed SP were significantly lower than that of native SP, revealing that sulfate content or molecular weight is important for hyaluronidase inhibition.

藻类硫酸酸化多糖是已知的有效的透明质酸酶抑制剂。研究了小扁豆硫酸酸化多糖(SP)的透明质酸酶抑制活性。结果表明,IC50为163µg/mL的SP具有变构性抑制透明质酸酶活性的作用。SP的主要糖组成和硫酸盐含量为Gal、Glc、Xyl、Man、醛酸和硫酸盐,重量百分比分别为27.7:28.9:14.6:22.5:3.4:21.7。用三氟乙酸(TFA)对SP进行了脱硫和部分水解改性,考察了硫酸盐含量和分子量对抑制作用的影响。脱硫SP、0.1 M tfa -水解SP和0.5 M tfa -水解SP的透明质酸酶抑制活性显著低于天然SP,表明硫酸盐含量或分子量对透明质酸酶的抑制作用很重要。
{"title":"Hyaluronidase-inhibiting Polysaccharide from <i>Caulerpa lentillifera</i>.","authors":"Mahanama Geegana Gamage Awanthi,&nbsp;Saki Nagamoto,&nbsp;Hirosuke Oku,&nbsp;Kanefumi Kitahara,&nbsp;Teruko Konishi","doi":"10.5458/jag.jag.JAG-2022_0004","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2022_0004","url":null,"abstract":"<p><p>Algal sulfated polysaccharides are known to be effective hyaluronidase inhibitors. We evaluated hyaluronidase inhibitory activity of sulfated polysaccharide (SP) from <i>Caulerpa lentillifera.</i> Results showed that SP with IC<sub>50</sub> of 163 µg/mL appears to allosterically inhibit the hyaluronidase activity. Main sugar composition and sulfate content of SP was estimated to be Gal, Glc, Xyl, Man, uronic acids, and sulfate in the weight percent of 27.7: 28.9: 14.6: 22.5: 3.4: 21.7. We modified the SP by desulfation and partial hydrolysis with trifluoroacetic acid (TFA) to investigate the effect of sulfate content and molecular weight on inhibition. Hyaluronidase inhibitory activity of desulfated SP, 0.1 M TFA-hydrolyzed SP and 0.5 M TFA-hydrolyzed SP were significantly lower than that of native SP, revealing that sulfate content or molecular weight is important for hyaluronidase inhibition.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"70 1","pages":"1-7"},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b3/b8/70_jag.JAG-2022_0004.PMC10077112.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9272438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Characterization of an α-L-Arabinofuranosidase GH51 from the Brown-rot Fungus Gloeophyllum trabeum. 褐腐菌中α- l -阿拉伯糖醛酸苷酶GH51的鉴定
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-01-01 DOI: 10.5458/jag.jag.JAG-2022_0009
Rikako Tsukida, Makoto Yoshida, Satoshi Kaneko

Woody biomass is anticipated to be a resource for a decarbonized society, but the difficulty of isolating woody components is a significant challenge. Brown-rot fungi, a type of wood rotting fungi, decompose hemicellulose particularly efficiently. However, there are few reports on the hemicellulases from brown-rot fungi. An α-L-arabinofuranosidase belonging to glycoside hydrolase family 51 (GH51) from the brown-rot fungus Gloeophyllum trabeum (GtAbf51A) was cloned and characterized in the present study. Analyses of the phylogeny of GH51 enzymes in wood rotting fungi revealed the existence of two groups, intercellular and extracellular enzymes. After deglycosylation, the recombinant GtAbf51A produced by Pichia pastoris appeared on SDS-PAGE as approximately 71,777 daltons, which is the expected molecular weight based on the amino acid sequence of GtAbf51A. Maximum enzyme activity occurred between pH 2.2 and 4.0 and at 50 °C, while it was stable between pH 2.2 and 10.0 and up to 40 °C. Due to the presence of a signal peptide, GtAbf51A was thought to hydrolyze polysaccharide containing arabinose. However, the hydrolysis rate of arabinosyl linkages in polysaccharides was only 3-5 % for arabinoxylan and 18 % for arabinan. GtAbf51A, in contrast, efficiently hydrolyzed arabinoxylooligosaccharides, particularly O-α-L-arabinofuranosyl-(1→3)-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose, which is the principal product of GH10 β-xylanase. These data suggest that GtAbf51A cooperates with other xylan-degrading enzymes, such as β-xylanase, to degrade xylan in nature.

木质生物质有望成为脱碳社会的一种资源,但分离木质成分的困难是一个重大挑战。褐腐真菌是一种木材腐烂真菌,它能特别有效地分解半纤维素。然而,关于褐腐菌半纤维素酶的报道很少。本研究从褐腐菌Gloeophyllum trabeum (GtAbf51A)中克隆并鉴定了一种α-L-arabinofuranosidase (α-L-arabinofuranosidase),属于糖苷水解酶51家族(GH51)。对腐木真菌GH51酶的系统发育分析表明,GH51酶可分为胞间酶和胞外酶两类。去糖基化后,毕赤酵母重组GtAbf51A在SDS-PAGE上的分子量约为71777道尔顿,这是基于GtAbf51A氨基酸序列的预期分子量。酶活性在pH 2.2 ~ 4.0和50℃时达到最大值,在pH 2.2 ~ 10.0和高达40℃时保持稳定。由于信号肽的存在,GtAbf51A被认为可以水解含有阿拉伯糖的多糖。然而,阿拉伯木聚糖多糖中阿拉伯糖基键的水解率仅为3- 5%,阿拉伯糖聚糖为18%。相比之下,GtAbf51A能有效水解阿拉伯糖低聚糖,特别是O-α- l-阿拉伯糖糠基-(1→3)-O-β- d -木吡喃基-(1→4)-β- d -木吡喃糖,这是GH10 β-木聚糖酶的主要产物。这些数据表明GtAbf51A在自然界中与其他木聚糖降解酶如β-木聚糖酶协同降解木聚糖。
{"title":"Characterization of an α-L-Arabinofuranosidase GH51 from the Brown-rot Fungus <i>Gloeophyllum trabeum</i>.","authors":"Rikako Tsukida,&nbsp;Makoto Yoshida,&nbsp;Satoshi Kaneko","doi":"10.5458/jag.jag.JAG-2022_0009","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2022_0009","url":null,"abstract":"<p><p>Woody biomass is anticipated to be a resource for a decarbonized society, but the difficulty of isolating woody components is a significant challenge. Brown-rot fungi, a type of wood rotting fungi, decompose hemicellulose particularly efficiently. However, there are few reports on the hemicellulases from brown-rot fungi. An α-L-arabinofuranosidase belonging to glycoside hydrolase family 51 (GH51) from the brown-rot fungus <i>Gloeophyllum trabeum</i> (<i>Gt</i>Abf51A) was cloned and characterized in the present study. Analyses of the phylogeny of GH51 enzymes in wood rotting fungi revealed the existence of two groups, intercellular and extracellular enzymes. After deglycosylation, the recombinant <i>Gt</i>Abf51A produced by <i>Pichia pastoris</i> appeared on SDS-PAGE as approximately 71,777 daltons, which is the expected molecular weight based on the amino acid sequence of <i>Gt</i>Abf51A. Maximum enzyme activity occurred between pH 2.2 and 4.0 and at 50 °C, while it was stable between pH 2.2 and 10.0 and up to 40 °C. Due to the presence of a signal peptide, <i>Gt</i>Abf51A was thought to hydrolyze polysaccharide containing arabinose. However, the hydrolysis rate of arabinosyl linkages in polysaccharides was only 3-5 % for arabinoxylan and 18 % for arabinan. <i>Gt</i>Abf51A, in contrast, efficiently hydrolyzed arabinoxylooligosaccharides, particularly <i>O</i>-α-L-arabinofuranosyl-(1→3)-<i>O</i>-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose, which is the principal product of GH10 β-xylanase. These data suggest that <i>Gt</i>Abf51A cooperates with other xylan-degrading enzymes, such as β-xylanase, to degrade xylan in nature.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"70 1","pages":"9-14"},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a0/08/70_jag.JAG-2022_0009.PMC10074032.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9272439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Vivo Digestibility of Carbohydrate Rich in Isomaltomegalosaccharide Produced from Starch by Dextrin Dextranase. 糊精葡聚糖酶从淀粉中提取的富含异麦芽糖的碳水化合物的体内消化率。
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-08-22 eCollection Date: 2022-01-01 DOI: 10.5458/jag.jag.JAG-2021_0013
Eri Kokubo, Hirofumi Sonoki, Kenta Aizawa, Hiroki Takagi, Masayasu Takada, Ayako Ito, Yuki Nakazato, Yasuhiro Takeda, Kazuhiro Miyaji

Slowly digestible carbohydrates are needed for nutritional support in diabetic patients with malnutrition. They are a good source of energy and have the advantage that their consumption produces a low postprandial peak in blood glucose levels because they are slowly and completely digested in the small intestine. A high-amount isomaltomegalosaccharide containing carbohydrate (H-IMS), made from starch by dextrin dextranase, is a mixture of glucose polymers which has a continuous linear structure of α-1,6-glucosidic bonds and a small number of α-1,4-glucosidic bonds at the reducing ends. It has a broad degree of polymerization (DP) distribution with glucans of DP 10-30 as the major component. In our previous study, H-IMS has been shown to exhibit slow digestibility in vitro and not to raise postprandial blood glucose to such levels as that raised by dextrin in vivo. This marks it out as a potentially useful slowly digestible carbohydrate, and this study aimed to evaluate its in vivo digestibility. The amount of breath hydrogen emitted following oral administration of H-IMS was measured to determine whether any indigestible fraction passed through to and was fermented in the large intestine. Total carbohydrate in the feces was also measured. H-IMS, like glucose and dextrin, did not result in breath hydrogen excretion. Carbohydrate excretion with dietary H-IMS was no different from that of glucose or water. These results show that the H-IMS is completely digested and absorbed in the small intestine, indicating its potential as a slowly digestible carbohydrate in the diet of diabetic patients.

营养不良的糖尿病患者需要缓慢消化的碳水化合物作为营养支持。它们是一种很好的能量来源,而且它们的优点是,它们的摄入会在餐后产生较低的血糖峰值,因为它们在小肠中被缓慢而完全地消化。以淀粉为原料,经糊精葡聚糖酶合成的高剂量含糖异糖糖(H-IMS)是一种具有α-1,6-糖苷键和α-1,4-糖苷键连续线性结构的葡萄糖聚合物混合物。它具有广泛的聚合度(DP)分布,以DP 10-30的葡聚糖为主要成分。在我们之前的研究中,H-IMS在体外表现出缓慢的消化率,并且不会将餐后血糖提高到糊精在体内的水平。这标志着它是一种潜在的有用的缓慢消化的碳水化合物,本研究旨在评估其体内消化率。测量口服H-IMS后呼出的氢气量,以确定是否有不消化的部分通过大肠并在大肠中发酵。还测量了粪便中的总碳水化合物。H-IMS,像葡萄糖和糊精一样,不会导致呼吸中的氢排泄。饮食H-IMS的碳水化合物排泄与葡萄糖或水没有什么不同。这些结果表明,H-IMS在小肠中被完全消化和吸收,这表明它有可能成为糖尿病患者饮食中缓慢消化的碳水化合物。
{"title":"<i>In Vivo</i> Digestibility of Carbohydrate Rich in Isomaltomegalosaccharide Produced from Starch by Dextrin Dextranase.","authors":"Eri Kokubo,&nbsp;Hirofumi Sonoki,&nbsp;Kenta Aizawa,&nbsp;Hiroki Takagi,&nbsp;Masayasu Takada,&nbsp;Ayako Ito,&nbsp;Yuki Nakazato,&nbsp;Yasuhiro Takeda,&nbsp;Kazuhiro Miyaji","doi":"10.5458/jag.jag.JAG-2021_0013","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2021_0013","url":null,"abstract":"<p><p>Slowly digestible carbohydrates are needed for nutritional support in diabetic patients with malnutrition. They are a good source of energy and have the advantage that their consumption produces a low postprandial peak in blood glucose levels because they are slowly and completely digested in the small intestine. A high-amount isomaltomegalosaccharide containing carbohydrate (H-IMS), made from starch by dextrin dextranase, is a mixture of glucose polymers which has a continuous linear structure of α-1,6-glucosidic bonds and a small number of α-1,4-glucosidic bonds at the reducing ends. It has a broad degree of polymerization (DP) distribution with glucans of DP 10-30 as the major component. In our previous study, H-IMS has been shown to exhibit slow digestibility <i>in vitro</i> and not to raise postprandial blood glucose to such levels as that raised by dextrin <i>in vivo</i>. This marks it out as a potentially useful slowly digestible carbohydrate, and this study aimed to evaluate its <i>in vivo</i> digestibility. The amount of breath hydrogen emitted following oral administration of H-IMS was measured to determine whether any indigestible fraction passed through to and was fermented in the large intestine. Total carbohydrate in the feces was also measured. H-IMS, like glucose and dextrin, did not result in breath hydrogen excretion. Carbohydrate excretion with dietary H-IMS was no different from that of glucose or water. These results show that the H-IMS is completely digested and absorbed in the small intestine, indicating its potential as a slowly digestible carbohydrate in the diet of diabetic patients.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"69 3","pages":"57-63"},"PeriodicalIF":1.1,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7d/dd/69_jag.JAG-2021_0013.PMC9534827.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40653287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of a GH Family 43 β-Xylosidase Having a Novel Carbohydrate-binding Module from Paenibacillus xylaniclasticus Strain TW1. 具有新型碳水化合物结合模块的GH家族43 β-木糖苷酶的鉴定
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-08-22 eCollection Date: 2022-01-01 DOI: 10.5458/jag.jag.JAG-2022_0001
Daichi Ito, Emiri Nakano, Shuichi Karita, Midori Umekawa, Khanok Ratanakhanokchai, Chakrit Tachaapaikoon

Paenibacillus xylaniclasticus strain TW1, a gram-positive facultative anaerobic bacterium, was isolated as a xylanolytic microorganism from the wastes of a pineapple processing factory. A gene encoding one of its xylanolytic enzymes, a β-xylosidase, was cloned and sequenced. Sequence analysis revealed that this β-xylosidase, named PxXyl43A, was composed of a glycoside hydrolase (GH) family 43 subfamily 12 catalytic module and an unknown function module (UM). The full-length PxXyl43A (PxXyl43A) was heterologously expressed in Escherichia coli and purified. Recombinant PxXyl43A exhibited hydrolysis activity against both p-nitrophenyl-β-D-xylopyranoside (pNPX) and p-nitrophenyl-α-L-arabinofuranoside at specific activities of 250 and 310 mU/mg, respectively. The optimal reaction pH and temperature for pNPX hydrolysis were 7.1 and 54 ˚C, respectively. At pH 7.0 and 54 ˚C, the K m and k cat for pNPX were 1.2 mM and 2.8 ± 0.15 s-1, respectively. It was also discovered that the recombinant unknown function module of PxXyl43A (PxXyl43A-UM) could bind to insoluble xylans like birchwood xylan and oat spelt xylan, whereas it did not bind to cellulosic substrates such as ball-milled cellulose, carboxymethyl cellulose or lichenan. The PxXyl43A-UM's binding constant value K a for oat spelt xylan was 2.0 × 10-5 M-1. These results suggest that PxXyl43A possesses a novel carbohydrate-binding module, named as CBM91, specific for xylan-containing polysaccharides.

从菠萝加工厂的废弃物中分离得到革兰氏阳性兼性厌氧芽孢杆菌TW1株木裂芽孢杆菌。一个编码其木聚糖水解酶之一β-木糖苷酶的基因被克隆并测序。序列分析表明,该β-木糖苷酶命名为PxXyl43A,由糖苷水解酶(GH)家族43亚家族12催化模块和未知功能模块(UM)组成。全长PxXyl43A (PxXyl43A)在大肠杆菌中异种表达并纯化。重组蛋白PxXyl43A对对硝基苯-β- d -木吡喃苷(pNPX)和对硝基苯-α- l-阿拉伯糖脲苷的水解活性分别为250和310 mU/mg。pNPX水解的最佳反应pH为7.1℃,反应温度为54℃。pH 7.0和54℃时,pNPX的K m和K cat分别为1.2 mM和2.8±0.15 s-1。还发现PxXyl43A的重组未知功能模块(PxXyl43A- um)可以与不溶性木聚糖(如桦木木聚糖和燕麦木聚糖)结合,而不能与纤维素底物(如球磨纤维素、羧甲基纤维素或地衣)结合。PxXyl43A-UM对燕麦木聚糖的结合常数K a为2.0 × 10-5 M-1。这些结果表明,PxXyl43A具有一种新的碳水化合物结合模块,称为CBM91,对含木聚糖的多糖具有特异性。
{"title":"Characterization of a GH Family 43 β-Xylosidase Having a Novel Carbohydrate-binding Module from <i>Paenibacillus xylaniclasticus</i> Strain TW1.","authors":"Daichi Ito,&nbsp;Emiri Nakano,&nbsp;Shuichi Karita,&nbsp;Midori Umekawa,&nbsp;Khanok Ratanakhanokchai,&nbsp;Chakrit Tachaapaikoon","doi":"10.5458/jag.jag.JAG-2022_0001","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2022_0001","url":null,"abstract":"<p><p><i>Paenibacillus xylaniclasticus</i> strain TW1, a gram-positive facultative anaerobic bacterium, was isolated as a xylanolytic microorganism from the wastes of a pineapple processing factory. A gene encoding one of its xylanolytic enzymes, a β-xylosidase, was cloned and sequenced. Sequence analysis revealed that this β-xylosidase, named <i>Px</i>Xyl43A, was composed of a glycoside hydrolase (GH) family 43 subfamily 12 catalytic module and an unknown function module (UM). The full-length <i>Px</i>Xyl43A (<i>Px</i>Xyl43A) was heterologously expressed in <i>Escherichia coli</i> and purified. Recombinant <i>Px</i>Xyl43A exhibited hydrolysis activity against both <i>p</i>-nitrophenyl-β-D-xylopyranoside (<i>p</i>NPX) and <i>p</i>-nitrophenyl-α-L-arabinofuranoside at specific activities of 250 and 310 mU/mg, respectively. The optimal reaction pH and temperature for <i>p</i>NPX hydrolysis were 7.1 and 54 ˚C, respectively. At pH 7.0 and 54 ˚C, the <i>K</i> <sub>m</sub> and <i>k</i> <sub>cat</sub> for <i>p</i>NPX were 1.2 mM and 2.8 ± 0.15 s<sup>-1</sup>, respectively. It was also discovered that the recombinant unknown function module of <i>Px</i>Xyl43A (<i>Px</i>Xyl43A-UM) could bind to insoluble xylans like birchwood xylan and oat spelt xylan, whereas it did not bind to cellulosic substrates such as ball-milled cellulose, carboxymethyl cellulose or lichenan. The <i>Px</i>Xyl43A-UM's binding constant value <i>K</i> <sub>a</sub> for oat spelt xylan was 2.0 × 10<sup>-5</sup> M<sup>-1</sup>. These results suggest that <i>Px</i>Xyl43A possesses a novel carbohydrate-binding module, named as CBM91, specific for xylan-containing polysaccharides.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"69 3","pages":"65-71"},"PeriodicalIF":1.1,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/58/e0/69_jag.JAG-2022_0001.PMC9534826.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40444758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
GH-16 Type β-1,3-Glucanase from Lysobacter sp. MK9-1 Enhances Antifungal Activity of GH-19 Type Chitinase, and Its Glucan-binding Domain Binds to Fungal Cell-wall. 溶杆菌MK9-1中GH-16型β-1,3-葡聚糖酶增强了GH-19型几丁质酶的抗真菌活性,其葡聚糖结合结构域与真菌细胞壁结合。
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-08-22 eCollection Date: 2022-01-01 DOI: 10.5458/jag.jag.JAG-2022_0002
Yuitsu Otsuka, Koki Sato, Shigekazu Yano, Haruki Kanno, Wasana Suyotha, Hiroyuki Konno, Koki Makabe, Toki Taira

The GH-16 type β-1,3-glucanase (BgluC16MK) gene of Lysobacter sp. MK9-1 was cloned to study its antifungal activities. BgluC16MK displays amino acid sequence similarity with GluC from L. enzymogenes strain N4-7. BgluC16MK includes a signal sequence, a catalytic domain and carbohydrate-binding module family 6-type β-glucan binding domain (B-GBD). The expression of the BgluC16MK gene in Escherichia coli without the signal sequence resulted in antifungal activity at a dose of 0.6-0.8 nmol/disk. However, BgluC16MK displayed antifungal activity at a dose of 0.025 nmol/disk in combination with Chi19MK. Substrate-specific assay revealed that purified BgluC16MK hydrolyzed insoluble curdlan more readily than the soluble substrate. Furthermore, to explore the binding selectivity of B-GBD of BgluC16MK, we constructed a fusion protein (B-GBD-GFP) using the B-GBD and green fluorescent protein. The activity of the fusion protein against various substrates indicates that B-GBD was selective for glucans with β-1,3-linkages. An additional study demonstrated the binding ability of B-GBD-GFP to the cell-wall of living fungi, such as T. reesei and Aspergillus oryzae. These findings suggest that BgluC16MK can be utilized to generate antifungal enzyme preparations and that the fusion protein B-GBD-GFP can be used to identify the fungal cell surface structure using β-glucans.

克隆溶杆菌MK9-1的GH-16型β-1,3-葡聚糖酶(BgluC16MK)基因,研究其抗真菌活性。BgluC16MK与L. enzymatic genes菌株N4-7的GluC氨基酸序列相似。BgluC16MK包括一个信号序列、一个催化结构域和碳水化合物结合模块家族6型β-葡聚糖结合结构域(B-GBD)。BgluC16MK基因在没有信号序列的大肠杆菌中表达,在0.6 ~ 0.8 nmol/盘的剂量下具有抗真菌活性。而BgluC16MK与Chi19MK联合使用0.025 nmol/disk时,表现出抗真菌活性。底物特异性实验表明,纯化后的BgluC16MK比可溶性底物更容易水解不溶性凝乳蛋白。为了探究B-GBD与BgluC16MK的结合选择性,我们利用B-GBD与绿色荧光蛋白构建了融合蛋白(B-GBD- gfp)。融合蛋白对多种底物的活性表明B-GBD对具有β-1,3键的葡聚糖具有选择性。另一项研究证明了B-GBD-GFP与活真菌(如T. reesei和米曲霉)细胞壁的结合能力。这些结果表明,BgluC16MK可用于制备抗真菌酶制剂,融合蛋白B-GBD-GFP可用于利用β-葡聚糖鉴定真菌细胞表面结构。
{"title":"GH-16 Type β-1,3-Glucanase from <i>Lysobacter</i> sp. MK9-1 Enhances Antifungal Activity of GH-19 Type Chitinase, and Its Glucan-binding Domain Binds to Fungal Cell-wall.","authors":"Yuitsu Otsuka,&nbsp;Koki Sato,&nbsp;Shigekazu Yano,&nbsp;Haruki Kanno,&nbsp;Wasana Suyotha,&nbsp;Hiroyuki Konno,&nbsp;Koki Makabe,&nbsp;Toki Taira","doi":"10.5458/jag.jag.JAG-2022_0002","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2022_0002","url":null,"abstract":"<p><p>The GH-16 type β-1,3-glucanase (BgluC16MK) gene of <i>Lysobacter</i> sp. MK9-1 was cloned to study its antifungal activities. BgluC16MK displays amino acid sequence similarity with GluC from <i>L. enzymogenes</i> strain N4-7. BgluC16MK includes a signal sequence, a catalytic domain and carbohydrate-binding module family 6-type β-glucan binding domain (B-GBD). The expression of the BgluC16MK gene in <i>Escherichia coli</i> without the signal sequence resulted in antifungal activity at a dose of 0.6-0.8 nmol/disk. However, BgluC16MK displayed antifungal activity at a dose of 0.025 nmol/disk in combination with Chi19MK. Substrate-specific assay revealed that purified BgluC16MK hydrolyzed insoluble curdlan more readily than the soluble substrate. Furthermore, to explore the binding selectivity of B-GBD of BgluC16MK, we constructed a fusion protein (B-GBD-GFP) using the B-GBD and green fluorescent protein. The activity of the fusion protein against various substrates indicates that B-GBD was selective for glucans with β-1,3-linkages. An additional study demonstrated the binding ability of B-GBD-GFP to the cell-wall of living fungi, such as <i>T. reesei</i> and <i>Aspergillus oryzae</i>. These findings suggest that BgluC16MK can be utilized to generate antifungal enzyme preparations and that the fusion protein B-GBD-GFP can be used to identify the fungal cell surface structure using β-glucans.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"69 3","pages":"49-56"},"PeriodicalIF":1.1,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9a/cf/69_jag.JAG-2022_0002.PMC9534828.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40651880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Starch Biosynthetic Protein Complex Formation in Rice ss2a be2b (+) Double Mutant Differs from Their Parental Single Mutants. 水稻ss2a be2b(+)双突变体与亲本单突变体淀粉生物合成蛋白复合物形成的差异
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-05-25 eCollection Date: 2022-01-01 DOI: 10.5458/jag.jag.JAG-2021_0015
Tamami Ida, Naoko Crofts, Satoko Miura, Ryo Matsushima, Naoko Fujita

Amylopectin, which consists of highly branched glucose polymers, is a major component of starch. Biochemical processes that regulate the elongation of glucose polymers and the generation and removal of glucose branches are essential for determining the properties of starch. Starch synthases (SSs) and branching enzyme (BE) mainly form complexes consisting of SSI, SSIIa, and BEIIb during endosperm development. Loss of BEIIb in rice is complemented by BEIIa, but the compensatory effects differ depending on the presence or absence of inactive BEIIb. To better understand these compensatory mechanisms, ss2a be2b (+) double mutant, which possessed truncated inactive SSIIa and inactive BEIIb, were analyzed. Soluble proteins separated by gel filtration chromatography showed that SSIIa and BEIIb proteins in the wild-type exhibited a broad range of elution patterns and only small amounts were detected in high molecular mass fractions. In contrast, most of truncated inactive SSIIa and inactive BEIIb from ss2a be2b (+) were found in high molecular mass fractions, and the SSI-SSIIa-BEIIb trimeric protein complex found in the wild-type was likely absent in ss2a be2b (+). Those SSIIa and BEIIb proteins in high molecular mass fractions in ss2a be2b (+) were also identified by mass spectrometry. Parental ss2a single mutant had negligible amounts of SSIIa suggesting that the truncated inactive SSIIa was recruited to high-molecular mass complexes in the presence of inactive BEIIb in ss2a be2b (+) double mutant. In addition, SSIVb might be involved in the formation of alternative protein complexes with < 300 kDa in ss2a be2b (+).

支链淀粉由高度支链的葡萄糖聚合物组成,是淀粉的主要成分。调节葡萄糖聚合物伸长和葡萄糖分支的产生和去除的生化过程对于确定淀粉的性质至关重要。淀粉合成酶(SSs)和分支酶(BE)在胚乳发育过程中主要形成由SSI、SSIIa和BEIIb组成的复合物。水稻中BEIIb的损失由BEIIa弥补,但补偿效果因不活跃的BEIIb存在与否而异。为了更好地理解这些补偿机制,我们分析了ss2a be2b(+)双突变体,该突变体具有截断的失活SSIIa和失活BEIIb。凝胶过滤层析分离的可溶性蛋白表明,野生型的SSIIa和BEIIb蛋白具有广泛的洗脱模式,在高分子质量分数中仅检测到少量。相比之下,ss2a be2b(+)的大部分截断的失活SSIIa和失活BEIIb都存在于高分子量组分中,并且在野生型中发现的SSI-SSIIa-BEIIb三聚体蛋白复合物可能在ss2a be2b(+)中不存在。在ss2a - be2b(+)的高分子质量部分,也用质谱法鉴定了SSIIa和BEIIb蛋白。亲本ss2a单突变体的SSIIa含量可以忽略不计,这表明在ss2a be2b(+)双突变体存在失活的BEIIb的情况下,截断的失活SSIIa被招募到高分子质量复合物中。此外,SSIVb可能参与了ss2a be2b(+)中< 300 kDa的替代蛋白复合物的形成。
{"title":"Starch Biosynthetic Protein Complex Formation in Rice <i>ss2a be2b (</i>+<i>)</i> Double Mutant Differs from Their Parental Single Mutants.","authors":"Tamami Ida,&nbsp;Naoko Crofts,&nbsp;Satoko Miura,&nbsp;Ryo Matsushima,&nbsp;Naoko Fujita","doi":"10.5458/jag.jag.JAG-2021_0015","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2021_0015","url":null,"abstract":"<p><p>Amylopectin, which consists of highly branched glucose polymers, is a major component of starch. Biochemical processes that regulate the elongation of glucose polymers and the generation and removal of glucose branches are essential for determining the properties of starch. Starch synthases (SSs) and branching enzyme (BE) mainly form complexes consisting of SSI, SSIIa, and BEIIb during endosperm development. Loss of BEIIb in rice is complemented by BEIIa, but the compensatory effects differ depending on the presence or absence of inactive BEIIb. To better understand these compensatory mechanisms, <i>ss2a be2b (</i>+<i>)</i> double mutant, which possessed truncated inactive SSIIa and inactive BEIIb, were analyzed. Soluble proteins separated by gel filtration chromatography showed that SSIIa and BEIIb proteins in the wild-type exhibited a broad range of elution patterns and only small amounts were detected in high molecular mass fractions. In contrast, most of truncated inactive SSIIa and inactive BEIIb from <i>ss2a be2b (</i>+<i>)</i> were found in high molecular mass fractions, and the SSI-SSIIa-BEIIb trimeric protein complex found in the wild-type was likely absent in <i>ss2a be2b (</i>+<i>)</i>. Those SSIIa and BEIIb proteins in high molecular mass fractions in <i>ss2a be2b (</i>+<i>)</i> were also identified by mass spectrometry. Parental <i>ss2a</i> single mutant had negligible amounts of SSIIa suggesting that the truncated inactive SSIIa was recruited to high-molecular mass complexes in the presence of inactive BEIIb in <i>ss2a be2b (</i>+<i>)</i> double mutant. In addition, SSIVb might be involved in the formation of alternative protein complexes with < 300 kDa in <i>ss2a be2b (</i>+<i>)</i>.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"69 2","pages":"23-33"},"PeriodicalIF":1.1,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/81/f3/69_jag.JAG-2021_0015.PMC9276526.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40646030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Acetylated Xylan Degradation by Glycoside Hydrolase Family 10 and 11 Xylanases from the White-rot Fungus Phanerochaete chrysosporium. 白腐菌黄孢平革菌糖苷水解酶家族10和11降解乙酰化木聚糖的研究。
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-05-25 eCollection Date: 2022-01-01 DOI: 10.5458/jag.jag.JAG-2021_0017
Keisuke Kojima, Naoki Sunagawa, Yoshihisa Yoshimi, Theodora Tryfona, Masahiro Samejima, Paul Dupree, Kiyohiko Igarashi

Endo-type xylanases are key enzymes in microbial xylanolytic systems, and xylanases belonging to glycoside hydrolase (GH) families 10 or 11 are the major enzymes degrading xylan in nature. These enzymes have typically been characterized using xylan prepared by alkaline extraction, which removes acetyl sidechains from the substrate, and thus the effect of acetyl groups on xylan degradation remains unclear. Here, we compare the ability of GH10 and 11 xylanases, PcXyn10A and PcXyn11B, from the white-rot basidiomycete Phanerochaete chrysosporium to degrade acetylated and deacetylated xylan from various plants. Product quantification revealed that PcXyn10A effectively degraded both acetylated xylan extracted from Arabidopsis thaliana and the deacetylated xylan obtained by alkaline treatment, generating xylooligosaccharides. In contrast, PcXyn11B showed limited activity towards acetyl xylan, but showed significantly increased activity after deacetylation of the xylan. Polysaccharide analysis using carbohydrate gel electrophoresis showed that PcXyn11B generated a broad range of products from native acetylated xylans extracted from birch wood and rice straw, including large residual xylooligosaccharides, while non-acetylated xylan from Japanese cedar was readily degraded into xylooligosaccharides. These results suggest that the degradability of native xylan by GH11 xylanases is highly dependent on the extent of acetyl group substitution. Analysis of 31 fungal genomes in the Carbohydrate-Active enZymes database indicated that the presence of GH11 xylanases is correlated to that of carbohydrate esterase (CE) family 1 acetyl xylan esterases (AXEs), while this is not the case for GH10 xylanases. These findings may imply co-evolution of GH11 xylanases and CE1 AXEs.

内型木聚糖酶是微生物木聚糖分解系统中的关键酶,属糖苷水解酶(GH) 10或11家族的木聚糖酶是自然界中降解木聚糖的主要酶。这些酶通常使用碱性提取制备的木聚糖来表征,碱性提取从底物中去除乙酰侧链,因此乙酰基对木聚糖降解的影响尚不清楚。本研究比较了白腐担子菌黄孢Phanerochaete chrysosporium GH10和11种木聚糖酶PcXyn10A和PcXyn11B对不同植物乙酰化和去乙酰化木聚糖的降解能力。产物定量分析表明,PcXyn10A能有效降解拟南芥中乙酰化木聚糖和碱性处理得到的去乙酰化木聚糖,生成低聚木糖。相比之下,PcXyn11B对乙酰木聚糖的活性有限,但在木聚糖去乙酰化后活性显著增加。碳水化合物凝胶电泳的多糖分析表明,PcXyn11B从桦木和稻草中提取的天然乙酰化木聚糖中产生了广泛的产物,包括大量残留的低聚木糖,而从杉木中提取的未乙酰化木聚糖很容易降解为低聚木糖。这些结果表明,GH11木聚糖酶对天然木聚糖的降解程度高度依赖于乙酰基取代的程度。对碳水化合物活性酶数据库中31个真菌基因组的分析表明,GH11木聚糖酶的存在与碳水化合物酯酶(CE)家族1乙酰木聚糖酯酶(AXEs)的存在相关,而GH10木聚糖酶的存在与此无关。这些发现可能暗示GH11木聚糖酶和CE1轴的共同进化。
{"title":"Acetylated Xylan Degradation by Glycoside Hydrolase Family 10 and 11 Xylanases from the White-rot Fungus <i>Phanerochaete chrysosporium</i>.","authors":"Keisuke Kojima,&nbsp;Naoki Sunagawa,&nbsp;Yoshihisa Yoshimi,&nbsp;Theodora Tryfona,&nbsp;Masahiro Samejima,&nbsp;Paul Dupree,&nbsp;Kiyohiko Igarashi","doi":"10.5458/jag.jag.JAG-2021_0017","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2021_0017","url":null,"abstract":"<p><p>Endo-type xylanases are key enzymes in microbial xylanolytic systems, and xylanases belonging to glycoside hydrolase (GH) families 10 or 11 are the major enzymes degrading xylan in nature. These enzymes have typically been characterized using xylan prepared by alkaline extraction, which removes acetyl sidechains from the substrate, and thus the effect of acetyl groups on xylan degradation remains unclear. Here, we compare the ability of GH10 and 11 xylanases, <i>Pc</i>Xyn10A and <i>Pc</i>Xyn11B, from the white-rot basidiomycete <i>Phanerochaete chrysosporium</i> to degrade acetylated and deacetylated xylan from various plants. Product quantification revealed that <i>Pc</i>Xyn10A effectively degraded both acetylated xylan extracted from <i>Arabidopsis thaliana</i> and the deacetylated xylan obtained by alkaline treatment, generating xylooligosaccharides. In contrast, <i>Pc</i>Xyn11B showed limited activity towards acetyl xylan, but showed significantly increased activity after deacetylation of the xylan. Polysaccharide analysis using carbohydrate gel electrophoresis showed that <i>Pc</i>Xyn11B generated a broad range of products from native acetylated xylans extracted from birch wood and rice straw, including large residual xylooligosaccharides, while non-acetylated xylan from Japanese cedar was readily degraded into xylooligosaccharides. These results suggest that the degradability of native xylan by GH11 xylanases is highly dependent on the extent of acetyl group substitution. Analysis of 31 fungal genomes in the Carbohydrate-Active enZymes database indicated that the presence of GH11 xylanases is correlated to that of carbohydrate esterase (CE) family 1 acetyl xylan esterases (AXEs), while this is not the case for GH10 xylanases. These findings may imply co-evolution of GH11 xylanases and CE1 AXEs.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"69 2","pages":"35-43"},"PeriodicalIF":1.1,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/af/29/69_jag.JAG-2021_0017.PMC9276525.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40646031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Production of Lacto-N-biose I Using Crude Extracts of Bifidobacterial Cells. 利用双歧杆菌细胞粗提物生产乳酸- n -二糖I。
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-05-25 eCollection Date: 2022-01-01 DOI: 10.5458/jag.jag.JAG-2021_0012
Shuntaro Machida, Katsuichi Saito, Mamoru Nishimoto, Motomitsu Kitaoka

Lacto-N-biose I (LNB) is supposed to represent the bifidus factor in human milk oligosaccharides, and can be practically produced from sucrose and GlcNAc using four bifidobacterial enzymes, 1,3-β-galactosyl-N-acetylhexosamine phosphorylase, sucrose phosphorylase, UDP-glucose-hexose 1-phosphate uridylyltransferase, and UDP-glucose 4-epimerase, recombinantly produced by Escherichia coli. Here the production of LNB by the same enzymatic method without using genetically modified enzymes to consider the use of LNB for a food ingredient was reported. All four enzymes were produced as the intracellular enzymes of Bifidobacterium strains. The mixture of the crude extracts contained all four enzymes, with other enzymes interfering with the LNB production, namely, phosphoglucomutase, fructose 6-phosphate phosphoketolase, and glycogen phosphorylase. The first two interfering enzymes were selectively inactivated by heat treatment at 47 °C for 1 h in the presence of pancreatin, and glycogen phosphorylase was disabled by hydrolyzing its possible acceptor molecules using glucoamylase. Finally, 91 % of GlcNAc was converted into LNB in the 100-mL reaction mixture containing 300 mM GlcNAc.

乳酸- n -二糖I (LNB)被认为是人乳寡糖中的双歧因子,可以利用大肠杆菌重组产生的1,3-β-半乳糖- n -乙酰己糖胺磷酸化酶、蔗糖磷酸化酶、葡萄糖-己糖- 1-磷酸尿苷基转移酶和葡萄糖- 4-聚甲酰基酶四种双歧杆菌酶从蔗糖和葡萄糖nac中实际生产。本文报道了用相同的酶法生产LNB,而不使用转基因酶来考虑将LNB用于食品成分。这四种酶均作为双歧杆菌胞内酶产生。粗提物的混合物中含有所有四种酶,其他酶干扰LNB的产生,即磷酸葡萄糖葡萄糖化酶、果糖6-磷酸磷酸酮醇酶和糖原磷酸化酶。前两种干扰酶在胰酶存在下,通过47°C热处理1小时选择性失活,糖原磷酸化酶通过葡萄糖淀粉酶水解其可能的受体分子而失活。最后,在含有300 mM GlcNAc的100 ml反应混合物中,91%的GlcNAc转化为LNB。
{"title":"Production of Lacto-<i>N</i>-biose I Using Crude Extracts of Bifidobacterial Cells.","authors":"Shuntaro Machida,&nbsp;Katsuichi Saito,&nbsp;Mamoru Nishimoto,&nbsp;Motomitsu Kitaoka","doi":"10.5458/jag.jag.JAG-2021_0012","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2021_0012","url":null,"abstract":"<p><p>Lacto-<i>N</i>-biose I (LNB) is supposed to represent the bifidus factor in human milk oligosaccharides, and can be practically produced from sucrose and GlcNAc using four bifidobacterial enzymes, 1,3-β-galactosyl-<i>N</i>-acetylhexosamine phosphorylase, sucrose phosphorylase, UDP-glucose-hexose 1-phosphate uridylyltransferase, and UDP-glucose 4-epimerase, recombinantly produced by <i>Escherichia coli</i>. Here the production of LNB by the same enzymatic method without using genetically modified enzymes to consider the use of LNB for a food ingredient was reported. All four enzymes were produced as the intracellular enzymes of <i>Bifidobacterium</i> strains. The mixture of the crude extracts contained all four enzymes, with other enzymes interfering with the LNB production, namely, phosphoglucomutase, fructose 6-phosphate phosphoketolase, and glycogen phosphorylase. The first two interfering enzymes were selectively inactivated by heat treatment at 47 °C for 1 h in the presence of pancreatin, and glycogen phosphorylase was disabled by hydrolyzing its possible acceptor molecules using glucoamylase. Finally, 91 % of GlcNAc was converted into LNB in the 100-mL reaction mixture containing 300 mM GlcNAc.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"69 2","pages":"15-21"},"PeriodicalIF":1.1,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3a/42/69_jag.JAG-2021_0012.PMC9276524.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40646029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Simple Quality Evaluation Method for Proteoglycan after Addition to Beverages. 一种简单的饮料中添加蛋白多糖质量评价方法。
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-05-25 eCollection Date: 2022-01-01 DOI: 10.5458/jag.jag.JAG-2021_0016
Ikuko Kakizaki, Yoji Kato

Over the past 10 years, many products utilizing the functionality of salmon cartilage proteoglycan have come on the market, and consumer awareness of proteoglycan has increased. During this period, the biggest issue has been how to evaluate the amount and quality of proteoglycan in the cartilage extract blended in the products. In this study, we propose an immunological method that can easily evaluate the amount and quality of proteoglycan in the proteoglycan-containing compositions. By the present method, it is possible to evaluate not only the retention of the functional domains of the core protein of proteoglycan, but also that of chondroitin sulfate chains linked to the core protein. Furthermore, the binding activity of proteoglycan to hyaluronan can be evaluated if hyaluronan is used as a probe instead of an antibody. This method is expected to be useful for proteoglycan quality evaluation during the manufacturing process and product storage.

在过去的10年里,许多利用鲑鱼软骨蛋白聚糖功能的产品已经上市,消费者对蛋白聚糖的认识也有所提高。在此期间,最大的问题是如何评价混合在产品中的软骨提取物中蛋白多糖的数量和质量。在这项研究中,我们提出了一种免疫学方法,可以方便地评价蛋白多糖的数量和质量。通过本方法,不仅可以评估蛋白聚糖的核心蛋白功能域的保留,还可以评估与核心蛋白相连的硫酸软骨素链的保留。此外,如果用透明质酸作为探针而不是抗体,则可以评估蛋白多糖与透明质酸的结合活性。该方法可用于蛋白多糖生产过程和产品储存过程的质量评价。
{"title":"A Simple Quality Evaluation Method for Proteoglycan after Addition to Beverages.","authors":"Ikuko Kakizaki,&nbsp;Yoji Kato","doi":"10.5458/jag.jag.JAG-2021_0016","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2021_0016","url":null,"abstract":"<p><p>Over the past 10 years, many products utilizing the functionality of salmon cartilage proteoglycan have come on the market, and consumer awareness of proteoglycan has increased. During this period, the biggest issue has been how to evaluate the amount and quality of proteoglycan in the cartilage extract blended in the products. In this study, we propose an immunological method that can easily evaluate the amount and quality of proteoglycan in the proteoglycan-containing compositions. By the present method, it is possible to evaluate not only the retention of the functional domains of the core protein of proteoglycan, but also that of chondroitin sulfate chains linked to the core protein. Furthermore, the binding activity of proteoglycan to hyaluronan can be evaluated if hyaluronan is used as a probe instead of an antibody. This method is expected to be useful for proteoglycan quality evaluation during the manufacturing process and product storage.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"69 2","pages":"45-48"},"PeriodicalIF":1.1,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/14/4d/69_jag.JAG-2021_0016.PMC9276523.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40646032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Water and Gelatinized Starch on the Viscoelasticity of Pizza Dough and the Texture of Pizza Crust 水和糊化淀粉对披萨面团粘弹性及披萨饼皮质地的影响
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-02-08 DOI: 10.5458/jag.jag.JAG-2021_0014
A. Matsumoto, Kanae Nakai, K. Kawai
The soft texture of the pizza crust rim is generated by baking at a high temperature for a short period in a stone oven. In the case of baking in an electric oven, the pizza dough is baked at a much lower temperature and for a longer period, resulting in a harder texture. To improve the texture of electric oven-baked pizza crust, the effects of water and gelatinized starch on the viscoelasticity of pizza dough and the texture of pizza crust were investigated. Rheological properties (storage modulus, loss modulus, and yield stress) of pizza dough decreased with an increase in water content. When wheat flour in the dough was partially replaced with pre-gelatinized wheat starch, the rheological properties of the dough were maintained even at a high-water content. These results indicate that water-enriched dough can be prepared with gelatinized starch and baked using an electric oven. There was no significant difference in apparent density between the conventional and modified pizza crusts. Water content of the crumb part of the modified crust was significantly higher than that of the conventional crust. Texture analysis revealed that the modified pizza crust showed significantly lower stress at high strain than the conventional crust. In addition, sensory evaluation showed that the modified pizza crust exhibited greater firmness and stickiness than the conventional crust, which was attributed to the increased water content with gelatinized starch of the dough.
披萨饼皮边缘的柔软质地是在石炉中短暂高温烘烤而成的。在电烤箱烘焙的情况下,披萨面团在更低的温度和更长的时间下烘烤,导致质地更硬。为了改善电烤炉烤披萨饼皮的质地,研究了水和糊化淀粉对披萨面团粘弹性和披萨饼皮质地的影响。比萨饼面团的流变特性(储存模量、损耗模量和屈服应力)随含水量的增加而降低。当面团中的小麦粉部分替换为预糊化的小麦淀粉时,即使在高含水量的情况下,面团的流变特性也保持不变。这些结果表明,可以用糊化淀粉制备富水面团,并使用电烤箱烘烤。改良披萨皮与常规披萨皮的表观密度无显著差异。改性壳屑部分含水量显著高于常规壳屑部分含水量。织构分析表明,改进后的比萨饼皮在高应变下的应力明显低于传统比萨饼皮。感官评价结果表明,改进后的披萨饼皮硬度和粘性均高于常规披萨饼皮,这主要是由于面团中糊化淀粉的含水量增加所致。
{"title":"Effects of Water and Gelatinized Starch on the Viscoelasticity of Pizza Dough and the Texture of Pizza Crust","authors":"A. Matsumoto, Kanae Nakai, K. Kawai","doi":"10.5458/jag.jag.JAG-2021_0014","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2021_0014","url":null,"abstract":"The soft texture of the pizza crust rim is generated by baking at a high temperature for a short period in a stone oven. In the case of baking in an electric oven, the pizza dough is baked at a much lower temperature and for a longer period, resulting in a harder texture. To improve the texture of electric oven-baked pizza crust, the effects of water and gelatinized starch on the viscoelasticity of pizza dough and the texture of pizza crust were investigated. Rheological properties (storage modulus, loss modulus, and yield stress) of pizza dough decreased with an increase in water content. When wheat flour in the dough was partially replaced with pre-gelatinized wheat starch, the rheological properties of the dough were maintained even at a high-water content. These results indicate that water-enriched dough can be prepared with gelatinized starch and baked using an electric oven. There was no significant difference in apparent density between the conventional and modified pizza crusts. Water content of the crumb part of the modified crust was significantly higher than that of the conventional crust. Texture analysis revealed that the modified pizza crust showed significantly lower stress at high strain than the conventional crust. In addition, sensory evaluation showed that the modified pizza crust exhibited greater firmness and stickiness than the conventional crust, which was attributed to the increased water content with gelatinized starch of the dough.","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"8 1","pages":"1 - 7"},"PeriodicalIF":1.1,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72766609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of applied glycoscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1