首页 > 最新文献

Journal of Bioactive and Compatible Polymers最新文献

英文 中文
Influence of gelatin modification on enzymatically-gellable pectin-gelatin hydrogel properties for soft tissue engineering applications 明胶改性对酶凝胶性果胶-明胶水凝胶性能的影响
IF 1.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-08-26 DOI: 10.1177/08839115221119210
Asal Ebrahimzadeh, Elnaz Khanalizadeh, Shahla Khodabakhshaghdam, D. Kazemi, Ali Baradar Khoshfetrat
Injectable in situ-forming hydrogels appears to be a promising approach for tissue engineering applications. In this study, the effect of phenol moiety (Ph) addition to gelatin in enzymatically-gellable modified pectin hydrogel (Pec-Ph) was studied. Addition of gelatin-Ph to Pec-Ph (Pec-Ph/Gel-Ph) altered the physical properties of Pec-Ph-based hydrogels as compared to unmodified gelatin (Pec-Ph/Gel) addition. Swelling ratio and degradation rates of the Pec-Ph/Gel-Ph hydrogel decreased 35% and 50%, respectively, and the elasticity of Pec-Ph/Gel-Ph hydrogel was higher than the Pec-Ph/Gel hydrogels. Scanning electron microscopy images showed that the existence of phenolic groups in gelatin decreased the pore size of Pec-Ph/Gel-Ph hydrogels. Culture of chondrocyte cells in the Pec-Ph/Gel-Ph hydrogels showed more metabolic activity (4×) during a 14-day culture period. Hydrogels subcutaneously implanted in rats could also be identified readily without complete absorption and signs of toxicity or any untoward reactions after 1 month. The work showed the potential of Pec-Ph/Gel-Ph hydrogels as a promising in situ injectable hydrogel for soft tissue engineering applications.
可注射的位置形成水凝胶似乎是一个有前途的方法,组织工程应用。本文研究了在酶凝胶改性果胶水凝胶(Pec-Ph)中加入苯酚段(Ph)对明胶性能的影响。与未改性明胶(pecph /Gel)相比,明胶- ph加入到pecph (pecph /Gel)中改变了pecph基水凝胶的物理性质。pecph /Gel- ph水凝胶的溶胀率和降解率分别降低35%和50%,其弹性高于pecph /Gel水凝胶。扫描电镜图像显示,明胶中酚基的存在使peg - ph /Gel-Ph水凝胶的孔径减小。在peg - ph /Gel-Ph水凝胶中培养的软骨细胞在14天的培养期间显示出更高的代谢活性(4倍)。大鼠皮下植入水凝胶,1个月后无完全吸收,无毒性和不良反应迹象。该研究表明,Pec-Ph/Gel-Ph水凝胶是一种有前景的软组织工程原位注射水凝胶。
{"title":"Influence of gelatin modification on enzymatically-gellable pectin-gelatin hydrogel properties for soft tissue engineering applications","authors":"Asal Ebrahimzadeh, Elnaz Khanalizadeh, Shahla Khodabakhshaghdam, D. Kazemi, Ali Baradar Khoshfetrat","doi":"10.1177/08839115221119210","DOIUrl":"https://doi.org/10.1177/08839115221119210","url":null,"abstract":"Injectable in situ-forming hydrogels appears to be a promising approach for tissue engineering applications. In this study, the effect of phenol moiety (Ph) addition to gelatin in enzymatically-gellable modified pectin hydrogel (Pec-Ph) was studied. Addition of gelatin-Ph to Pec-Ph (Pec-Ph/Gel-Ph) altered the physical properties of Pec-Ph-based hydrogels as compared to unmodified gelatin (Pec-Ph/Gel) addition. Swelling ratio and degradation rates of the Pec-Ph/Gel-Ph hydrogel decreased 35% and 50%, respectively, and the elasticity of Pec-Ph/Gel-Ph hydrogel was higher than the Pec-Ph/Gel hydrogels. Scanning electron microscopy images showed that the existence of phenolic groups in gelatin decreased the pore size of Pec-Ph/Gel-Ph hydrogels. Culture of chondrocyte cells in the Pec-Ph/Gel-Ph hydrogels showed more metabolic activity (4×) during a 14-day culture period. Hydrogels subcutaneously implanted in rats could also be identified readily without complete absorption and signs of toxicity or any untoward reactions after 1 month. The work showed the potential of Pec-Ph/Gel-Ph hydrogels as a promising in situ injectable hydrogel for soft tissue engineering applications.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"13 1","pages":"381 - 391"},"PeriodicalIF":1.7,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85972169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on properties of 3D-printed GelMA hydrogel scaffolds with different nHA contents 不同nHA含量的3d打印凝胶支架性能研究
IF 1.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-08-22 DOI: 10.1177/08839115221119211
Yaocheng Wang, Chengxiong Lin
Biological 3D printing is a reliable technology for 3D printing bone repair scaffolds with simple operation, high efficiency, and relatively low cost. Gelatin methacryloyl (GelMA) hydrogels have attracted much attention due to their good biocompatibility, but the poor mechanical properties limit their application in bone reconstruction engineering. In this study, nano-hydroxyapatite (nHA) particles were added to GelMA hydrogels, and the performances of composite hydrogel scaffolds with different nHA contents were investigated in terms of rheological properties, light transmission properties, surface morphology, mechanical properties, and biocompatibility. The experimental results showed that the incorporation of nHA particles could effectively improve the printability and mechanical properties of the scaffolds, the scaffold fibers had better resistance to deformation, improved degradation rate, and biological experiments confirmed that nHA particles had no significant cytotoxicity. However, the addition of HA particles also reduced the light transmission properties of the slurry, and when its content exceeds a certain value, the hydrogel scaffolds show incomplete curing and eventually affect their test performance. The results can offer guidance and reference for the selection of ink and function for 3D printing bone repair scaffold.
生物3D打印是一种可靠的3D打印骨修复支架技术,操作简单,效率高,成本相对较低。明胶甲基丙烯酰(GelMA)水凝胶因其良好的生物相容性而备受关注,但其较差的力学性能限制了其在骨重建工程中的应用。本研究将纳米羟基磷灰石(nHA)颗粒加入到GelMA水凝胶中,从流变性能、透光性、表面形貌、力学性能和生物相容性等方面考察了不同nHA含量的复合水凝胶支架的性能。实验结果表明,nHA颗粒的掺入可以有效提高支架的打印性和力学性能,支架纤维具有更好的抗变形能力,降解率提高,生物实验证实nHA颗粒无明显的细胞毒性。然而,HA颗粒的加入也降低了浆料的透光性能,当其含量超过一定值时,水凝胶支架呈现不完全固化,最终影响其试验性能。研究结果可为3D打印骨修复支架墨水和功能的选择提供指导和参考。
{"title":"Study on properties of 3D-printed GelMA hydrogel scaffolds with different nHA contents","authors":"Yaocheng Wang, Chengxiong Lin","doi":"10.1177/08839115221119211","DOIUrl":"https://doi.org/10.1177/08839115221119211","url":null,"abstract":"Biological 3D printing is a reliable technology for 3D printing bone repair scaffolds with simple operation, high efficiency, and relatively low cost. Gelatin methacryloyl (GelMA) hydrogels have attracted much attention due to their good biocompatibility, but the poor mechanical properties limit their application in bone reconstruction engineering. In this study, nano-hydroxyapatite (nHA) particles were added to GelMA hydrogels, and the performances of composite hydrogel scaffolds with different nHA contents were investigated in terms of rheological properties, light transmission properties, surface morphology, mechanical properties, and biocompatibility. The experimental results showed that the incorporation of nHA particles could effectively improve the printability and mechanical properties of the scaffolds, the scaffold fibers had better resistance to deformation, improved degradation rate, and biological experiments confirmed that nHA particles had no significant cytotoxicity. However, the addition of HA particles also reduced the light transmission properties of the slurry, and when its content exceeds a certain value, the hydrogel scaffolds show incomplete curing and eventually affect their test performance. The results can offer guidance and reference for the selection of ink and function for 3D printing bone repair scaffold.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"1 1","pages":"392 - 405"},"PeriodicalIF":1.7,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76548994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pullulan and Pluronic F-127 based in situ gel system for intranasal delivery: Development, in vitro and in vivo evaluation 基于Pullulan和Pluronic F-127的鼻腔内给药原位凝胶系统:开发,体外和体内评估
IF 1.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-07-07 DOI: 10.1177/08839115221110284
H. Mahajan, V. Jadhao, Sachin M. Chandankar
The current work seeks to use Pullulan and Pluronic F-127 (PF-127), a new gel-forming material, for sildenafil citrate (SLC) intranasal delivery. The cold approach was used to develop an SLC-loaded in situ gel based on thermoreversible polymer PF-127 and mucoadhesive polymer Pullulan. In situ gel systems based on Pullulan responds intelligently to environmental stimuli like charge, pH, temperature, light, and redox. To achieve gelation at physiological temperature formulations were modified to have gelation temperatures lower than 34.1°C. Physical appearance and rheological measurements were used to calculate the temperature of gelation. With the addition of increasing quantities of Pullulan, the gelation temperatures fell (from 34.1°C for 8% w/v, 10% w/v, and 12% w/v 0.5% Pullulan). In the goat nasal mucosal membrane, Pullulan concentration increased the mucoadhesive force in terms of detachment stress. The results of drug permeation testing in vitro investigations over the goat nasal mucosa showed that utilizing an in situ gelling formulation with a Pullulan content of 0.5% or higher can greatly boost the effective penetration coefficient. The formulation was shown to be safe for the nasal mucosa after a histological investigation. Conclusively, Pullulan and PF-127 may be appropriate carriers for SLC intranasal administration.
目前的工作寻求使用Pullulan和Pluronic F-127 (PF-127),一种新的凝胶形成材料,用于枸橼酸西地那非(SLC)的鼻内给药。采用冷法制备了一种基于热可逆聚合物PF-127和黏附聚合物pululan的负载slc的原位凝胶。基于Pullulan的原位凝胶系统对环境刺激(如电荷、pH值、温度、光和氧化还原)做出智能反应。为了在生理温度下实现凝胶化,对配方进行了改性,使凝胶化温度低于34.1℃。物理外观和流变学测量用于计算凝胶温度。随着普鲁兰添加量的增加,凝胶温度下降(8% w/v、10% w/v和12% w/v 0.5%普鲁兰时为34.1℃)。在山羊鼻粘膜中,普鲁兰浓度在剥离应力方面增加了黏附力。体外对山羊鼻黏膜的药物渗透试验结果表明,普鲁兰含量在0.5%以上的原位胶凝制剂可显著提高药物的有效渗透系数。经组织学检查,该制剂对鼻黏膜是安全的。总之,普鲁兰和PF-127可能是鼻内给药SLC的合适载体。
{"title":"Pullulan and Pluronic F-127 based in situ gel system for intranasal delivery: Development, in vitro and in vivo evaluation","authors":"H. Mahajan, V. Jadhao, Sachin M. Chandankar","doi":"10.1177/08839115221110284","DOIUrl":"https://doi.org/10.1177/08839115221110284","url":null,"abstract":"The current work seeks to use Pullulan and Pluronic F-127 (PF-127), a new gel-forming material, for sildenafil citrate (SLC) intranasal delivery. The cold approach was used to develop an SLC-loaded in situ gel based on thermoreversible polymer PF-127 and mucoadhesive polymer Pullulan. In situ gel systems based on Pullulan responds intelligently to environmental stimuli like charge, pH, temperature, light, and redox. To achieve gelation at physiological temperature formulations were modified to have gelation temperatures lower than 34.1°C. Physical appearance and rheological measurements were used to calculate the temperature of gelation. With the addition of increasing quantities of Pullulan, the gelation temperatures fell (from 34.1°C for 8% w/v, 10% w/v, and 12% w/v 0.5% Pullulan). In the goat nasal mucosal membrane, Pullulan concentration increased the mucoadhesive force in terms of detachment stress. The results of drug permeation testing in vitro investigations over the goat nasal mucosa showed that utilizing an in situ gelling formulation with a Pullulan content of 0.5% or higher can greatly boost the effective penetration coefficient. The formulation was shown to be safe for the nasal mucosa after a histological investigation. Conclusively, Pullulan and PF-127 may be appropriate carriers for SLC intranasal administration.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":" 3","pages":"406 - 418"},"PeriodicalIF":1.7,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72382176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
In vivo therapeutic evaluation of a cellulose acetate hydrogel cross linked with ethylenediaminetetraacetic-dianhydride containing propolis ethanolic-extract for treating burns 含有蜂胶乙醇提取物的醋酸纤维素水凝胶与乙二胺四乙酸二酐交联治疗烧伤的体内治疗评价
IF 1.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-07-01 DOI: 10.1177/08839115221106869
M. Hausen, A. Melero, J. Asami, L. M. Ferreira, Guilherme Borges Gomes da Silva, Mariana Cesar de Azeredo Bissoli, V. R. Marcato, B. D. Nani, P. Rosalen, S. M. Alencar, V. Botaro, D. Komatsu, A. Senna, E. Duek
An increasing interest in regenerative medicine has been an approach with natural products used for assorted skin treatments. Propolis from Apis mellifera species of bees have shown high acceptance due to antimicrobial and anti-inflammatory properties. However, just a few propolis types presents stronger effects in controlling inflammation. The current work describes an organic propolis recently isolated, named as OP6, that presented strong anti-inflammatory influences in vivo when associated with EDTA cross-linked hydrogel, used as a curative device in second-degree burns in a murine model. We developed a cellulose acetate hydrogel cross-linked with ethylenediaminetetraacetic dianhydride (HAC-EDTA) as a polymeric matrix for a bandage based on an ethanolic extract of propolis at 15%, 30%, and 60% (w/v) for treating second-degree burns. In vivo studies were carried out in Wistar rats divided into three groups: negative control (only lesion), positive control (lesion with HAC-EDTA film), and treatment group (lesion with the HAC-EDTA + OP6 at 15%, 30%, and 60%). Each group was randomized and equally subdivided into two subgroups according to the period of bandage wearing (7 and 14 days). Previous work of this research group selected the propolis OP6 sample source as the best candidate for the in vivo study. HAC-EDTA + OP6 15%, 30%, and 60% films demonstrated a concentration-dependent release rate, with the highest amount of propolis released after tests (484.3 mg) by HAC-EDTA enriched with the highest concentrated extract of propolis. HAC-EDTA + OP6 films were efficient in preventing infections, promoting lesion retraction, and tissue regeneration. The HAC-EDTA + OP6 30% treatment was more efficient, revealing a reduced inflammatory process and stimulating skin regeneration. The designed HAC-EDTA + propolis films were shown as promising tools for second-degree burns treatment, accelerating healing process to a full recovery tissue repair after 14 days.
人们对再生医学越来越感兴趣,这是一种使用天然产品进行各种皮肤治疗的方法。Apis mellifera蜜蜂的蜂胶由于其抗菌和抗炎的特性而被广泛接受。然而,只有少数几种蜂胶在控制炎症方面表现出更强的效果。目前的工作描述了一种最近分离的有机蜂胶,命名为OP6,当与EDTA交联水凝胶结合时,它在体内表现出很强的抗炎作用,在小鼠模型中被用作二度烧伤的治疗装置。我们开发了一种醋酸纤维素水凝胶与乙二胺四乙酸二酐交联(HAC-EDTA)作为聚合物基质,用于基于蜂胶乙醇提取物在15%,30%和60% (w/v)的绷带,用于治疗二度烧伤。Wistar大鼠体内实验分为三组:阴性对照组(仅病变)、阳性对照组(有HAC-EDTA膜的病变)和治疗组(有HAC-EDTA + OP6膜的病变为15%、30%和60%)。各组按绷带佩戴时间(7天和14天)随机分成2个亚组。本课题组前期工作选择蜂胶OP6样品源作为体内研究的最佳候选。15%、30%和60%的HAC-EDTA + OP6膜的释放率呈浓度依赖性,其中浓度最高的蜂胶提取物富集的HAC-EDTA膜的蜂胶释放量最高(484.3 mg)。HAC-EDTA + OP6膜具有有效的预防感染、促进病变回缩和组织再生的作用。30%的HAC-EDTA + OP6治疗更有效,显示炎症过程减少并刺激皮肤再生。设计的HAC-EDTA +蜂胶膜被证明是二度烧伤治疗的有希望的工具,加速愈合过程,在14天后完全恢复组织修复。
{"title":"In vivo therapeutic evaluation of a cellulose acetate hydrogel cross linked with ethylenediaminetetraacetic-dianhydride containing propolis ethanolic-extract for treating burns","authors":"M. Hausen, A. Melero, J. Asami, L. M. Ferreira, Guilherme Borges Gomes da Silva, Mariana Cesar de Azeredo Bissoli, V. R. Marcato, B. D. Nani, P. Rosalen, S. M. Alencar, V. Botaro, D. Komatsu, A. Senna, E. Duek","doi":"10.1177/08839115221106869","DOIUrl":"https://doi.org/10.1177/08839115221106869","url":null,"abstract":"An increasing interest in regenerative medicine has been an approach with natural products used for assorted skin treatments. Propolis from Apis mellifera species of bees have shown high acceptance due to antimicrobial and anti-inflammatory properties. However, just a few propolis types presents stronger effects in controlling inflammation. The current work describes an organic propolis recently isolated, named as OP6, that presented strong anti-inflammatory influences in vivo when associated with EDTA cross-linked hydrogel, used as a curative device in second-degree burns in a murine model. We developed a cellulose acetate hydrogel cross-linked with ethylenediaminetetraacetic dianhydride (HAC-EDTA) as a polymeric matrix for a bandage based on an ethanolic extract of propolis at 15%, 30%, and 60% (w/v) for treating second-degree burns. In vivo studies were carried out in Wistar rats divided into three groups: negative control (only lesion), positive control (lesion with HAC-EDTA film), and treatment group (lesion with the HAC-EDTA + OP6 at 15%, 30%, and 60%). Each group was randomized and equally subdivided into two subgroups according to the period of bandage wearing (7 and 14 days). Previous work of this research group selected the propolis OP6 sample source as the best candidate for the in vivo study. HAC-EDTA + OP6 15%, 30%, and 60% films demonstrated a concentration-dependent release rate, with the highest amount of propolis released after tests (484.3 mg) by HAC-EDTA enriched with the highest concentrated extract of propolis. HAC-EDTA + OP6 films were efficient in preventing infections, promoting lesion retraction, and tissue regeneration. The HAC-EDTA + OP6 30% treatment was more efficient, revealing a reduced inflammatory process and stimulating skin regeneration. The designed HAC-EDTA + propolis films were shown as promising tools for second-degree burns treatment, accelerating healing process to a full recovery tissue repair after 14 days.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"367 1","pages":"343 - 355"},"PeriodicalIF":1.7,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82583159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bi-layered PLGA electrospun membrane with occlusive and osteogenic properties for periodontal regeneration 具有封闭和成骨特性的双层聚乳酸静电纺丝膜用于牙周再生
IF 1.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-07-01 DOI: 10.1177/08839115221095257
Meiling Zhong, Jixia Lin, Zhimin He, Wuchao Wu, De-hui Ji, Richao Zhang, Jiali Zhang
Guided tissue regeneration (GTR) membranes not only can hamper undesirable tissues down-growth into the defects but also can selectively promote the in-growth of regenerative bone tissue, playing a critical role in periodontal regeneration. Herein, a bi-layered electrospun membrane with different sized pores was designed and fabricated by adjusting electrospinning parameters combing with facile two-step electrospinning. The small-sized pore layer (SL) as occlusive layer consisted of electrospun poly (lactic-co-glycolic acid) (PLGA) nanofibers, while the macroporous osteoconductive layer (ML) was attained via introducing the nano-hydroxyapatite (nHA) particles into PLGA nanofibers during electrospinning. Morphological results such as surface topography, nanofiber size, and pore size distribution, showed that the SL exhibited a dense structure with pore size mainly from 4 to 7 μm. In contrast, the ML possessed a loosely packed structure with pore size mainly from 20 to 28 μm, which was beneficial to the infiltration of the cells. Fourier transform infrared spectroscopy (FTIR), Energy dispersive spectrometer (EDS), and X-ray diffractometry (XRD) results showed that nHA particles were evenly loaded in PLGA nanofibers. In vitro biodegradation tests suggested that the bi-layered membrane possessed a proper degradation timeframe, which must function for at least 4 to 6 weeks. The cell experiments indicated that the bi-layered electrospun membrane possessed good cytocompatibility and proved the effective barrier potency of the small-sized pore layer. Furthermore, as revealed by the alkaline phosphate activity test, the PLGA/nHA layer possessed an improved osteogenic capacity for Human osteosarcoma cells (MG63). These results indicate that the bi-layered electrospun membrane may have potential for periodontal tissue regeneration. Graphical Abstract
引导组织再生膜(Guided tissue regeneration, GTR)不仅可以阻止不需要的组织向下生长到缺损处,还可以选择性地促进再生骨组织的生长,在牙周再生中起着至关重要的作用。本文通过调整静电纺丝参数,结合简易两步静电纺丝工艺,设计并制备了具有不同孔径的双层静电纺丝膜。小孔层(SL)由静电纺丝聚乳酸-羟基乙酸(PLGA)纳米纤维作为封闭层,而大孔导骨层(ML)是通过在静电纺丝过程中引入纳米羟基磷灰石(nHA)颗粒形成的。表面形貌、纳米纤维尺寸和孔径分布等形貌结果表明,纳米纤维具有致密的结构,孔径主要在4 ~ 7 μm之间。而ML结构松散,孔径主要在20 ~ 28 μm之间,有利于细胞的浸润。傅里叶变换红外光谱(FTIR)、能谱仪(EDS)和x射线衍射(XRD)结果表明,nHA颗粒均匀地负载在PLGA纳米纤维中。体外生物降解试验表明,双层膜具有适当的降解时间框架,其功能必须至少为4至6周。细胞实验表明,双层电纺丝膜具有良好的细胞相容性,证明了小孔层的有效屏障效能。此外,碱性磷酸盐活性试验显示,PLGA/nHA层对人骨肉瘤细胞(MG63)具有改善的成骨能力。这些结果表明双层电纺丝膜可能具有牙周组织再生的潜力。图形抽象
{"title":"Bi-layered PLGA electrospun membrane with occlusive and osteogenic properties for periodontal regeneration","authors":"Meiling Zhong, Jixia Lin, Zhimin He, Wuchao Wu, De-hui Ji, Richao Zhang, Jiali Zhang","doi":"10.1177/08839115221095257","DOIUrl":"https://doi.org/10.1177/08839115221095257","url":null,"abstract":"Guided tissue regeneration (GTR) membranes not only can hamper undesirable tissues down-growth into the defects but also can selectively promote the in-growth of regenerative bone tissue, playing a critical role in periodontal regeneration. Herein, a bi-layered electrospun membrane with different sized pores was designed and fabricated by adjusting electrospinning parameters combing with facile two-step electrospinning. The small-sized pore layer (SL) as occlusive layer consisted of electrospun poly (lactic-co-glycolic acid) (PLGA) nanofibers, while the macroporous osteoconductive layer (ML) was attained via introducing the nano-hydroxyapatite (nHA) particles into PLGA nanofibers during electrospinning. Morphological results such as surface topography, nanofiber size, and pore size distribution, showed that the SL exhibited a dense structure with pore size mainly from 4 to 7 μm. In contrast, the ML possessed a loosely packed structure with pore size mainly from 20 to 28 μm, which was beneficial to the infiltration of the cells. Fourier transform infrared spectroscopy (FTIR), Energy dispersive spectrometer (EDS), and X-ray diffractometry (XRD) results showed that nHA particles were evenly loaded in PLGA nanofibers. In vitro biodegradation tests suggested that the bi-layered membrane possessed a proper degradation timeframe, which must function for at least 4 to 6 weeks. The cell experiments indicated that the bi-layered electrospun membrane possessed good cytocompatibility and proved the effective barrier potency of the small-sized pore layer. Furthermore, as revealed by the alkaline phosphate activity test, the PLGA/nHA layer possessed an improved osteogenic capacity for Human osteosarcoma cells (MG63). These results indicate that the bi-layered electrospun membrane may have potential for periodontal tissue regeneration. Graphical Abstract","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"337 1","pages":"284 - 298"},"PeriodicalIF":1.7,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72849629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, characterization and evaluation of in vitro antimicrobial and anti-diabetic activity of berberine encapsulated in guar-acacia gum nanocomplexes 瓜尔胶包封小檗碱纳米复合物的合成、表征及抗糖尿病活性评价
IF 1.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-22 DOI: 10.1177/08839115221106700
J. Bakshi, M. Mehra, S. Grewal, D. Dhingra, S. Kumari
In the present study, the anti-diabetic and antimicrobial properties of berberine were improved using non-ionic guar gum and ionic acacia gum as nanocarriers. Berberine loaded guar-acacia gum nanocomplexes were synthesized by employing ionic complexation method. The formulation was characterized by dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM) and evaluated for in vitro dissolution study, anti-diabetic activity and antimicrobial activity. The optimized berberine loaded guar-acacia gum nanocomplexes had a particle size of 290.2 nm as indicated by DLS and drug entrapment efficiency of 96.5%. Morphological analysis revealed that berberine nanocomplexes were spherical-shaped with a smooth surface and size in the range of 100–250 nm. Moreover, berberine loaded guar-acacia nanocomplexes showed good stability and controlled released property in vitro. Antimicrobial activity against bacterial strains and fungal strains demonstrated the higher antimicrobial potential of berberine loaded gum nanocomplexes than gum nanocomplexes (blank) and pure berberine as indicated by the greater zone of inhibition diameter. In vitro anti-diabetic assessment showed higher percentage inhibition of the α-amylase enzyme by berberine loaded gum nanocomplexes as compared to pure berberine and blank nanocomplexes. In conclusion, the improved biological potency of berberine upon encapsulation into gum nanocomplexes indicates that berberine loaded guar-acacia gum nanocomplexes can be used as a promising candidate against diabetes and pathogenic microorganisms in the near future.
本研究以非离子型瓜尔胶和离子型阿拉伯胶为纳米载体,提高了小檗碱的抗糖尿病和抗菌性能。采用离子络合法制备了载小檗碱的瓜尔金合子胶纳米配合物。采用动态光散射(DLS)、傅里叶红外光谱(FTIR)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)对该制剂进行了表征,并对其体外溶出度、抗糖尿病活性和抗菌活性进行了评价。经DLS检测,优化后的瓜尔金合子胶纳米配合物粒径为290.2 nm,包封率为96.5%。形态分析表明,小檗碱纳米配合物为球形,表面光滑,尺寸在100 ~ 250 nm之间。此外,含有小檗碱的瓜尔金合欢纳米配合物具有良好的体外稳定性和控释性能。对细菌和真菌的抑菌活性表明,负载小檗碱的胶纳米复合物比空白胶纳米复合物和纯小檗碱具有更高的抑菌潜力,其抑制区直径更大。体外抗糖尿病评估显示,与纯小檗碱和空白纳米复合物相比,含有小檗碱的口香糖纳米复合物对α-淀粉酶的抑制率更高。综上所述,小檗碱包被胶纳米复合物后的生物效力得到了提高,这表明小檗碱负载瓜尔金合子胶纳米复合物在不久的将来有望成为抗糖尿病和致病微生物的候选药物。
{"title":"Synthesis, characterization and evaluation of in vitro antimicrobial and anti-diabetic activity of berberine encapsulated in guar-acacia gum nanocomplexes","authors":"J. Bakshi, M. Mehra, S. Grewal, D. Dhingra, S. Kumari","doi":"10.1177/08839115221106700","DOIUrl":"https://doi.org/10.1177/08839115221106700","url":null,"abstract":"In the present study, the anti-diabetic and antimicrobial properties of berberine were improved using non-ionic guar gum and ionic acacia gum as nanocarriers. Berberine loaded guar-acacia gum nanocomplexes were synthesized by employing ionic complexation method. The formulation was characterized by dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM) and evaluated for in vitro dissolution study, anti-diabetic activity and antimicrobial activity. The optimized berberine loaded guar-acacia gum nanocomplexes had a particle size of 290.2 nm as indicated by DLS and drug entrapment efficiency of 96.5%. Morphological analysis revealed that berberine nanocomplexes were spherical-shaped with a smooth surface and size in the range of 100–250 nm. Moreover, berberine loaded guar-acacia nanocomplexes showed good stability and controlled released property in vitro. Antimicrobial activity against bacterial strains and fungal strains demonstrated the higher antimicrobial potential of berberine loaded gum nanocomplexes than gum nanocomplexes (blank) and pure berberine as indicated by the greater zone of inhibition diameter. In vitro anti-diabetic assessment showed higher percentage inhibition of the α-amylase enzyme by berberine loaded gum nanocomplexes as compared to pure berberine and blank nanocomplexes. In conclusion, the improved biological potency of berberine upon encapsulation into gum nanocomplexes indicates that berberine loaded guar-acacia gum nanocomplexes can be used as a promising candidate against diabetes and pathogenic microorganisms in the near future.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"46 1","pages":"233 - 251"},"PeriodicalIF":1.7,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74463747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improvement of osteogenic properties using a 3D-printed graphene oxide/hyaluronic acid/chitosan composite scaffold 利用3d打印氧化石墨烯/透明质酸/壳聚糖复合支架改善成骨性能
IF 1.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-17 DOI: 10.1177/08839115221104072
Lai Suo, Zhijun Xue, Puyu Wang, Hongshan Wu, Yao Chen, Jing Shen
Oral and maxillofacial tumors, trauma and infections are the main causes of jaw defects, whose clinical treatment is very complicated. With the development of biological tissue engineering, many biological materials have been widely used in various fields of stomatology, and they play a very important role in the repair and replacement of maxillofacial bone defects. In this study, we intended to prepare a graphene oxide/hyaluronic acid/chitosan (GO/HA/CS) composite hydrogel with different mass ratios of GO: 0.1% (0.1% GO/HA/CS), 0.25% (0.25% GO/HA/CS), 0.5% (0.5% GO/HA/CS), and 1% (1% GO/HA/CS), prepare it into a multilayered and stable composite scaffold through 3D-printing technology, observe the surface morphology of the composite scaffold through scanning electron microscopy (SEM), and then test its physical and chemical properties, mechanical properties, water swelling rate, in vitro degradation and other material properties. Moreover, the biological performance of the GO/HA/CS composite scaffold was studied through experiments, such as cell morphology observation, cell adhesion, cell proliferation, and live-dead cell staining. The results showed that through chemical cross-linking and 3D-printing technology, a porous (pore size: 450–580 μm) and multilayered GO/HA/CS biological scaffold could be successfully constructed, and its surface was an interconnected microporous structure, and the porosity decreased (94%−40%) gradually with the increase of GO. Meanwhile, with the change in GO concentration, some mechanical properties of the scaffold could be improved, such as water swelling rate, degradation rate, and elastic modulus. In addition, the composite scaffold with the appropriate amount of GO had almost no cytotoxicity and could promote cell growth and proliferation, especially 0.25% GO/HA/CS composite scaffold. Consequently, the 0.25% GO/HA/CS composite scaffold had excellent biological material properties and good biocompatibility with osteoblasts, which may provide a new idea for the repair of jaw defects.
口腔颌面部肿瘤、外伤和感染是造成颌骨缺损的主要原因,其临床治疗十分复杂。随着生物组织工程的发展,许多生物材料在口腔医学的各个领域得到了广泛的应用,在颌面骨缺损的修复和置换中发挥着非常重要的作用。在本研究中,我们拟制备不同氧化石墨烯质量比的氧化石墨烯/透明质酸/壳聚糖(GO/HA/CS)复合水凝胶:0.1% (0.1% GO/HA/CS)、0.25% (0.25% GO/HA/CS)、0.5% (0.5% GO/HA/CS)、1% (1% GO/HA/CS),通过3d打印技术将其制备成多层稳定的复合支架,通过扫描电镜(SEM)观察复合支架的表面形貌,然后测试其理化性能、力学性能、水溶胀率、体外降解等材料性能。通过细胞形态学观察、细胞粘附、细胞增殖、活死细胞染色等实验,研究了GO/HA/CS复合支架的生物学性能。结果表明:通过化学交联和3d打印技术,可成功构建多孔(孔径450 ~ 580 μm)、多层的GO/HA/CS生物支架,其表面为相互连接的微孔结构,孔隙率随着GO含量的增加逐渐降低(94% ~ 40%)。同时,随着氧化石墨烯浓度的变化,支架的水溶胀率、降解率、弹性模量等力学性能也有所改善。此外,添加适量氧化石墨烯的复合支架几乎没有细胞毒性,可以促进细胞生长和增殖,特别是0.25%氧化石墨烯/HA/CS复合支架。因此,0.25%氧化石墨烯/HA/CS复合支架具有优异的生物材料性能,与成骨细胞具有良好的生物相容性,为修复颌骨缺损提供了新的思路。
{"title":"Improvement of osteogenic properties using a 3D-printed graphene oxide/hyaluronic acid/chitosan composite scaffold","authors":"Lai Suo, Zhijun Xue, Puyu Wang, Hongshan Wu, Yao Chen, Jing Shen","doi":"10.1177/08839115221104072","DOIUrl":"https://doi.org/10.1177/08839115221104072","url":null,"abstract":"Oral and maxillofacial tumors, trauma and infections are the main causes of jaw defects, whose clinical treatment is very complicated. With the development of biological tissue engineering, many biological materials have been widely used in various fields of stomatology, and they play a very important role in the repair and replacement of maxillofacial bone defects. In this study, we intended to prepare a graphene oxide/hyaluronic acid/chitosan (GO/HA/CS) composite hydrogel with different mass ratios of GO: 0.1% (0.1% GO/HA/CS), 0.25% (0.25% GO/HA/CS), 0.5% (0.5% GO/HA/CS), and 1% (1% GO/HA/CS), prepare it into a multilayered and stable composite scaffold through 3D-printing technology, observe the surface morphology of the composite scaffold through scanning electron microscopy (SEM), and then test its physical and chemical properties, mechanical properties, water swelling rate, in vitro degradation and other material properties. Moreover, the biological performance of the GO/HA/CS composite scaffold was studied through experiments, such as cell morphology observation, cell adhesion, cell proliferation, and live-dead cell staining. The results showed that through chemical cross-linking and 3D-printing technology, a porous (pore size: 450–580 μm) and multilayered GO/HA/CS biological scaffold could be successfully constructed, and its surface was an interconnected microporous structure, and the porosity decreased (94%−40%) gradually with the increase of GO. Meanwhile, with the change in GO concentration, some mechanical properties of the scaffold could be improved, such as water swelling rate, degradation rate, and elastic modulus. In addition, the composite scaffold with the appropriate amount of GO had almost no cytotoxicity and could promote cell growth and proliferation, especially 0.25% GO/HA/CS composite scaffold. Consequently, the 0.25% GO/HA/CS composite scaffold had excellent biological material properties and good biocompatibility with osteoblasts, which may provide a new idea for the repair of jaw defects.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"3 1","pages":"267 - 283"},"PeriodicalIF":1.7,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90295419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Wound healing and anti-inflammatory effects of Anethum graveolens extract loaded in PVA fibers: An in vitro and in vivo study PVA纤维负载的茴香提取物的伤口愈合和抗炎作用:体外和体内研究
IF 1.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-10 DOI: 10.1177/08839115221104074
Linli Li, Fengjuan Wang
Anethum graveolens extract (AGE) is known for its anti-inflammatory, antioxidative, and antibacterial activities. As wound infection, hyperactivity of inflammatory responses, and high oxidative stress are the leading causes of delayed wound healing, we were encouraged to design a delivery vehicle for AGE to develop a potential wound dressing material. In the current study, AGE was incorporated into the polyvinyl alcohol (PVA) scaffolds matrix via the electrospinning method. Various characterization methods were applied to assess the physicochemical and biological properties of the dressings. Cell culture studies with fibroblast cell line showed that AGE-loaded dressings could significantly promote cell viability under normal and oxidative stress conditions. The prepared wound dressings’ wound healing and anti-inflammatory properties were investigated on an excisional injury rat model. Wound healing assay showed that AGE-delivering wound dressings could significantly improve the wound healing response, as evidenced by a significantly higher rate of wound closure, epithelial thickness, and collagen deposition. Gene expression analysis revealed that the produced dressings downregulated inflammation-associated genes such as IL-1β and NFK-β. This preliminary research suggests the potential applicability of AGE-loaded PVA dressings in the clinic.
茴香提取物(AGE)以其抗炎、抗氧化和抗菌活性而闻名。由于伤口感染、炎症反应过度活跃和高氧化应激是伤口愈合延迟的主要原因,我们被鼓励设计一种AGE的运载工具,以开发一种潜在的伤口敷料材料。本研究采用静电纺丝法将AGE掺入聚乙烯醇(PVA)支架基质中。采用多种表征方法对敷料的理化和生物学性能进行了评价。对成纤维细胞系的细胞培养研究表明,在正常和氧化应激条件下,负载age的敷料可以显著提高细胞活力。在大鼠切除损伤模型上研究创面敷料的创面愈合和抗炎性能。伤口愈合实验显示,age敷料可以显著改善伤口愈合反应,伤口愈合率、上皮厚度和胶原沉积显著提高。基因表达分析显示,生产的敷料下调炎症相关基因,如IL-1β和NFK-β。这一初步研究提示了age负载PVA敷料在临床中的潜在适用性。
{"title":"Wound healing and anti-inflammatory effects of Anethum graveolens extract loaded in PVA fibers: An in vitro and in vivo study","authors":"Linli Li, Fengjuan Wang","doi":"10.1177/08839115221104074","DOIUrl":"https://doi.org/10.1177/08839115221104074","url":null,"abstract":"Anethum graveolens extract (AGE) is known for its anti-inflammatory, antioxidative, and antibacterial activities. As wound infection, hyperactivity of inflammatory responses, and high oxidative stress are the leading causes of delayed wound healing, we were encouraged to design a delivery vehicle for AGE to develop a potential wound dressing material. In the current study, AGE was incorporated into the polyvinyl alcohol (PVA) scaffolds matrix via the electrospinning method. Various characterization methods were applied to assess the physicochemical and biological properties of the dressings. Cell culture studies with fibroblast cell line showed that AGE-loaded dressings could significantly promote cell viability under normal and oxidative stress conditions. The prepared wound dressings’ wound healing and anti-inflammatory properties were investigated on an excisional injury rat model. Wound healing assay showed that AGE-delivering wound dressings could significantly improve the wound healing response, as evidenced by a significantly higher rate of wound closure, epithelial thickness, and collagen deposition. Gene expression analysis revealed that the produced dressings downregulated inflammation-associated genes such as IL-1β and NFK-β. This preliminary research suggests the potential applicability of AGE-loaded PVA dressings in the clinic.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"160 1","pages":"299 - 315"},"PeriodicalIF":1.7,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77852695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro and in vivo evaluation of porous alginate hydrogel containing retinoic acid for skin wound healing applications 含维甲酸的多孔海藻酸盐水凝胶用于皮肤伤口愈合的体外和体内评价
IF 1.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-07 DOI: 10.1177/08839115221104071
Simin Nazarnezhad, M. Salehi, H. Samadian, Arian Ehtermi, N. Kasaiyan, H. Khastar, Ghasem Abbaszadeh-Goudarzi, Nariman Rezaei Kolarijani, Hodays Yeganehfard, H. Ziaei
The current study’s main aim was to fabricate and evaluate alginate (Alg) hydrogel containing retinoic acid (RA) as wound healing materials. Different RA concentrations (2, 10, and 50% w/w) were incorporated into the hydrogel. The results showed that the prepared hydrogels had a porous structure with a pore size of 69.69 ± 22.1 µm for pure Alg hydrogel and 78.44 ± 27.8 µm for Alg/RA hydrogel. The swelling measurement showed that the hydrogels swelled up to 65% and the incorporation of RA reduced the degree of swelling . The in vitro studies confirmed the hemo- and biocompatibility of the Alg/RA 2% and increasing the RA concentration induced hemolysis and toxic effects. The animal studies showed that the lowest RA concentration resulted in the best treatment outcome while increasing the RA concentration suppressed the healing process. In conclusion, these results showed that RA induced wound healing process at low concentration, and the prepared hydrogel could be used as the wound healing materials.
本研究的主要目的是制备和评价含有维甲酸(RA)的海藻酸盐水凝胶作为伤口愈合材料。水凝胶中加入不同浓度的RA(2、10和50% w/w)。结果表明,制备的水凝胶具有多孔结构,纯Alg水凝胶的孔径为69.69±22.1µm, Alg/RA水凝胶的孔径为78.44±27.8µm。溶胀测量结果表明,水凝胶溶胀达65%,RA的加入降低了溶胀程度。体外研究证实了Alg/RA 2%的血液和生物相容性,并增加RA浓度诱导溶血和毒性作用。动物实验表明,RA浓度最低时治疗效果最好,而RA浓度升高会抑制愈合过程。综上所述,这些结果表明,低浓度的RA诱导创面愈合,制备的水凝胶可以作为创面愈合材料。
{"title":"In vitro and in vivo evaluation of porous alginate hydrogel containing retinoic acid for skin wound healing applications","authors":"Simin Nazarnezhad, M. Salehi, H. Samadian, Arian Ehtermi, N. Kasaiyan, H. Khastar, Ghasem Abbaszadeh-Goudarzi, Nariman Rezaei Kolarijani, Hodays Yeganehfard, H. Ziaei","doi":"10.1177/08839115221104071","DOIUrl":"https://doi.org/10.1177/08839115221104071","url":null,"abstract":"The current study’s main aim was to fabricate and evaluate alginate (Alg) hydrogel containing retinoic acid (RA) as wound healing materials. Different RA concentrations (2, 10, and 50% w/w) were incorporated into the hydrogel. The results showed that the prepared hydrogels had a porous structure with a pore size of 69.69 ± 22.1 µm for pure Alg hydrogel and 78.44 ± 27.8 µm for Alg/RA hydrogel. The swelling measurement showed that the hydrogels swelled up to 65% and the incorporation of RA reduced the degree of swelling . The in vitro studies confirmed the hemo- and biocompatibility of the Alg/RA 2% and increasing the RA concentration induced hemolysis and toxic effects. The animal studies showed that the lowest RA concentration resulted in the best treatment outcome while increasing the RA concentration suppressed the healing process. In conclusion, these results showed that RA induced wound healing process at low concentration, and the prepared hydrogel could be used as the wound healing materials.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"115 1","pages":"332 - 342"},"PeriodicalIF":1.7,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87817394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
In situ forming gelatin: Cyclodextrin hydrogels prepared by “click chemistry” to improve the sustained release of hydrophobic drugs 原位成型明胶:通过“点击化学”制备环糊精水凝胶,改善疏水药物的缓释
IF 1.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-07 DOI: 10.1177/08839115221098058
Phuong Le Thi, T. Tran, H. Luu, Dieu Linh Tran, T. H. Thi, D. Nguyen
Injectable hydrogels offer a wide range of attractive benefits in drug delivery applications, such as non-invasive administration, easy drug incorporation and locally controlled release at the target sites. Herein, we designed a simple and efficient method to prepare injectable hydrogels composed of gelatin and cyclodextrin (CD) for high loading capacity of hydrophobic drugs. The hydrogels were formed by thiol-functionalized gelatin (GSH) and βCD-vinyl sulfone (βCD-VS) as cross-linker, via thiol-ene “click” chemistry. Hydrogels comprising of different cross-linker feed amount were investigated in terms of their physico-chemical properties, such as gelation time, mechanical strength, swelling ratio, porosity and degradation rates. For the use as a drug delivery vehicle, dexamethasone (DEX), a commonly anti-inflammatory, immunosuppressive but poorly water soluble drug was chosen to show the high drug loading capacity and prolonged drug release of hydrogels. The drug release was found to be depended on the concentration of βCD-VS due to the drug-CD interaction. In vitro cytotoxicity experiment also showed the cell compatibility of these hydrogels against human dermal fibroblasts. In summary, we expect this gelatin-CD “click” hydrogel will be a promising candidate for localized and long-term delivery of hydrophobic drugs. Graphical Abstract
可注射水凝胶在药物递送应用中提供了广泛的吸引力,例如非侵入性给药,易于药物合并和在目标部位局部控制释放。本研究设计了一种简单、高效的方法制备由明胶和环糊精(CD)组成的可注射型水凝胶,以提高疏水药物的负载能力。以巯基功能化明胶(GSH)为交联剂,以β cd -乙烯基砜(βCD-VS)为交联剂,通过巯基“咔嗒”反应形成水凝胶。研究了不同交联剂投加量的水凝胶的理化性质,如凝胶时间、机械强度、溶胀率、孔隙率和降解率。地塞米松(dexamethasone, DEX)是一种常见的抗炎、免疫抑制但水溶性较差的药物,具有较高的载药量和较长的水凝胶释药时间。由于药物- cd相互作用,药物释放依赖于βCD-VS的浓度。体外细胞毒性实验也显示了水凝胶对人真皮成纤维细胞的细胞相容性。总之,我们预计这种明胶- cd“点击”水凝胶将成为一种有希望的局部和长期递送疏水药物的候选者。图形抽象
{"title":"In situ forming gelatin: Cyclodextrin hydrogels prepared by “click chemistry” to improve the sustained release of hydrophobic drugs","authors":"Phuong Le Thi, T. Tran, H. Luu, Dieu Linh Tran, T. H. Thi, D. Nguyen","doi":"10.1177/08839115221098058","DOIUrl":"https://doi.org/10.1177/08839115221098058","url":null,"abstract":"Injectable hydrogels offer a wide range of attractive benefits in drug delivery applications, such as non-invasive administration, easy drug incorporation and locally controlled release at the target sites. Herein, we designed a simple and efficient method to prepare injectable hydrogels composed of gelatin and cyclodextrin (CD) for high loading capacity of hydrophobic drugs. The hydrogels were formed by thiol-functionalized gelatin (GSH) and βCD-vinyl sulfone (βCD-VS) as cross-linker, via thiol-ene “click” chemistry. Hydrogels comprising of different cross-linker feed amount were investigated in terms of their physico-chemical properties, such as gelation time, mechanical strength, swelling ratio, porosity and degradation rates. For the use as a drug delivery vehicle, dexamethasone (DEX), a commonly anti-inflammatory, immunosuppressive but poorly water soluble drug was chosen to show the high drug loading capacity and prolonged drug release of hydrogels. The drug release was found to be depended on the concentration of βCD-VS due to the drug-CD interaction. In vitro cytotoxicity experiment also showed the cell compatibility of these hydrogels against human dermal fibroblasts. In summary, we expect this gelatin-CD “click” hydrogel will be a promising candidate for localized and long-term delivery of hydrophobic drugs. Graphical Abstract","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"36 12 1","pages":"252 - 266"},"PeriodicalIF":1.7,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90664018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Bioactive and Compatible Polymers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1