首页 > 最新文献

Journal of biotechnology最新文献

英文 中文
Promotion of polyhydroxyalkanoates-producing granular sludge formation by lactic acid using anaerobic dynamic feeding process 利用厌氧动态进料工艺,通过乳酸促进产生聚羟基烷酸的颗粒污泥的形成。
IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-18 DOI: 10.1016/j.jbiotec.2024.09.010
Jiaxing Xi , Wenjie Fang , Huihui Zhang , Jinzhong Zhang , Heng Xu , Mingxia Zheng
To promote the formation of granular sludge with high polyhydroxyalkanoates (PHAs) synthesis ability, an anaerobic dynamic feeding process (AnDF) was proposed. This process combines the feast-famine mode with an anaerobic plug flow feeding process and involving variations in cycle length and settling time. The effects of lactic acid (LA) content (0 %, 20 %, and 40 % COD) on sludge granulation and PHAs production were investigated using three AnDF reactors (R1, R2, and R3). The results showed that the AnDF process feeding with LA not only effectively promoted sludge granulation but also improved its PHAs synthesis ability. The granules were quickly observed in R3 after 50 days of cultivation, with an average diameter of 0.69 mm. The maximum PHAs content reached 47.0 wt% in R3, representing a 30.09 % increase compared to R1. Additionally, extracellular polymeric substances (EPS)-producing bacteria observed in granular sludge may be the prime drivers of the formation of PHAs-producing granular sludge (PHAGS), which was defined as granular sludge with an average particle size larger than 0.30 mm and PHAs content above 40 % cell dry weight (CDW) of sludge samples.
为促进形成具有高聚合羟基烷酸酯(PHAs)合成能力的颗粒污泥,提出了一种厌氧动态进料工艺(AnDF)。该工艺将 "盛宴-饥饿 "模式与厌氧塞流进料工艺相结合,并涉及周期长度和沉淀时间的变化。使用三个 AnDF 反应器(R1、R2 和 R3)研究了乳酸(LA)含量(0%、20% 和 40% COD)对污泥造粒和 PHAs 产量的影响。结果表明,投加 LA 的 AnDF 工艺不仅有效地促进了污泥造粒,还提高了其 PHAs 合成能力。在 R3 中,经过 50 天的培养,污泥很快就形成了颗粒,平均直径为 0.69 毫米。R3 中 PHAs 的最大含量达到 47.0wt.%,比 R1 增加了 30.09%。此外,在颗粒污泥中观察到的产生胞外聚合物物质(EPS)的细菌可能是形成产生 PHAs 的颗粒污泥(PHAGS)的主要驱动力,PHAGS 的定义是平均粒径大于 0.30 毫米且 PHAs 含量超过污泥样品细胞干重(CDW)40% 的颗粒污泥。
{"title":"Promotion of polyhydroxyalkanoates-producing granular sludge formation by lactic acid using anaerobic dynamic feeding process","authors":"Jiaxing Xi ,&nbsp;Wenjie Fang ,&nbsp;Huihui Zhang ,&nbsp;Jinzhong Zhang ,&nbsp;Heng Xu ,&nbsp;Mingxia Zheng","doi":"10.1016/j.jbiotec.2024.09.010","DOIUrl":"10.1016/j.jbiotec.2024.09.010","url":null,"abstract":"<div><div>To promote the formation of granular sludge with high polyhydroxyalkanoates (PHAs) synthesis ability, an anaerobic dynamic feeding process (AnDF) was proposed. This process combines the feast-famine mode with an anaerobic plug flow feeding process and involving variations in cycle length and settling time. The effects of lactic acid (LA) content (0 %, 20 %, and 40 % COD) on sludge granulation and PHAs production were investigated using three AnDF reactors (R1, R2, and R3). The results showed that the AnDF process feeding with LA not only effectively promoted sludge granulation but also improved its PHAs synthesis ability. The granules were quickly observed in R3 after 50 days of cultivation, with an average diameter of 0.69 mm. The maximum PHAs content reached 47.0 wt% in R3, representing a 30.09 % increase compared to R1. Additionally, extracellular polymeric substances (EPS)-producing bacteria observed in granular sludge may be the prime drivers of the formation of PHAs-producing granular sludge (PHAGS), which was defined as granular sludge with an average particle size larger than 0.30 mm and PHAs content above 40 % cell dry weight (CDW) of sludge samples.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 84-94"},"PeriodicalIF":4.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-efficiency breeding of Bacillus siamensis with hyper macrolactins production using physical mutagenesis and a high-throughput culture system 利用物理诱变和高通量培养系统高效培育高产巨乳肽的暹罗芽孢杆菌
IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-17 DOI: 10.1016/j.jbiotec.2024.09.008
Delin Zhang , Xiaodong Jiang , Sini Liu , Meng Bai , Xiao Lin , Yonghong Liu , Chenghai Gao , Yuman Gan

Macrolactins have attracted considerable attention due to their value and application in medicine and agriculture. However, poor yields severely hinder their broader application in these fields. This study aimed to improve macrolactins production in Bacillus siamensis using a combined atmospheric and room-temperature plasma mutagenesis and a microbial microdroplet culture system. After 25 days of treatment, a desirable strain with macrolactins production 3.0-fold higher than that of the parental strain was successfully selected. The addition of 30 mg/L ZnSO4 further increased macrolactins production to 503 ± 37.6 μg/mL, representing a 30.9 % improvement in production compared to controls. Based on transcriptome analysis, the synthesis pathways of amino acids, fengycin, and surfactin were found to be downregulated in IMD4036. Further fermentation experiments confirmed that inhibition of the comparative fengycin synthesis pathway was potentially driving the increased production of macrolactins. The strategies and possible mechanisms detailed in this study can provide insight into enhancing the production of other secondary metabolites toxic to the producer strains.

巨乳蛋白因其在医药和农业领域的价值和应用而备受关注。然而,产量低严重阻碍了它们在这些领域的广泛应用。本研究旨在利用常压和室温等离子体诱变以及微生物微滴培养系统,提高暹罗芽孢杆菌(Bacillus siamensis)的大泌乳素产量。经过 25 天的处理后,成功筛选出了大泌乳素产量比亲本高 3.0 倍的理想菌株。添加 30 mg/L ZnSO4 进一步提高了大分子乳蛋白的产量,达到 503 ± 37.6 μg/mL,与对照组相比,产量提高了 30.9%。根据转录组分析,IMD4036 中氨基酸、芬吉霉素和表面活性素的合成途径被下调。进一步的发酵实验证实,抑制芬奇霉素的合成途径有可能导致大乳清蛋白产量的增加。本研究详述的策略和可能机制可为提高对生产菌株有毒的其他次生代谢物的产量提供启示。
{"title":"High-efficiency breeding of Bacillus siamensis with hyper macrolactins production using physical mutagenesis and a high-throughput culture system","authors":"Delin Zhang ,&nbsp;Xiaodong Jiang ,&nbsp;Sini Liu ,&nbsp;Meng Bai ,&nbsp;Xiao Lin ,&nbsp;Yonghong Liu ,&nbsp;Chenghai Gao ,&nbsp;Yuman Gan","doi":"10.1016/j.jbiotec.2024.09.008","DOIUrl":"10.1016/j.jbiotec.2024.09.008","url":null,"abstract":"<div><p>Macrolactins have attracted considerable attention due to their value and application in medicine and agriculture. However, poor yields severely hinder their broader application in these fields. This study aimed to improve macrolactins production in <em>Bacillus siamensis</em> using a combined atmospheric and room-temperature plasma mutagenesis and a microbial microdroplet culture system. After 25 days of treatment, a desirable strain with macrolactins production 3.0-fold higher than that of the parental strain was successfully selected. The addition of 30 mg/L ZnSO<sub>4</sub> further increased macrolactins production to 503 ± 37.6 μg/mL, representing a 30.9 % improvement in production compared to controls. Based on transcriptome analysis, the synthesis pathways of amino acids, fengycin, and surfactin were found to be downregulated in IMD4036. Further fermentation experiments confirmed that inhibition of the comparative fengycin synthesis pathway was potentially driving the increased production of macrolactins. The strategies and possible mechanisms detailed in this study can provide insight into enhancing the production of other secondary metabolites toxic to the producer strains.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 71-79"},"PeriodicalIF":4.1,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mammalian perfusion cultivation at high L-Arginine concentration for efficient production of recombinant protein by increasing perfusion filter transmission 在高浓度 L-精氨酸条件下进行哺乳动物灌流培养,通过提高灌流过滤器的透光率高效生产重组蛋白
IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-17 DOI: 10.1016/j.jbiotec.2024.09.009
Bjarne Rask Poulsen , Thomas Egebjerg , Matthias Noebel , Kristian Thorsen , Claes Nymand Nilsson , Jais Rose Bjelke

Cultivations of Chinese Hamster Ovary (CHO) cells in a perfusion setup were conducted in the presence of super physiological concentrations of L-Arginine to investigate the impact on transmission through the perfusion filter for production of a recombinant domain antibody. Our study revealed that the presence of L-Arginine within the range of 30–50 mM had a positive impact on transmission. However, the higher concentrations were found to have a negative correlation with cell viability, and an optimal concentration of approximately 40 mM was identified. The supplementation of L-Arginine improved overall cultivation performance and enhanced product quality attributes. As a result, our findings demonstrate that the supplementation of L-Arginine to mammalian perfusion cultivations stands as an effective method to address transmission issues, exerting a broad impact on process and production of recombinant proteins.

在超生理浓度的左旋精氨酸存在下,我们在灌流装置中培养了中国仓鼠卵巢(CHO)细胞,以研究通过灌流过滤器生产重组结构域抗体对传导性的影响。我们的研究表明,30-50 mM 范围内的 L-Arginine 对传输有积极影响。然而,我们发现较高的浓度与细胞活力呈负相关,最佳浓度约为 40 毫摩尔。补充左旋精氨酸可改善整体培养性能,提高产品质量属性。因此,我们的研究结果表明,在哺乳动物灌流培养过程中补充 L-精氨酸是解决传代问题的有效方法,对重组蛋白的工艺和生产具有广泛的影响。
{"title":"Mammalian perfusion cultivation at high L-Arginine concentration for efficient production of recombinant protein by increasing perfusion filter transmission","authors":"Bjarne Rask Poulsen ,&nbsp;Thomas Egebjerg ,&nbsp;Matthias Noebel ,&nbsp;Kristian Thorsen ,&nbsp;Claes Nymand Nilsson ,&nbsp;Jais Rose Bjelke","doi":"10.1016/j.jbiotec.2024.09.009","DOIUrl":"10.1016/j.jbiotec.2024.09.009","url":null,"abstract":"<div><p>Cultivations of Chinese Hamster Ovary (CHO) cells in a perfusion setup were conducted in the presence of super physiological concentrations of L-Arginine to investigate the impact on transmission through the perfusion filter for production of a recombinant domain antibody. Our study revealed that the presence of L-Arginine within the range of 30–50 mM had a positive impact on transmission. However, the higher concentrations were found to have a negative correlation with cell viability, and an optimal concentration of approximately 40 mM was identified. The supplementation of L-Arginine improved overall cultivation performance and enhanced product quality attributes. As a result, our findings demonstrate that the supplementation of L-Arginine to mammalian perfusion cultivations stands as an effective method to address transmission issues, exerting a broad impact on process and production of recombinant proteins.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 80-83"},"PeriodicalIF":4.1,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical biosensing of Acinetobacter baumannii gene using chitosan-gold composite modified electrode 使用壳聚糖-金复合修饰电极对鲍曼不动杆菌基因进行电化学生物传感。
IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1016/j.jbiotec.2024.09.007
Aysen Bozoglu , Ece Eksin , Arzum Erdem

In this study, a novel electrochemical biosensor was developed for the sensitive and selective detection of the Acinetobacter baumannii gene sequence. The biosensor was created by immobilizing a capture probe specific to the A. baumannii gene on the surface of chitosan-gold modified pencil graphite electrodes. Following solid-state hybridization on the Chit-Au/PGE surface, the target DNA sequence of the A. baumannii was detected by measuring the guanine signal using square wave voltammetry (SWV). All experimental parameters impacting sensor response are examined in order to improve hybridization efficacy, and the electrochemical biosensor's performance. The limit of detection (LOD) for the A. baumannii gene sequence was calculated and found to be 1.93 nM. Three different non-complementary DNA sequences were used to evaluate the assay selectivity, but no interference effect was obtained. Additionally, the potential applicability of the biosensor to real samples was tested in artificial serum media. The suggested electrochemical test procedure is simple, approachable, and quick, making it a convenient approach for the screening of DNA sequence.

本研究开发了一种新型电化学生物传感器,用于灵敏、选择性地检测鲍曼不动杆菌的基因序列。该生物传感器是通过将特异于鲍曼不动杆菌基因的捕获探针固定在壳聚糖-金修饰的铅笔石墨电极表面而制成的。在 Chit-Au/PGE 表面进行固态杂交后,利用方波伏安法(SWV)测量鸟嘌呤信号,从而检测出鲍曼不动杆菌的目标 DNA 序列。研究了影响传感器响应的所有实验参数,以提高杂交效率和电化学生物传感器的性能。经计算发现,鲍曼不动杆菌基因序列的检测限(LOD)为 1.93nM。为了评估检测的选择性,使用了三种不同的非互补 DNA 序列,但没有发现干扰效应。此外,还在人工血清介质中测试了该生物传感器对真实样本的潜在适用性。建议的电化学测试程序简单、易行、快速,是筛选 DNA 序列的便捷方法。
{"title":"Electrochemical biosensing of Acinetobacter baumannii gene using chitosan-gold composite modified electrode","authors":"Aysen Bozoglu ,&nbsp;Ece Eksin ,&nbsp;Arzum Erdem","doi":"10.1016/j.jbiotec.2024.09.007","DOIUrl":"10.1016/j.jbiotec.2024.09.007","url":null,"abstract":"<div><p>In this study, a novel electrochemical biosensor was developed for the sensitive and selective detection of the <em>Acinetobacter baumannii</em> gene sequence. The biosensor was created by immobilizing a capture probe specific to the <em>A. baumannii</em> gene on the surface of chitosan-gold modified pencil graphite electrodes. Following solid-state hybridization on the Chit-Au/PGE surface, the target DNA sequence of the A. baumannii was detected by measuring the guanine signal using square wave voltammetry (SWV). All experimental parameters impacting sensor response are examined in order to improve hybridization efficacy, and the electrochemical biosensor's performance. The limit of detection (LOD) for the <em>A. baumannii</em> gene sequence was calculated and found to be 1.93 nM. Three different non-complementary DNA sequences were used to evaluate the assay selectivity, but no interference effect was obtained. Additionally, the potential applicability of the biosensor to real samples was tested in artificial serum media. The suggested electrochemical test procedure is simple, approachable, and quick, making it a convenient approach for the screening of DNA sequence.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 64-70"},"PeriodicalIF":4.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aminated lignin improved enzymatic hydrolysis of cellulosic substrate treated by p-toluenesulfonic acid Aminated Lignin Improved Enzymatic Hydrolysis of Cellulosic Substrate Treatment by P-toluenesulfonic Acid.
IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-12 DOI: 10.1016/j.jbiotec.2024.09.004
Chunyang Yu , Zekang Wang , Xiangjin Fu , Chun Liu , Anping Li , Qinlu Lin , Tianqing Lan , Xinshu Zhuang

Lignin can affect the enzymatic hydrolysis efficiency of lignocellulose. In this study, the lignin isolated from sugarcane bagasse (SCB) pretreated with p-toluenesulfonic acid (PL) was firstly aminated, and then the effects of PL and aminated PL (APL) on the bagasse enzymatic hydrolysis efficiency (EHE) were investigated. The results showed that the addition of PL and APL promoted the EHE, and EHE with APL (73.82 %) was higher than PL (51.39 %). To explore the reason, the data were further analyzed including cellulase adsorption capacity, enzyme activity, cellulase-lignin interaction, and molecular docking. It was found that APL adsorbed more cellulase (27.83 mg protein/g lignin) than PL (4.96 mg protein/g lignin), resulting from the greater interaction force and lower binding free energy between APL and cellulase. The addition of APL more remarkably enhanced the cellobiohydrolase and endoglucanase activities than PL due to more effectively inducing cellulase conformation optimization.

木质素会影响木质纤维素的酶水解效率。本研究首先将对甲苯磺酸(PL)预处理甘蔗渣(SCB)中分离出的木质素胺化,然后考察了PL和胺化PL(APL)对甘蔗渣酶水解效率(EHE)的影响。结果表明,PL 和 APL 的添加促进了 EHE,其中 APL 的 EHE(73.82%)高于 PL(51.39%)。为了探究原因,对数据进行了进一步分析,包括纤维素酶吸附能力、酶活性、纤维素酶与木质素的相互作用以及分子对接。结果发现,APL 比 PL(4.96 毫克蛋白/克木质素)吸附了更多的纤维素酶(27.83 毫克蛋白/克木质素),这是因为 APL 与纤维素酶之间的相互作用力更大,结合自由能更低。与 PL 相比,添加 APL 能更有效地诱导纤维素酶构象优化,从而更显著地提高纤维素生物水解酶和内切葡聚糖酶的活性。
{"title":"Aminated lignin improved enzymatic hydrolysis of cellulosic substrate treated by p-toluenesulfonic acid","authors":"Chunyang Yu ,&nbsp;Zekang Wang ,&nbsp;Xiangjin Fu ,&nbsp;Chun Liu ,&nbsp;Anping Li ,&nbsp;Qinlu Lin ,&nbsp;Tianqing Lan ,&nbsp;Xinshu Zhuang","doi":"10.1016/j.jbiotec.2024.09.004","DOIUrl":"10.1016/j.jbiotec.2024.09.004","url":null,"abstract":"<div><p>Lignin can affect the enzymatic hydrolysis efficiency of lignocellulose. In this study, the lignin isolated from sugarcane bagasse (SCB) pretreated with p-toluenesulfonic acid (PL) was firstly aminated, and then the effects of PL and aminated PL (APL) on the bagasse enzymatic hydrolysis efficiency (EHE) were investigated. The results showed that the addition of PL and APL promoted the EHE, and EHE with APL (73.82 %) was higher than PL (51.39 %). To explore the reason, the data were further analyzed including cellulase adsorption capacity, enzyme activity, cellulase-lignin interaction, and molecular docking. It was found that APL adsorbed more cellulase (27.83 mg protein/g lignin) than PL (4.96 mg protein/g lignin), resulting from the greater interaction force and lower binding free energy between APL and cellulase. The addition of APL more remarkably enhanced the cellobiohydrolase and endoglucanase activities than PL due to more effectively inducing cellulase conformation optimization.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 44-52"},"PeriodicalIF":4.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing tailor-made steric matters to improve the immobilized ficin specificity for small versus large proteins 设计量身定制的立体物质,提高固定化菲辛对小蛋白和大蛋白的特异性
IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-10 DOI: 10.1016/j.jbiotec.2024.09.005
El Hocine Siar , Pedro Abellanas-Perez , Roberto Morellon-Sterling , Juan M. Bolivar , Javier Rocha-Martin , Roberto Fernandez-Lafuente

The development of strategies that can permit to adjust the size specificity of immobilized proteases by the generation of steric hindrances may enlarge its applicability. Using as a model ficin immobilized on glyoxyl agarose, two strategies were assayed to generate tailor made steric hindrances. First, ficin has been coimmobilized on supports coated with large proteins (hemoglobin or bovine serum albumin (BSA)). While coimmobilization of ficin with BSA presented no effect on the activity versus any of the assayed substrates, coimmobilization with hemoglobin permitted to improve the immobilized ficin specificity for casein versus hemoglobin, but still significant activity versus hemoglobin remained. Second, aldehyde-dextran has been employed to modify the immobilized ficin, trying to generate steric hindrances to avoid the entry of large proteins (hemoglobin) while enabling the entry of small ones (casein). This also increased the size specificity of ficin, but still did not suppress the activity versus hemoglobin. The combination of both strategies and the use of 37ºC during the proteolysis enabled to almost fully nullify the hydrolytic activity versus hemoglobin while preserving a high percentage of the activity versus casein. The modifications improved enzyme stability and the biocatalyst could be reused for 5 cycles without alteration of its properties.

开发能够通过产生立体阻碍来调整固定蛋白酶大小特异性的策略可能会扩大其应用范围。以固定在乙醛琼脂糖上的 ficin 为模型,我们采用了两种策略来产生量身定制的立体障碍。首先,在涂有大分子蛋白质(血红蛋白或牛血清白蛋白(BSA))的载体上共同固定了 ficin。与 BSA 共同固定的 ficin 对任何检测底物的活性都没有影响,而与血红蛋白共同固定的 ficin 对酪蛋白和血红蛋白的特异性有所提高,但对血红蛋白的活性仍然很强。其次,还采用了醛葡聚糖来修饰固定化的 ficin,试图产生立体阻碍,以避免大蛋白(血红蛋白)进入,同时使小蛋白(酪蛋白)能够进入。这也提高了飞蓟素的大小特异性,但仍不能抑制其对血红蛋白的活性。将这两种策略结合起来,并在蛋白水解过程中使用 37ºC 温度,几乎完全消除了对血红蛋白的水解活性,同时保留了很高比例的对酪蛋白的水解活性。这些改性提高了酶的稳定性,生物催化剂可重复使用 5 个周期而不会改变其特性。
{"title":"Designing tailor-made steric matters to improve the immobilized ficin specificity for small versus large proteins","authors":"El Hocine Siar ,&nbsp;Pedro Abellanas-Perez ,&nbsp;Roberto Morellon-Sterling ,&nbsp;Juan M. Bolivar ,&nbsp;Javier Rocha-Martin ,&nbsp;Roberto Fernandez-Lafuente","doi":"10.1016/j.jbiotec.2024.09.005","DOIUrl":"10.1016/j.jbiotec.2024.09.005","url":null,"abstract":"<div><p>The development of strategies that can permit to adjust the size specificity of immobilized proteases by the generation of steric hindrances may enlarge its applicability. Using as a model ficin immobilized on glyoxyl agarose, two strategies were assayed to generate tailor made steric hindrances. First, ficin has been coimmobilized on supports coated with large proteins (hemoglobin or bovine serum albumin (BSA)). While coimmobilization of ficin with BSA presented no effect on the activity versus any of the assayed substrates, coimmobilization with hemoglobin permitted to improve the immobilized ficin specificity for casein versus hemoglobin, but still significant activity versus hemoglobin remained. Second, aldehyde-dextran has been employed to modify the immobilized ficin, trying to generate steric hindrances to avoid the entry of large proteins (hemoglobin) while enabling the entry of small ones (casein). This also increased the size specificity of ficin, but still did not suppress the activity versus hemoglobin. The combination of both strategies and the use of 37ºC during the proteolysis enabled to almost fully nullify the hydrolytic activity versus hemoglobin while preserving a high percentage of the activity versus casein. The modifications improved enzyme stability and the biocatalyst could be reused for 5 cycles without alteration of its properties.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 12-21"},"PeriodicalIF":4.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168165624002475/pdfft?md5=701784417039f9dca9ae5e5f9b351c9f&pid=1-s2.0-S0168165624002475-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic engineering of Escherichia coli for seleno-methylselenocysteine production 大肠杆菌生产硒代-甲基硒代半胱氨酸的代谢工程
IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-10 DOI: 10.1016/j.jbiotec.2024.09.006
Hulin Yang , Shizhuo Wang , Meiyi Zhao , Yonghong Liao , Fenghuan Wang , Xian Yin

Selenium (Se) is an essential trace element for life. Seleno-methylselenocysteine (SeMCys) can serve as a Se supplement with anticarcinogenic activity and can improve cognitive deficits. We engineered Escherichia coli for microbial production of SeMCys. The genes involved in the synthesis of SeMCys were divided into three modules–the selenocysteine (SeCys) synthesis, methyl donor synthesis and SMT modules–and expressed in plasmids with different copy numbers. The higher copy number of the SeCys synthesis module facilitated SeMCys production. The major routes for SeCys degradation were then modified. Deletion of the cysteine desulfurase gene csdA or sufS improved SeMCys production the most, and the strain that knocked out both genes doubled SeMCys production. The addition of serine in the mid-logarithmic growth phase significantly improved SeMCys synthesis. When the serine synthetic pathway was enhanced, SeMCys production increased by 12.5 %. Fed-batch culture for sodium selenite supplementation in the early stationary phase improved SeMCys production to 3.715 mg/L. This is the first report of the metabolic engineering of E. coli for the production of SeMCys and provide information on Se metabolism.

硒(Se)是生命必需的微量元素。硒代甲基硒代半胱氨酸(SeMCys)可作为具有抗癌活性的硒补充剂,并能改善认知障碍。我们设计了大肠埃希氏菌,用于微生物生产 SeMCys。参与合成 SeMCys 的基因被分为三个模块--硒代半胱氨酸(SeCys)合成模块、甲基供体合成模块和 SMT 模块,并以不同拷贝数的质粒表达。SeCys 合成模块的拷贝数越高,SeMCys 的生产就越容易。SeCys 降解的主要途径也随之改变。半胱氨酸脱硫酶基因 csdA 或 sufS 的缺失对 SeMCys 产量的改善最大,而敲除这两个基因的菌株的 SeMCys 产量翻了一番。在对数生长中期添加丝氨酸能显著提高 SeMCys 的合成。当丝氨酸合成途径得到加强时,SeMCys 的产量增加了 12.5%。在静止初期补充亚硒酸钠的分批进行喂养培养,可将 SeMCys 的产量提高到 3.715 毫克/升。这是首次报道利用大肠杆菌代谢工程生产 SeMCys,并提供了有关 Se 代谢的信息。
{"title":"Metabolic engineering of Escherichia coli for seleno-methylselenocysteine production","authors":"Hulin Yang ,&nbsp;Shizhuo Wang ,&nbsp;Meiyi Zhao ,&nbsp;Yonghong Liao ,&nbsp;Fenghuan Wang ,&nbsp;Xian Yin","doi":"10.1016/j.jbiotec.2024.09.006","DOIUrl":"10.1016/j.jbiotec.2024.09.006","url":null,"abstract":"<div><p>Selenium (Se) is an essential trace element for life. Seleno-methylselenocysteine (SeMCys) can serve as a Se supplement with anticarcinogenic activity and can improve cognitive deficits. We engineered <em>Escherichia coli</em> for microbial production of SeMCys. The genes involved in the synthesis of SeMCys were divided into three modules–the selenocysteine (SeCys) synthesis, methyl donor synthesis and SMT modules–and expressed in plasmids with different copy numbers. The higher copy number of the SeCys synthesis module facilitated SeMCys production. The major routes for SeCys degradation were then modified. Deletion of the cysteine desulfurase gene <em>csdA</em> or <em>sufS</em> improved SeMCys production the most, and the strain that knocked out both genes doubled SeMCys production. The addition of serine in the mid-logarithmic growth phase significantly improved SeMCys synthesis. When the serine synthetic pathway was enhanced, SeMCys production increased by 12.5 %. Fed-batch culture for sodium selenite supplementation in the early stationary phase improved SeMCys production to 3.715 mg/L. This is the first report of the metabolic engineering of <em>E. coli</em> for the production of SeMCys and provide information on Se metabolism.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 22-30"},"PeriodicalIF":4.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168165624002487/pdfft?md5=f7bc06ee4d10bd2ce5669362e14d3c0a&pid=1-s2.0-S0168165624002487-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering gene expression signatures and diagnostic – Biomarkers in hepatocellular carcinoma through multinomial logistic regression analysis 通过多项式逻辑回归分析发现肝细胞癌的基因表达特征和诊断生物标记物
IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-06 DOI: 10.1016/j.jbiotec.2024.09.003
Ilkyu Park , Hyo-Bin Lee , Nakyoung Kim , Sugi Lee , Kunhyang Park , Mi-Young Son , Hyun-Soo Cho , Dae-Soo Kim

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide, and classifying the developmental stages of HCC can help with early prognosis and treatment. This study aimed to investigate diagnostic and prognostic molecular signatures underlying the progression of HCC, including tumor initiation and growth, and to classify its developmental stages based on gene expression levels. We integrated data from two cancer systems, including 78 patients with Edmondson-Steiner (ES) grade and 417 patients with TNM stage cancer. Functional profiling was performed using identified signatures. Using a multinomial logistic regression model (MLR), we classified controls, early-stage HCC, and advanced-stage HCC. The model was validated in three independent cohorts comprising 45 patients (neoplastic stage), 394 patients (ES grade), and 466 patients (TNM stage). Multivariate Cox regression was employed for HCC prognosis prediction. We identified 35 genes with gradual upregulation or downregulation in both ES grade and TNM stage patients during HCC progression. These genes are involved in cell division, chromosome segregation, and mitotic cytokinesis, promoting tumor cell proliferation through the mitotic cell cycle. The MLR model accurately differentiated controls, early-stage HCC, and advanced-stage HCC across multiple cancer systems, which was further validated in various independent cohorts. Survival analysis revealed a subset of five genes from TNM stage (HR: 3.27, p < 0.0001) and three genes from ES grade (HR: 7.56, p < 0.0001) that showed significant association with HCC prognosis. The identified molecular signature not only initiates tumorigenesis but also promotes HCC development. It has the potential to improve clinical diagnosis, prognosis, and therapeutic interventions for HCC. This study enhances our understanding of HCC progression and provides valuable insights for precision medicine approaches.

肝细胞癌(HCC)是全球癌症死亡的主要原因之一,对HCC的发展阶段进行分类有助于早期预后和治疗。这项研究的目的是研究HCC进展过程中的诊断和预后分子特征,包括肿瘤的发生和生长,并根据基因表达水平对其发展阶段进行分类。我们整合了两个癌症系统的数据,包括78例埃德蒙森-斯坦纳(ES)分级患者和417例TNM分期癌症患者。我们使用已识别的特征进行了功能分析。通过多项式逻辑回归模型(MLR),我们对对照组、早期 HCC 和晚期 HCC 进行了分类。该模型在由 45 名患者(肿瘤分期)、394 名患者(ES 分级)和 466 名患者(TNM 分期)组成的三个独立队列中进行了验证。采用多变量 Cox 回归预测 HCC 预后。我们发现 35 个基因在 HCC 进展过程中在 ES 分级和 TNM 分期患者中逐渐上调或下调。这些基因参与细胞分裂、染色体分离和有丝分裂期细胞分裂,通过有丝分裂细胞周期促进肿瘤细胞增殖。MLR 模型在多个癌症系统中准确地区分了对照组、早期 HCC 和晚期 HCC,并在多个独立队列中得到了进一步验证。生存分析表明,TNM 分期的五个基因(HR:3.27,p < 0.0001)和 ES 分级的三个基因(HR:7.56,p < 0.0001)与 HCC 预后有显著相关性。所发现的分子特征不仅能启动肿瘤发生,还能促进 HCC 的发展。它有望改善 HCC 的临床诊断、预后和治疗干预。这项研究加深了我们对 HCC 进展的了解,并为精准医疗方法提供了宝贵的见解。
{"title":"Uncovering gene expression signatures and diagnostic – Biomarkers in hepatocellular carcinoma through multinomial logistic regression analysis","authors":"Ilkyu Park ,&nbsp;Hyo-Bin Lee ,&nbsp;Nakyoung Kim ,&nbsp;Sugi Lee ,&nbsp;Kunhyang Park ,&nbsp;Mi-Young Son ,&nbsp;Hyun-Soo Cho ,&nbsp;Dae-Soo Kim","doi":"10.1016/j.jbiotec.2024.09.003","DOIUrl":"10.1016/j.jbiotec.2024.09.003","url":null,"abstract":"<div><p>Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide, and classifying the developmental stages of HCC can help with early prognosis and treatment. This study aimed to investigate diagnostic and prognostic molecular signatures underlying the progression of HCC, including tumor initiation and growth, and to classify its developmental stages based on gene expression levels. We integrated data from two cancer systems, including 78 patients with Edmondson-Steiner (ES) grade and 417 patients with TNM stage cancer. Functional profiling was performed using identified signatures. Using a multinomial logistic regression model (MLR), we classified controls, early-stage HCC, and advanced-stage HCC. The model was validated in three independent cohorts comprising 45 patients (neoplastic stage), 394 patients (ES grade), and 466 patients (TNM stage). Multivariate Cox regression was employed for HCC prognosis prediction. We identified 35 genes with gradual upregulation or downregulation in both ES grade and TNM stage patients during HCC progression. These genes are involved in cell division, chromosome segregation, and mitotic cytokinesis, promoting tumor cell proliferation through the mitotic cell cycle. The MLR model accurately differentiated controls, early-stage HCC, and advanced-stage HCC across multiple cancer systems, which was further validated in various independent cohorts. Survival analysis revealed a subset of five genes from TNM stage (HR: 3.27, p &lt; 0.0001) and three genes from ES grade (HR: 7.56, p &lt; 0.0001) that showed significant association with HCC prognosis. The identified molecular signature not only initiates tumorigenesis but also promotes HCC development. It has the potential to improve clinical diagnosis, prognosis, and therapeutic interventions for HCC. This study enhances our understanding of HCC progression and provides valuable insights for precision medicine approaches.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 31-43"},"PeriodicalIF":4.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168165624002402/pdfft?md5=034b748b010d1991319538369f6bd3b1&pid=1-s2.0-S0168165624002402-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient metabolic pathway modification in various strains of lactic acid bacteria using CRISPR/Cas9 system for elevated synthesis of antimicrobial compounds 利用 CRISPR/Cas9 系统对乳酸菌的各种菌株进行高效代谢途径改造,以提高抗菌化合物的合成。
IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-06 DOI: 10.1016/j.jbiotec.2024.09.002
Yuli Haryani , Nadrah Abdul Halid , Sur Guat Goh , Mahmud Ab Rashid Nor-Khaizura , Muhammad Asyraf Md Hatta , Suriana Sabri , Son Radu , Hanan Hasan

Lactic acid bacteria (LAB) are known to exhibit various beneficial roles in fermentation, serving as probiotics, and producing a plethora of valuable compounds including antimicrobial activity such as bacteriocin-like inhibitory substance (BLIS) that can be used as biopreservative to improve food safety and quality. However, the yield of BLIS is often limited, which poses a challenge to be commercially competitive with the current preservation practice. Therefore, the present work aimed to establish an optimised two-plasmid CRISPR/Cas9 system to redirect the carbon flux away from lactate towards compounds with antimicrobial activity by disrupting lactate dehydrogenase gene (ldh) on various strains of LAB. The lactic acid-deficient (ldhΔ) strains caused a metabolic shift resulting in increased inhibitory activity against selected foodborne pathogens up to 78 % than the wild-type (WT) strain. The most significant effect was depicted by Enterococcus faecalis-ldh∆ which displayed prominent bactericidal effects against all foodborne pathogens as compared to the WT that showed no antimicrobial activity. The present work provided a framework model for economically important LAB and other beneficial bacteria to synthesise and increase the yield of valuable food and industrial compounds. The present work reported for the first time that the metabolism of selected LAB can be manipulated by modifying ldh to attain metabolites with higher antimicrobial activity.

众所周知,乳酸菌(LAB)在发酵过程中发挥着各种有益作用,可作为益生菌,并产生大量有价值的化合物,包括具有抗菌活性的化合物,其中细菌素样抑制物质(BLIS)可用作生物防腐剂,以提高食品安全和质量。然而,类抑菌物质的产量往往有限,这给目前的保鲜做法带来了商业竞争力方面的挑战。因此,本研究旨在建立一个优化的双质粒 CRISPR/Cas9 系统,通过破坏各种 LAB 菌株上的乳酸脱氢酶基因(ldh),将碳通量从乳酸转向具有抗菌活性的化合物。乳酸缺失(ldhΔ)菌株会导致新陈代谢的转变,从而使其对所选食源性病原体的抑制活性比野生型(WT)菌株提高 78%。效果最明显的是粪肠球菌-ldhΔ,与没有抗菌活性的 WT 菌株相比,它对所有食源性病原体都有明显的杀菌效果。本研究为具有重要经济价值的 LAB 和其他有益细菌合成有价值的食品和工业化合物并提高其产量提供了一个框架模型。本研究首次报道了可以通过改变ldh来操纵某些酵母菌的新陈代谢,从而获得具有更高抗微生物活性的代谢产物。
{"title":"Efficient metabolic pathway modification in various strains of lactic acid bacteria using CRISPR/Cas9 system for elevated synthesis of antimicrobial compounds","authors":"Yuli Haryani ,&nbsp;Nadrah Abdul Halid ,&nbsp;Sur Guat Goh ,&nbsp;Mahmud Ab Rashid Nor-Khaizura ,&nbsp;Muhammad Asyraf Md Hatta ,&nbsp;Suriana Sabri ,&nbsp;Son Radu ,&nbsp;Hanan Hasan","doi":"10.1016/j.jbiotec.2024.09.002","DOIUrl":"10.1016/j.jbiotec.2024.09.002","url":null,"abstract":"<div><p>Lactic acid bacteria (LAB) are known to exhibit various beneficial roles in fermentation, serving as probiotics, and producing a plethora of valuable compounds including antimicrobial activity such as bacteriocin-like inhibitory substance (BLIS) that can be used as biopreservative to improve food safety and quality. However, the yield of BLIS is often limited, which poses a challenge to be commercially competitive with the current preservation practice. Therefore, the present work aimed to establish an optimised two-plasmid CRISPR/Cas9 system to redirect the carbon flux away from lactate towards compounds with antimicrobial activity by disrupting lactate dehydrogenase gene (<em>ldh</em>) on various strains of LAB. The lactic acid-deficient (<em>ldhΔ</em>) strains caused a metabolic shift resulting in increased inhibitory activity against selected foodborne pathogens up to 78 % than the wild-type (WT) strain. The most significant effect was depicted by <em>Enterococcus faecalis-ldh∆</em> which displayed prominent bactericidal effects against all foodborne pathogens as compared to the WT that showed no antimicrobial activity. The present work provided a framework model for economically important LAB and other beneficial bacteria to synthesise and increase the yield of valuable food and industrial compounds. The present work reported for the first time that the metabolism of selected LAB can be manipulated by modifying <em>ldh</em> to attain metabolites with higher antimicrobial activity.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 53-63"},"PeriodicalIF":4.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced enzymatic multigram-scale production of nucleotide sugars in a continuous fed-batch membrane reactor 在连续给料批次膜反应器中以先进的酶法多克级生产核苷酸糖。
IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-04 DOI: 10.1016/j.jbiotec.2024.09.001
Hannes Frohnmeyer, Nikol Kodra, Lothar Elling

Enzymatic production of nucleotide sugars on a multigram scale presents a challenge, as only a few processes have been reported for large-scale nucleotide sugar production. They rely primarily on batch synthesis and employ exceptional amounts of enzymes. This study introduces a novel approach for the multigram-scale production of nucleotide sugars with a continuous fed-batch membrane reactor. We successfully synthesized five main nucleotide sugars: UDP-Gal, UDP-GalNAc, UDP-GlcA, GDP-Man, and CMP-Neu5Ac on a multigram scale. Efficient biocatalyst utilization results in high performance, including space-time yield (STY, g*L−1h−1), total turnover number (TTN, g product per g enzyme), and an efficient product formation rate (g/h) suitable for industrially relevant bioprocesses. The established continuous-fed batch reactor system produced up to 8.2 g CMP-Neu5Ac in three consecutive productions in less than 15 h with satisfying TTNs of 91 gProduct/gEnzyme. Continuous production of UDP-GlcA over 28 h resulted in a final product amount of 14.8 g and TTN of 493 gP/gE. This process enables the production of nucleotide sugars with stable product formation, requiring minimal technical equipment for multigram quantities of nucleotide sugars at the laboratory scale. Notably, the system exhibited robustness and flexibility, allowing its application to various enzymatic nucleotide sugar synthesis cascades.

酶法生产多克级核苷酸糖是一项挑战,因为只有少数几种工艺被报道用于大规模核苷酸糖生产。这些工艺主要依赖于批量合成,并且需要使用大量的酶。本研究介绍了一种利用连续给料批次膜反应器生产多克级核苷酸糖的新方法。我们成功合成了五种主要的核苷酸糖:UDP-Gal、UDP-GalNAc、UDP-GlcA、GDP-Man 和 CMP-Neu5Ac。生物催化剂的高效利用带来了高性能,包括时空产率(STY,g*L-1h-1)、总周转次数(TTN,g product per g enzyme)和适合工业相关生物工艺的高效产品形成率(g/h)。已建立的连续进料批式反应器系统在不到 15 小时的时间内连续三次生产出 8.2 克 CMP-Neu5Ac,TTN 达到 91 克产品/克酶。连续生产 UDP-GlcA 超过 28 小时,最终产品数量为 14.8 克,TTN 为 493 gP/gE。该工艺能够生产核苷酸糖并形成稳定的产物,只需极少的技术设备就能在实验室规模上生产多克量的核苷酸糖。值得注意的是,该系统具有稳健性和灵活性,可应用于各种酶法核苷酸糖合成级联。
{"title":"Advanced enzymatic multigram-scale production of nucleotide sugars in a continuous fed-batch membrane reactor","authors":"Hannes Frohnmeyer,&nbsp;Nikol Kodra,&nbsp;Lothar Elling","doi":"10.1016/j.jbiotec.2024.09.001","DOIUrl":"10.1016/j.jbiotec.2024.09.001","url":null,"abstract":"<div><p>Enzymatic production of nucleotide sugars on a multigram scale presents a challenge, as only a few processes have been reported for large-scale nucleotide sugar production. They rely primarily on batch synthesis and employ exceptional amounts of enzymes. This study introduces a novel approach for the multigram-scale production of nucleotide sugars with a continuous fed-batch membrane reactor. We successfully synthesized five main nucleotide sugars: UDP-Gal, UDP-GalNAc, UDP-GlcA, GDP-Man, and CMP-Neu5Ac on a multigram scale. Efficient biocatalyst utilization results in high performance, including space-time yield (STY, g*L<sup>−1</sup>h<sup>−1</sup>), total turnover number (TTN, g product per g enzyme), and an efficient product formation rate (g/h) suitable for industrially relevant bioprocesses. The established continuous-fed batch reactor system produced up to 8.2 g CMP-Neu5Ac in three consecutive productions in less than 15 h with satisfying TTNs of 91 g<sub>Product</sub>/g<sub>Enzyme</sub>. Continuous production of UDP-GlcA over 28 h resulted in a final product amount of 14.8 g and TTN of 493 g<sub>P</sub>/g<sub>E</sub>. This process enables the production of nucleotide sugars with stable product formation, requiring minimal technical equipment for multigram quantities of nucleotide sugars at the laboratory scale. Notably, the system exhibited robustness and flexibility, allowing its application to various enzymatic nucleotide sugar synthesis cascades.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 1-11"},"PeriodicalIF":4.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168165624002384/pdfft?md5=9c131edfe4d6f33a4a293317400611ae&pid=1-s2.0-S0168165624002384-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1