Pub Date : 2022-02-01DOI: 10.1177/08839115211073156
Preethi Gopalakrishnan Usha, Sreekutty Jalajakumari, Unnikrishnan Babukuttan Sheela, D. Mohan, Archana Meena Gopalakrishnan, Maya Sreeranganathan, Raveendran Kuttan Pillai, C. Berry, K. Maiti, Sreelekha Therakathinal Thankappan
The combination of desirable polymer properties and methods for synthesis, utilizing materials with various architectures, could be adopted for diverse clinical applications such as wound healing as well as stem cell differentiation. Natural polymers, particularly polysaccharides, are biocompatible and are reported to have structural similarities with extracellular matrix components. In this scenario, the present study fabricated a porous scaffold using a polysaccharide, galactoxyloglucan, isolated from Tamarind seed kernel, and studied its applications in stem cell attachment and wound healing. In-growth of human mesenchymal stem cells (hMSCs) presented a rounded morphology with increased proliferation. Scaffolds were surface-functionalized with silver nanoparticles to increase the antibacterial activity and the wound healing potential evaluated in preclinical mouse models. The current study provides an insight into how stem cells attach and grow in a naturally derived low-cost polysaccharide scaffold with antibacterial, biocompatible, and biodegradable properties.
{"title":"Porous polysaccharide scaffolds: Proof of concept study on wound healing and stem cell differentiation","authors":"Preethi Gopalakrishnan Usha, Sreekutty Jalajakumari, Unnikrishnan Babukuttan Sheela, D. Mohan, Archana Meena Gopalakrishnan, Maya Sreeranganathan, Raveendran Kuttan Pillai, C. Berry, K. Maiti, Sreelekha Therakathinal Thankappan","doi":"10.1177/08839115211073156","DOIUrl":"https://doi.org/10.1177/08839115211073156","url":null,"abstract":"The combination of desirable polymer properties and methods for synthesis, utilizing materials with various architectures, could be adopted for diverse clinical applications such as wound healing as well as stem cell differentiation. Natural polymers, particularly polysaccharides, are biocompatible and are reported to have structural similarities with extracellular matrix components. In this scenario, the present study fabricated a porous scaffold using a polysaccharide, galactoxyloglucan, isolated from Tamarind seed kernel, and studied its applications in stem cell attachment and wound healing. In-growth of human mesenchymal stem cells (hMSCs) presented a rounded morphology with increased proliferation. Scaffolds were surface-functionalized with silver nanoparticles to increase the antibacterial activity and the wound healing potential evaluated in preclinical mouse models. The current study provides an insight into how stem cells attach and grow in a naturally derived low-cost polysaccharide scaffold with antibacterial, biocompatible, and biodegradable properties.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"13 1","pages":"115 - 133"},"PeriodicalIF":1.7,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75687628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-17DOI: 10.1177/08839115211061741
Ebtesam A. Mohamad, Monira M Rageh, M. M. Darwish
UV rays are one of the most dangerous factors that harm the skin. There is continuous improvement in getting an effective sunscreen that protects the skin from excessive exposure to UV rays. Typically, phenylbenzimidazole-5-sulfonic acid (PBSA) is used as a sun blocking agent, but its disadvantage is that it can photodegrade and cause cell damage. In our work, PBSA was encapsulated in niosomes nanoparticles then coated with chitosan-aloe vera (CS-nio-aloe/PBSA) to form a carrier polymer with novel and potent properties. This polymer controls PBSA release and epidermal penetration. Characterization of CS-nio-aloe/PBSA polymer nanoparticles through transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS). The carrier polymer release rate was studied in vitro and epidermal permeability to coated PBSA was assessed using mouse skin. The nanoparticle polymer containing sunscreen was effectively prepared with an encapsulation efficiency of 80%. The formulation (CS-nio-aloe/PBSA) was completely deposited on the surface of the skin. This supports its use to protect the skin, and its nanostructures stimulate the release of PBSA for a longer period. Encapsulation of PBSA in CS-nio-aloe nanoparticles could allow for further cellular preservation, UV protection, control of free PBSA, and limited penetration through the mouse skin epidermis.
{"title":"A sunscreen nanoparticles polymer based on prolonged period of protection","authors":"Ebtesam A. Mohamad, Monira M Rageh, M. M. Darwish","doi":"10.1177/08839115211061741","DOIUrl":"https://doi.org/10.1177/08839115211061741","url":null,"abstract":"UV rays are one of the most dangerous factors that harm the skin. There is continuous improvement in getting an effective sunscreen that protects the skin from excessive exposure to UV rays. Typically, phenylbenzimidazole-5-sulfonic acid (PBSA) is used as a sun blocking agent, but its disadvantage is that it can photodegrade and cause cell damage. In our work, PBSA was encapsulated in niosomes nanoparticles then coated with chitosan-aloe vera (CS-nio-aloe/PBSA) to form a carrier polymer with novel and potent properties. This polymer controls PBSA release and epidermal penetration. Characterization of CS-nio-aloe/PBSA polymer nanoparticles through transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS). The carrier polymer release rate was studied in vitro and epidermal permeability to coated PBSA was assessed using mouse skin. The nanoparticle polymer containing sunscreen was effectively prepared with an encapsulation efficiency of 80%. The formulation (CS-nio-aloe/PBSA) was completely deposited on the surface of the skin. This supports its use to protect the skin, and its nanostructures stimulate the release of PBSA for a longer period. Encapsulation of PBSA in CS-nio-aloe nanoparticles could allow for further cellular preservation, UV protection, control of free PBSA, and limited penetration through the mouse skin epidermis.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"8 1","pages":"17 - 27"},"PeriodicalIF":1.7,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73383280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-09DOI: 10.1177/08839115211063506
Zahra Sadeghinia, R. Emadi, Fatemeh Shamoradi
In this research, bioglass nanoparticles were synthesized via sol-gel method and a polycaprolactone-chitosan-bioglass nanocomposite coating was formed on SS316L substrate using electrophoretic deposition method. Then, the effects of voltage and deposition time on morphology, thickness, roughness, and wettability of final coating were investigated. Finally, biocompatibility and toxicity of the coating were evaluated. The results showed that increase of both time and voltage enhanced the thickness, roughness, and wettability of coating. Also, increase of deposition time increased the agglomeration. Therefore, it can be concluded that voltage of 20 V and time of 10 min are suitable for the formation of a uniform agglomerate-free coating. The presence of bioglass nanoparticles also led to the increase of roughness and improvement of polycaprolactone hydrophobicity. The results also showed higher bioactivity in polycaprolactone-chitosan-1% bioglass nanocomposite coating sample. This sample had a roughness (Ra) of 1.048 ± 0.037 μm and thickness of 2.54 ± 0.14 μm. In summary, the results indicated that coating of polycaprolactone-chitosan-bioglass nanocomposite on SS316L substrate could be a suitable surface treatment to increase its in vivo bioactivity and biocompatibility.
{"title":"A study of the electrophoretic deposition of polycaprolactone-chitosan-bioglass nanocomposite coating on stainless steel (316L) substrates","authors":"Zahra Sadeghinia, R. Emadi, Fatemeh Shamoradi","doi":"10.1177/08839115211063506","DOIUrl":"https://doi.org/10.1177/08839115211063506","url":null,"abstract":"In this research, bioglass nanoparticles were synthesized via sol-gel method and a polycaprolactone-chitosan-bioglass nanocomposite coating was formed on SS316L substrate using electrophoretic deposition method. Then, the effects of voltage and deposition time on morphology, thickness, roughness, and wettability of final coating were investigated. Finally, biocompatibility and toxicity of the coating were evaluated. The results showed that increase of both time and voltage enhanced the thickness, roughness, and wettability of coating. Also, increase of deposition time increased the agglomeration. Therefore, it can be concluded that voltage of 20 V and time of 10 min are suitable for the formation of a uniform agglomerate-free coating. The presence of bioglass nanoparticles also led to the increase of roughness and improvement of polycaprolactone hydrophobicity. The results also showed higher bioactivity in polycaprolactone-chitosan-1% bioglass nanocomposite coating sample. This sample had a roughness (Ra) of 1.048 ± 0.037 μm and thickness of 2.54 ± 0.14 μm. In summary, the results indicated that coating of polycaprolactone-chitosan-bioglass nanocomposite on SS316L substrate could be a suitable surface treatment to increase its in vivo bioactivity and biocompatibility.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"31 1","pages":"53 - 71"},"PeriodicalIF":1.7,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78242884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-23DOI: 10.1177/08839115211061737
S. Gupta, P. Dutta, Veena Acharya, P. Prasad, A. Roy, Arindam Bit
Novel magnesium doped non-mulberry silk fibroin nanofibers with ability to enhance skin barrier function were successfully fabricated using electrospinning technique for wound healing applications. Magnesium nanoparticles incorporated in the electrospun nanofibers releases Mg2+ ions at the site of implementation. The effect of Mg2+ is of considerable concern in wound healing due to its skin barrier repair ability and its role in blood coagulation. The physicochemical characterization of the scaffold was investigated by determining the morphology and secondary structure confirmation. The effects of Mg2+ ions in silk fibroin microenvironment have been evaluated using SEM, XRD, and FTIR to confirm the incorporation of magnesium in the film. The aim of this study is to see the effect of doped Mg on the structural, physical, and biological properties of non-mulberry silk fibroin (NSF) film. The magnesium doped nanofibrous film exhibited enhanced mechanical property, satisfactory blood clotting ability, and good in vitro degradability. This silk fibroin-based film mimicking extracellular matrix for skin regeneration were constructed using electrospinning technique. The wound healing efficiency of prepared nanofibers were evaluated in full-thickness wound models of rat. The Mg doped silk fibroin film exhibited faster wound healing activity (14 days) among all experimental group. The study indicates the potential of magnesium-doped silk /PVA film as skin substitute film.
{"title":"Accelerating skin barrier repair using novel bioactive magnesium-doped nanofibers of non-mulberry silk fibroin during wound healing","authors":"S. Gupta, P. Dutta, Veena Acharya, P. Prasad, A. Roy, Arindam Bit","doi":"10.1177/08839115211061737","DOIUrl":"https://doi.org/10.1177/08839115211061737","url":null,"abstract":"Novel magnesium doped non-mulberry silk fibroin nanofibers with ability to enhance skin barrier function were successfully fabricated using electrospinning technique for wound healing applications. Magnesium nanoparticles incorporated in the electrospun nanofibers releases Mg2+ ions at the site of implementation. The effect of Mg2+ is of considerable concern in wound healing due to its skin barrier repair ability and its role in blood coagulation. The physicochemical characterization of the scaffold was investigated by determining the morphology and secondary structure confirmation. The effects of Mg2+ ions in silk fibroin microenvironment have been evaluated using SEM, XRD, and FTIR to confirm the incorporation of magnesium in the film. The aim of this study is to see the effect of doped Mg on the structural, physical, and biological properties of non-mulberry silk fibroin (NSF) film. The magnesium doped nanofibrous film exhibited enhanced mechanical property, satisfactory blood clotting ability, and good in vitro degradability. This silk fibroin-based film mimicking extracellular matrix for skin regeneration were constructed using electrospinning technique. The wound healing efficiency of prepared nanofibers were evaluated in full-thickness wound models of rat. The Mg doped silk fibroin film exhibited faster wound healing activity (14 days) among all experimental group. The study indicates the potential of magnesium-doped silk /PVA film as skin substitute film.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"32 1","pages":"38 - 52"},"PeriodicalIF":1.7,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80347951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-23DOI: 10.1177/08839115211060404
Cristobal Rodriguez, Victoria Padilla, K. Lozano, Fariha Ahmad, Alejandra Chapa, Alexa Villarreal, Andrew McDonald, L. Materon, R. Gilkerson
In this study, Forcespinning® was used to produce nanofibers composed of Opuntia cochenillifera, “nopal,” mucilage (N) extract, chitosan (CH), and pullulan (PL) (N/CH/PL). These nopal-incorporating nanofibers were examined for their ability to sustain adhesion and proliferation of mouse embryonic fibroblast (NIH 3T3) cells. After a 6-day incubation period, N/CH/PL nanofibers displayed robust cell proliferation, with continued cell growth after an extended incubation period of 14 days. These results demonstrate that natural bioactive compounds can be combined with biodegradable polymers to provide an enhanced environment for cell growth, suggesting potential natural active ingredients as alternatives in wound dressings.
{"title":"Cell proliferative properties of Forcespinning® nopal composite nanofibers","authors":"Cristobal Rodriguez, Victoria Padilla, K. Lozano, Fariha Ahmad, Alejandra Chapa, Alexa Villarreal, Andrew McDonald, L. Materon, R. Gilkerson","doi":"10.1177/08839115211060404","DOIUrl":"https://doi.org/10.1177/08839115211060404","url":null,"abstract":"In this study, Forcespinning® was used to produce nanofibers composed of Opuntia cochenillifera, “nopal,” mucilage (N) extract, chitosan (CH), and pullulan (PL) (N/CH/PL). These nopal-incorporating nanofibers were examined for their ability to sustain adhesion and proliferation of mouse embryonic fibroblast (NIH 3T3) cells. After a 6-day incubation period, N/CH/PL nanofibers displayed robust cell proliferation, with continued cell growth after an extended incubation period of 14 days. These results demonstrate that natural bioactive compounds can be combined with biodegradable polymers to provide an enhanced environment for cell growth, suggesting potential natural active ingredients as alternatives in wound dressings.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"66 1","pages":"28 - 37"},"PeriodicalIF":1.7,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89610621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-05DOI: 10.1177/08839115211053926
Ngoc Thuy Trang Le, N. H. Nguyen, Minh Chau Hoang, Cuu Khoa Nguyen, Dai Hai Nguyen, Dieu Linh Tran
Despite the wide-spectrum and effective anti-cancer activity of paclitaxel (PTX), their low solubility and side effects are the main challenges in their clinical application. In this study, a model paclitaxel-encapsulated nanoliposome (NLips-PTX) carrier was synthesized to enhance PTX solubility and increase its passive accumulation at the tumor site. Soy lecithin and cholesterol at a 9:1 ratio were used to prepare the nano-sized liposomes through the thin-film hydration followed by extrusion technique. The prepared spherical NLips-PTX liposomes with an average size of about 150 nm and high uniformity were characterized by DLS and TEM. PTX load efficiency of NLips was determined at about 85% by HPLC. NLips-PTX also showed a therapeutic effect toward breast cancer cells (MCF-7) in a dose- and time-dependent manner via in vitro cellular uptake and a cytotoxicity study. This research indicates that extrusion is a simple and convenient method for nano-sizing and homogenising liposome suspension for potentially effective delivery of drug to target tumor sites.
{"title":"Preparation of liposomal nanocarrier by extruder to enhance tumor accumulation of paclitaxel","authors":"Ngoc Thuy Trang Le, N. H. Nguyen, Minh Chau Hoang, Cuu Khoa Nguyen, Dai Hai Nguyen, Dieu Linh Tran","doi":"10.1177/08839115211053926","DOIUrl":"https://doi.org/10.1177/08839115211053926","url":null,"abstract":"Despite the wide-spectrum and effective anti-cancer activity of paclitaxel (PTX), their low solubility and side effects are the main challenges in their clinical application. In this study, a model paclitaxel-encapsulated nanoliposome (NLips-PTX) carrier was synthesized to enhance PTX solubility and increase its passive accumulation at the tumor site. Soy lecithin and cholesterol at a 9:1 ratio were used to prepare the nano-sized liposomes through the thin-film hydration followed by extrusion technique. The prepared spherical NLips-PTX liposomes with an average size of about 150 nm and high uniformity were characterized by DLS and TEM. PTX load efficiency of NLips was determined at about 85% by HPLC. NLips-PTX also showed a therapeutic effect toward breast cancer cells (MCF-7) in a dose- and time-dependent manner via in vitro cellular uptake and a cytotoxicity study. This research indicates that extrusion is a simple and convenient method for nano-sizing and homogenising liposome suspension for potentially effective delivery of drug to target tumor sites.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"20 1","pages":"3 - 16"},"PeriodicalIF":1.7,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89592446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peripheral nerve injury (PNI) has become one of the common clinical diseases. How to promote the regeneration and function recovery of the damaged peripheral nerve has been the focus of attention in the medical field. Evidence suggests that the longitudinal filling of oriented fibers in nerve guide conduit (NGC) is especially beneficial to the repair of long gap PNI. In this study, polypyrrole (PPy) nanospheres (PNSs) were prepared by the soft-templating method, and mixed with poly (lactic acid) (PLA) to prepare conductive PNSs/PLA NGC, and the optimal ratio of PNSs was 4.5%. PLA and vascular endothelial growth factor (VEGF) as shell, chitosan (CS) and paeoniflorin (PF) as core, oriented coaxial nanofibers were obtained and then filled into PNSs/PLA NGC. The composite NGC has excellent mechanical properties, electrical conductivity, hydrophilic properties, and degradation properties. Besides, the successive release of VEGF and PF can play a synergistic role in promoting nerve regeneration. In vitro experiments showed that the composite NGC was nontoxic and suitable for the adhesion and proliferation of nerve cells. In addition, PNSs combined with electrical stimulation (ES) can significantly promote the differentiation and proliferation of nerve cells, which is conducive to nerve regeneration. These positive results indicate that the composite NGC is a promising candidate in the repair of long gap PNI.
周围神经损伤(PNI)已成为临床常见疾病之一。如何促进受损周围神经的再生和功能恢复一直是医学界关注的焦点。有证据表明,神经导管内定向纤维的纵向填充尤其有利于长间隙PNI的修复。本研究采用软模板法制备聚吡咯(PPy)纳米微球(PNSs),并与聚乳酸(PLA)混合制备导电PNSs/PLA NGC, PNSs的最佳配比为4.5%。以聚乳酸(PLA)和血管内皮生长因子(VEGF)为外壳,壳聚糖(CS)和芍药苷(PF)为核心,制备定向同轴纳米纤维,并将其填充到聚乳酸/聚乳酸NGC中。复合材料NGC具有优异的力学性能、导电性、亲水性和降解性能。此外,VEGF和PF的连续释放可协同促进神经再生。体外实验表明,复合NGC无毒,适合神经细胞的粘附和增殖。此外,PNSs联合电刺激(ES)可显著促进神经细胞的分化和增殖,有利于神经再生。这些积极的结果表明,复合NGC是修复长间隙PNI的有希望的候选材料。
{"title":"Preparation and characterization of conductive nerve guide conduit filled with dual drug-loaded nanofibers","authors":"Xiumei Yan, Yi Yu, Shaobing Wang, Haixing Xu, Qundi He, Jing Wen, Jingyi Xu, Kebi Li, Zhijun Huang, Peihu Xu","doi":"10.1177/08839115211053917","DOIUrl":"https://doi.org/10.1177/08839115211053917","url":null,"abstract":"Peripheral nerve injury (PNI) has become one of the common clinical diseases. How to promote the regeneration and function recovery of the damaged peripheral nerve has been the focus of attention in the medical field. Evidence suggests that the longitudinal filling of oriented fibers in nerve guide conduit (NGC) is especially beneficial to the repair of long gap PNI. In this study, polypyrrole (PPy) nanospheres (PNSs) were prepared by the soft-templating method, and mixed with poly (lactic acid) (PLA) to prepare conductive PNSs/PLA NGC, and the optimal ratio of PNSs was 4.5%. PLA and vascular endothelial growth factor (VEGF) as shell, chitosan (CS) and paeoniflorin (PF) as core, oriented coaxial nanofibers were obtained and then filled into PNSs/PLA NGC. The composite NGC has excellent mechanical properties, electrical conductivity, hydrophilic properties, and degradation properties. Besides, the successive release of VEGF and PF can play a synergistic role in promoting nerve regeneration. In vitro experiments showed that the composite NGC was nontoxic and suitable for the adhesion and proliferation of nerve cells. In addition, PNSs combined with electrical stimulation (ES) can significantly promote the differentiation and proliferation of nerve cells, which is conducive to nerve regeneration. These positive results indicate that the composite NGC is a promising candidate in the repair of long gap PNI.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"23 1","pages":"531 - 547"},"PeriodicalIF":1.7,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77294945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-29DOI: 10.1177/08839115211055725
S. S. Selvi̇, Merve Erginer Hasköylü, Seval Genç, Ebru Toksoy Öner
Considering the need for systematic studies on levan based hydrogels to widen their use in drug delivery systems and biomedical applications, this study is mainly focused on the synthesis and comprehensive characterization as well as drug release properties of hydrogels based on Halomonas levan (HL) and its chemical derivatives. For this, hydrolyzed and phosphonated HL derivatives were chemically synthesized and then cross-linked with 1,4-Butanediol diglycidyl ether (BDDE) and the obtained hydrogels were characterized in terms of their swelling, adhesivity, and rheological properties. Both native and phosphonated HL hydrogels retained their rigid gel like structure with increasing shear stress levels and tack test analysis showed superior adhesive properties of the phosphonated HL hydrogels. Moreover, hydrogels were loaded with resveratrol and entrapment and release studies as well as cell culture studies with human keratinocytes were performed. Biocompatible and adhesive features of the hydrogels confirmed their suitability for tissue engineering and drug delivery applications.
{"title":"Synthesis and characterization of levan hydrogels and their use for resveratrol release","authors":"S. S. Selvi̇, Merve Erginer Hasköylü, Seval Genç, Ebru Toksoy Öner","doi":"10.1177/08839115211055725","DOIUrl":"https://doi.org/10.1177/08839115211055725","url":null,"abstract":"Considering the need for systematic studies on levan based hydrogels to widen their use in drug delivery systems and biomedical applications, this study is mainly focused on the synthesis and comprehensive characterization as well as drug release properties of hydrogels based on Halomonas levan (HL) and its chemical derivatives. For this, hydrolyzed and phosphonated HL derivatives were chemically synthesized and then cross-linked with 1,4-Butanediol diglycidyl ether (BDDE) and the obtained hydrogels were characterized in terms of their swelling, adhesivity, and rheological properties. Both native and phosphonated HL hydrogels retained their rigid gel like structure with increasing shear stress levels and tack test analysis showed superior adhesive properties of the phosphonated HL hydrogels. Moreover, hydrogels were loaded with resveratrol and entrapment and release studies as well as cell culture studies with human keratinocytes were performed. Biocompatible and adhesive features of the hydrogels confirmed their suitability for tissue engineering and drug delivery applications.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"49 1","pages":"464 - 480"},"PeriodicalIF":1.7,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91073208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-28DOI: 10.1177/08839115211053925
Ivonne L Diaz, V. Jérôme, R. Freitag, León D. Pérez
Poly(ethyleneimine) (PEI) is one of the most widely used cationic polymers for gene delivery. The high molecular weight polymer, which is commercially available, is highly efficient but also very cytotoxic. The reduction in charge density by using nonlinear architectures based on low molecular weight (LMW) PEI is a promising approach to produce safer DNA-vectors. Herein, a group of cationic graft copolymers with different composition containing a hydrophobic biocompatible backbone and LMW linear PEI (lPEI) grafts obtained by ring opening polymerization and click chemistry was studied. The self-assembly and DNA complexation behavior of these materials was analyzed by the gel retardation assay, zeta potential measurements, and dynamic light scattering. The copolymers formed positively charged particles in water with average sizes between 270 and 377 nm. After they were added to DNA in serum-free medium, these particles acquired negative/near-neutral charges and increased in size depending on the N/P ratio. All copolymers showed reduced cytotoxicity compared to the 25 kDa lPEI used as reference, but the transfection efficiency was reduced. This result suggested that the cationic segments were too small to fully condense the DNA and promote cellular uptake, even with the use of several grafts and the introduction of hydrophobic domains. The trends found in this research showed that a higher degree of hydrophobicity and a higher grafting density can enhance the interaction between the copolymers and DNA. These trends could direct further structural modifications in the search for effective and safe vectors based on this polycation.
{"title":"Development of poly(ethyleneimine) grafted amphiphilic copolymers: Evaluation of their cytotoxicity and ability to complex DNA","authors":"Ivonne L Diaz, V. Jérôme, R. Freitag, León D. Pérez","doi":"10.1177/08839115211053925","DOIUrl":"https://doi.org/10.1177/08839115211053925","url":null,"abstract":"Poly(ethyleneimine) (PEI) is one of the most widely used cationic polymers for gene delivery. The high molecular weight polymer, which is commercially available, is highly efficient but also very cytotoxic. The reduction in charge density by using nonlinear architectures based on low molecular weight (LMW) PEI is a promising approach to produce safer DNA-vectors. Herein, a group of cationic graft copolymers with different composition containing a hydrophobic biocompatible backbone and LMW linear PEI (lPEI) grafts obtained by ring opening polymerization and click chemistry was studied. The self-assembly and DNA complexation behavior of these materials was analyzed by the gel retardation assay, zeta potential measurements, and dynamic light scattering. The copolymers formed positively charged particles in water with average sizes between 270 and 377 nm. After they were added to DNA in serum-free medium, these particles acquired negative/near-neutral charges and increased in size depending on the N/P ratio. All copolymers showed reduced cytotoxicity compared to the 25 kDa lPEI used as reference, but the transfection efficiency was reduced. This result suggested that the cationic segments were too small to fully condense the DNA and promote cellular uptake, even with the use of several grafts and the introduction of hydrophobic domains. The trends found in this research showed that a higher degree of hydrophobicity and a higher grafting density can enhance the interaction between the copolymers and DNA. These trends could direct further structural modifications in the search for effective and safe vectors based on this polycation.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"138 1","pages":"447 - 463"},"PeriodicalIF":1.7,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76676940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-25DOI: 10.1177/08839115211055720
Dandan Zhao, T. Nuntanaranont, Nuttawut Thuaksubun, J. Meesane
Bone augmentation is an effective approach to treat patients who have bone loss at the maxillofacial area. In this research, osteo-conductive hydrogel scaffolds of poly(vinylalcohol) (PVA) with silk fibroin particles (SFP) were fabricated. The SFP were formed by dropping a solution of silk fibroin into acetone at different volume ratios (v/v) of silk to acetone: 1:3 (SFP-3), 1:6 (SFP-6), 1:12 (SFP-12), and 1:24 (SFP-24). The various SFP solutions were mixed with a PVA solution before fabrication into hydrogels by freeze-thawing. Afterwards, the hydrogels were freeze-dried to fabricate the scaffolds. The particle size and charge, molecular organization, and morphology of the SFP were characterized and observed with dynamic light scattering, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy (SEM). The morphologies of the hydrogel scaffolds were observed with SEM. Swelling percentage was used to assess the swelling behavior of the hydrogel scaffolds. The mechanical properties were also tested. The scaffolds were cultured with osteoblast cells to test the biological performance, cell viability and performance, alkaline phosphatase activity, calcium deposition, and total protein. The SFP-24 was the smallest in particle size. PVA hydrogel scaffolds with SFP-24 demonstrated low particle aggregation, good particle distribution within the scaffold, and a lower swelling percentage. PVA hydrogel scaffolds with SFP had higher mechanical stability than scaffolds without the SFP. Furthermore, the PVA hydrogel scaffold with SFP-24 had better biological performance. Finally, the results demonstrated that PVA hydrogel scaffolds with SFP-24 showed good osteo-conductive performance which is promising for bone augmentation.
{"title":"Osteo-conductive hydrogel scaffolds of poly(vinylalcohol) with silk fibroin particles for bone augmentation: Structural formation and in vitro testing","authors":"Dandan Zhao, T. Nuntanaranont, Nuttawut Thuaksubun, J. Meesane","doi":"10.1177/08839115211055720","DOIUrl":"https://doi.org/10.1177/08839115211055720","url":null,"abstract":"Bone augmentation is an effective approach to treat patients who have bone loss at the maxillofacial area. In this research, osteo-conductive hydrogel scaffolds of poly(vinylalcohol) (PVA) with silk fibroin particles (SFP) were fabricated. The SFP were formed by dropping a solution of silk fibroin into acetone at different volume ratios (v/v) of silk to acetone: 1:3 (SFP-3), 1:6 (SFP-6), 1:12 (SFP-12), and 1:24 (SFP-24). The various SFP solutions were mixed with a PVA solution before fabrication into hydrogels by freeze-thawing. Afterwards, the hydrogels were freeze-dried to fabricate the scaffolds. The particle size and charge, molecular organization, and morphology of the SFP were characterized and observed with dynamic light scattering, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy (SEM). The morphologies of the hydrogel scaffolds were observed with SEM. Swelling percentage was used to assess the swelling behavior of the hydrogel scaffolds. The mechanical properties were also tested. The scaffolds were cultured with osteoblast cells to test the biological performance, cell viability and performance, alkaline phosphatase activity, calcium deposition, and total protein. The SFP-24 was the smallest in particle size. PVA hydrogel scaffolds with SFP-24 demonstrated low particle aggregation, good particle distribution within the scaffold, and a lower swelling percentage. PVA hydrogel scaffolds with SFP had higher mechanical stability than scaffolds without the SFP. Furthermore, the PVA hydrogel scaffold with SFP-24 had better biological performance. Finally, the results demonstrated that PVA hydrogel scaffolds with SFP-24 showed good osteo-conductive performance which is promising for bone augmentation.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"134 1","pages":"481 - 496"},"PeriodicalIF":1.7,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77366469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}