Pub Date : 2024-08-03DOI: 10.1016/j.jbiotec.2024.08.001
Qiong Wang , Hong-Jun Liu , Yan Xu, Zi-Xu Wang, Bin Sun, Jun-Wei Xu
Ganoderma has received much attention for its medicinal value, but the manipulation of multiple genes remains a challenge, hindering the genetic engineering of this species for the development of cell factories. Here, we first showed that the presence of an intron is necessary for the efficient expression of the endogenous cDNA of carboxin-resistant gene (cbx) in G. lucidum. Then, the self-cleaving function of 2 A peptide was investigated in G. lucidum by linking cbx cDNA to the codon-optimized hygromycin B-resistant gene (ophph) using the 2A-peptide sequence. The results showed that cbx cDNA and ophph can be successfully expressed in G. lucidum in a bicistronic manner from a single transcript. Moreover, the expression of both genes was not affected by the order within the 2 A cassette. In addition, simultaneous expression of cbx cDNA, ophph, and codon-optimized yellow fluorescent protein gene (opyfp) was conducted for the first time in G. lucidum using the 2 A peptide-based approach. The developed method was successfully applied to express both cDNA of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (hmgr) and squalene epoxidase gene (se) for enhanced production of ganoderic acids (GAs) in G. lucidum. The engineered strain produced the maximum content of GA-Mk, GA-T, GA-S, and GA-Me were 26.56±3.53,39.58±3.75, 16.54±2.16, and 19.1±1.87 μg/100 mg dry weight, respectively. These values were 3.85-, 4.74-, 3.65-, and 3.23-fold higher than those produced by the control strain. The developed method will be useful for the manipulation of complex metabolic or regulatory pathways involving multiple genes in Ganoderma.
{"title":"Development of a 2A peptide-based multigene expression system and its application for enhanced production of ganoderic acids in Ganoderma lucidum","authors":"Qiong Wang , Hong-Jun Liu , Yan Xu, Zi-Xu Wang, Bin Sun, Jun-Wei Xu","doi":"10.1016/j.jbiotec.2024.08.001","DOIUrl":"10.1016/j.jbiotec.2024.08.001","url":null,"abstract":"<div><p><em>Ganoderma</em> has received much attention for its medicinal value, but the manipulation of multiple genes remains a challenge, hindering the genetic engineering of this species for the development of cell factories. Here, we first showed that the presence of an intron is necessary for the efficient expression of the endogenous cDNA of carboxin-resistant gene (<em>cbx</em>) in <em>G. lucidum</em>. Then, the self-cleaving function of 2 A peptide was investigated in <em>G. lucidum</em> by linking <em>cbx</em> cDNA to the codon-optimized hygromycin B-resistant gene (op<em>hph</em>) using the 2A-peptide sequence. The results showed that <em>cbx</em> cDNA and op<em>hph</em> can be successfully expressed in <em>G. lucidum</em> in a bicistronic manner from a single transcript. Moreover, the expression of both genes was not affected by the order within the 2 A cassette. In addition, simultaneous expression of <em>cbx</em> cDNA, op<em>hph</em>, and codon-optimized yellow fluorescent protein gene (op<em>yfp</em>) was conducted for the first time in <em>G. lucidum</em> using the 2 A peptide-based approach. The developed method was successfully applied to express both cDNA of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (<em>hmgr</em>) and squalene epoxidase gene (<em>se</em>) for enhanced production of ganoderic acids (GAs) in <em>G. lucidum</em>. The engineered strain produced the maximum content of GA-Mk, GA-T, GA-S, and GA-Me were 26.56±3.53,39.58±3.75, 16.54±2.16, and 19.1±1.87 μg/100 mg dry weight, respectively. These values were 3.85-, 4.74-, 3.65-, and 3.23-fold higher than those produced by the control strain. The developed method will be useful for the manipulation of complex metabolic or regulatory pathways involving multiple genes in <em>Ganoderma</em>.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 109-116"},"PeriodicalIF":4.1,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.jbiotec.2024.07.021
Bowen Shen , Lin Zhang , Yu Zhou , Feifei Song , Shengping You , Rongxin Su , Wei Qi
5-Hydroxytryptophan (5-HTP), a precursor of the neurotransmitter serotonin in mammals, has demonstrated efficacy in treating various diseases such as depression, fibromyalgia and obesity. However, conventional biosynthesis methods of 5-HTP are limited by low yield and high reagent and process costs. In this study, the strain C1T7-S337A/F318Y with optimized promoter distribution was obtained, and the 5-HTP yield was 60.30 % higher than that of the initial strain. An efficient fermentation process for 5-HTP synthesis was developed using strain C1T7-S337A/F318Y with whey powder as a substrate for cell growth and inducer production. Shake flask fermentation experiments yielded 1.302 g/L 5-HTP from 2.0 g/L L-tryptophan (L-Trp), surpassing the whole-cell biocatalysis by 42.86 %. Scale-up to a 5 L fermenter further increased the yield to 1.649 g/L. This fermentation strategy substantially slashed reagent cost by 95.39 %, providing a more economically viable and environmentally sustainable route for industrial biosynthesis of 5-HTP. Moreover, it contributes to the broader utilization of whey powder in various industries.
{"title":"Efficient synthesis of 5-hydroxytryptophan in Escherichia coli by bifunctional utilization of whey powder as a substrate for cell growth and inducer production","authors":"Bowen Shen , Lin Zhang , Yu Zhou , Feifei Song , Shengping You , Rongxin Su , Wei Qi","doi":"10.1016/j.jbiotec.2024.07.021","DOIUrl":"10.1016/j.jbiotec.2024.07.021","url":null,"abstract":"<div><p>5-Hydroxytryptophan (5-HTP), a precursor of the neurotransmitter serotonin in mammals, has demonstrated efficacy in treating various diseases such as depression, fibromyalgia and obesity. However, conventional biosynthesis methods of 5-HTP are limited by low yield and high reagent and process costs. In this study, the strain C1T7-S337A/F318Y with optimized promoter distribution was obtained, and the 5-HTP yield was 60.30 % higher than that of the initial strain. An efficient fermentation process for 5-HTP synthesis was developed using strain C1T7-S337A/F318Y with whey powder as a substrate for cell growth and inducer production. Shake flask fermentation experiments yielded 1.302 g/L 5-HTP from 2.0 g/L L-tryptophan (L-Trp), surpassing the whole-cell biocatalysis by 42.86 %. Scale-up to a 5 L fermenter further increased the yield to 1.649 g/L. This fermentation strategy substantially slashed reagent cost by 95.39 %, providing a more economically viable and environmentally sustainable route for industrial biosynthesis of 5-HTP. Moreover, it contributes to the broader utilization of whey powder in various industries.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 100-108"},"PeriodicalIF":4.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.jbiotec.2024.07.019
Elham Tohfegar, Alireza Habibi
This study focuses on the development a green synthesis of epoxy fatty acids (EFAs) which are commonly used as the plasticizer in polymer industries. The intracellular lipases of Candida catenulata cells as a whole-cell biocatalyst (WCB) were examined in the bio-epoxidation of free fatty acids (FFAs) with hydrogen peroxide. The FFAs in soybean soap stock, an industrial by-product of vegetable oil factories, was used as the feedstock of the process. To remove phosphates from soap stock a degumming process was tested before the bio-epoxidation reaction and results revealed that the EFAs yield was improved using the degummed fatty acids (DFAs). The attachments of magnetic Fe3O4 nanoparticles to the surface of WCBs facilitated the recovery of the biocatalyst, and were improved stabilities. The activation energy for the magnetic whole-cell biocatalysts (MWCB) was 48.54 kJ mol−1, which was lower than the WCB system (51.28 kJ mol−1). The EFA yield was about 47.1 % and 33.8 % after 3 h for the MWCBs and 2 h for the WCBs, respectively. The MWCBs displayed acceptable reusability in the repetitious bio-epoxidation reaction with maintaining 59 % of the original activity after 5 cycles whereas the performance of the WCBs was 5.9 % at the same conditions. The effects of influential factors such as reaction time, molar ratio of H2O2 to CC, and batch and semi-batch operations were investigated for both biocatalyst systems. The quality of EFAs was characterized by FTIR and GC-MS analyses.
{"title":"Magnetic whole-cell biocatalyst based on intracellular lipases of Candida catenulata as promising technology for green synthesis of epoxy fatty acids","authors":"Elham Tohfegar, Alireza Habibi","doi":"10.1016/j.jbiotec.2024.07.019","DOIUrl":"10.1016/j.jbiotec.2024.07.019","url":null,"abstract":"<div><p>This study focuses on the development a green synthesis of epoxy fatty acids (EFAs) which are commonly used as the plasticizer in polymer industries. The intracellular lipases of <em>Candida catenulata</em> cells as a whole-cell biocatalyst (WCB) were examined in the bio-epoxidation of free fatty acids (FFAs) with hydrogen peroxide. The FFAs in soybean soap stock, an industrial by-product of vegetable oil factories, was used as the feedstock of the process. To remove phosphates from soap stock a degumming process was tested before the bio-epoxidation reaction and results revealed that the EFAs yield was improved using the degummed fatty acids (DFAs). The attachments of magnetic Fe<sub>3</sub>O<sub>4</sub> nanoparticles to the surface of WCBs facilitated the recovery of the biocatalyst, and were improved stabilities. The activation energy for the magnetic whole-cell biocatalysts (MWCB) was 48.54 kJ mol<sup>−1</sup>, which was lower than the WCB system (51.28 kJ mol<sup>−1</sup>). The EFA yield was about 47.1 % and 33.8 % after 3 h for the MWCBs and 2 h for the WCBs, respectively. The MWCBs displayed acceptable reusability in the repetitious bio-epoxidation reaction with maintaining 59 % of the original activity after 5 cycles whereas the performance of the WCBs was 5.9 % at the same conditions. The effects of influential factors such as reaction time, molar ratio of H<sub>2</sub>O<sub>2</sub> to C<img>C, and batch and semi-batch operations were investigated for both biocatalyst systems. The quality of EFAs was characterized by FTIR and GC-MS analyses.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 117-127"},"PeriodicalIF":4.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.jbiotec.2024.07.017
Xin-yang Liu , Jian-fei Tong , Ming-yang Li , Lian-fang Li , Wen-wei Cai , Jin-qian Li , Liang-hua Wang , Ming-juan Sun
Cyclic nucleic acids are biologically stable against nucleic acid exonucleases due to the absence of 5′ and 3′ termini. Studies of cyclic nucleic acids mainly focus on cyclic single-stranded nucleic acids. Cyclic single-stranded nucleic acids are further divided into circular RNA (circRNA) and circular single-stranded DNA (cssDNA). The synthesis methods of circRNA include lasso-driven cyclization, intron-paired cyclization, intron cyclization, intron complementary pairing-driven cyclization, RNA-binding protein-driven cyclization, and artificial synthesis depending on the source. Its main role is to participate in gene expression and the treatment of some diseases. Circular single-stranded DNA is mainly synthesized by chemical ligation, template-directed enzyme ligation, and new techniques for the efficient preparation of DNA single loops and topologies based on CircLigase. It is mainly used in rolling circle amplification (RCA) technology and in the bioprotection of circular aptamers and second messengers. This review focuses on the types, synthesis methods, and applications of cyclic single-stranded nucleic acids, providing a reference for further research on cyclic single-stranded nucleic acids.
环状核酸由于没有 5' 和 3' 端部,因此对核酸外切酶具有生物稳定性。对环状核酸的研究主要集中在环状单链核酸上。单链核酸又分为环状 RNA(circRNA)和环状单链 DNA(cssDNA)。环状核糖核酸的合成方法有套索驱动环化法、内含子配对环化法、内含子环化法、内含子互补配对驱动环化法、RNA 结合蛋白驱动环化法,以及根据来源不同的人工合成法。其主要作用是参与基因表达和治疗某些疾病。环状单链 DNA 主要通过化学连接、模板定向酶连接以及基于 CircLigase 的高效制备 DNA 单环和拓扑结构的新技术合成。它主要用于滚圆扩增(RCA)技术以及环形适配体和第二信使的生物保护。本综述重点介绍了环状单链核酸的类型、合成方法和应用,为进一步研究环状单链核酸提供参考。
{"title":"Progress in application of cyclic single-stranded nucleic acids","authors":"Xin-yang Liu , Jian-fei Tong , Ming-yang Li , Lian-fang Li , Wen-wei Cai , Jin-qian Li , Liang-hua Wang , Ming-juan Sun","doi":"10.1016/j.jbiotec.2024.07.017","DOIUrl":"10.1016/j.jbiotec.2024.07.017","url":null,"abstract":"<div><p>Cyclic nucleic acids are biologically stable against nucleic acid exonucleases due to the absence of 5′ and 3′ termini. Studies of cyclic nucleic acids mainly focus on cyclic single-stranded nucleic acids. Cyclic single-stranded nucleic acids are further divided into circular RNA (circRNA) and circular single-stranded DNA (cssDNA). The synthesis methods of circRNA include lasso-driven cyclization, intron-paired cyclization, intron cyclization, intron complementary pairing-driven cyclization, RNA-binding protein-driven cyclization, and artificial synthesis depending on the source. Its main role is to participate in gene expression and the treatment of some diseases. Circular single-stranded DNA is mainly synthesized by chemical ligation, template-directed enzyme ligation, and new techniques for the efficient preparation of DNA single loops and topologies based on CircLigase. It is mainly used in rolling circle amplification (RCA) technology and in the bioprotection of circular aptamers and second messengers. This review focuses on the types, synthesis methods, and applications of cyclic single-stranded nucleic acids, providing a reference for further research on cyclic single-stranded nucleic acids.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 140-148"},"PeriodicalIF":4.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.jbiotec.2024.07.018
Xueying Li , Jing Wang , Jingyi Li , Yao Zhou , Xiaofei Huang , Lingyan Guo , Renning Liu , Yiqing Luo , Xinyu Tan , Xiaotao Hu , Yan Gao , Bingzi Yu , Mingxin Fu , Ping Wang , Shengmin Zhou
Genetic code expansion technology allows the incorporation of unnatural amino acids (UAAs) into proteins, which is useful in protein engineering, synthetic biology, and gene therapy. Despite its potential applications in various species, filamentous fungi remain unexplored. This study aims to address this gap by developing these techniques in Aspergillus nidulans. We introduced an amber stop codon into a specific sequence within the reporter gene expressed in A. nidulans and replaced the anticodon of the fungal tRNATyr with CUA. This resulted in the synthesis of the target protein, confirming the occurrence of amber suppression in the fungus. When exogenous E. coli tRNATyrCUA (Ec. tRNATyrCUA) and E. coli tyrosyl-tRNA (Ec.TyrRS) were introduced into A. nidulans, they successfully synthesized the target protein via amber suppression and were shown to be orthogonal to the fungal translation system. By replacing the wild-type Ec.TyrRS with a mutant with a higher affinity for the UAA O-methyl-L-tyrosine, the fungal system was able to initiate the synthesis of the UAA-labeled protein (UAA-protein). We further increased the expression level of the UAA-protein through several rational modifications. The successful development of a genetic code expansion technique for A. nidulans has introduced a potentially valuable approach to the study of fungal protein structure and function.
{"title":"Exploring genetic codon expansion for unnatural amino acid incorporation in filamentous fungus Aspergillus nidulans","authors":"Xueying Li , Jing Wang , Jingyi Li , Yao Zhou , Xiaofei Huang , Lingyan Guo , Renning Liu , Yiqing Luo , Xinyu Tan , Xiaotao Hu , Yan Gao , Bingzi Yu , Mingxin Fu , Ping Wang , Shengmin Zhou","doi":"10.1016/j.jbiotec.2024.07.018","DOIUrl":"10.1016/j.jbiotec.2024.07.018","url":null,"abstract":"<div><p>Genetic code expansion technology allows the incorporation of unnatural amino acids (UAAs) into proteins, which is useful in protein engineering, synthetic biology, and gene therapy. Despite its potential applications in various species, filamentous fungi remain unexplored. This study aims to address this gap by developing these techniques in <em>Aspergillus nidulans</em>. We introduced an amber stop codon into a specific sequence within the reporter gene expressed in <em>A. nidulans</em> and replaced the anticodon of the fungal tRNA<sup>Tyr</sup> with CUA. This resulted in the synthesis of the target protein, confirming the occurrence of amber suppression in the fungus. When exogenous <em>E. coli</em> tRNA<sup>Tyr</sup><sub>CUA</sub> (Ec. tRNA<sup>Tyr</sup><sub>CUA</sub>) and <em>E. coli</em> tyrosyl-tRNA (Ec.TyrRS) were introduced into <em>A. nidulans</em>, they successfully synthesized the target protein via amber suppression and were shown to be orthogonal to the fungal translation system. By replacing the wild-type Ec.TyrRS with a mutant with a higher affinity for the UAA <em>O</em>-methyl-L-tyrosine, the fungal system was able to initiate the synthesis of the UAA-labeled protein (UAA-protein). We further increased the expression level of the UAA-protein through several rational modifications. The successful development of a genetic code expansion technique for <em>A. nidulans</em> has introduced a potentially valuable approach to the study of fungal protein structure and function.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 91-99"},"PeriodicalIF":4.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.jbiotec.2024.07.012
Jinju Hou , Qiuzhuo Zhang , Fuxiang Tian , Fuwen Liu , Jingxian Jiang , Jiaolong Qin , Huifeng Wang , Jing Wang , Shufang Chang , Xiaojun Hu
Enzymatic hydrolysis contributes to obtaining fermentable sugars using pretreated lignocellulose materials for bioethanol generation. Unfortunately, the pretreatment of lignocellulose causes low substrate enzymatic hydrolysis, which is due to the structure changes of lignin to produce main phenolic by-products and non-productive cellulase adsorption. It is reported that modified lignin enhances the speed of enzymatic hydrolysis through single means to decrease the negative effects of fermentation inhibitors or non-productive cellulase adsorption. However, a suitable modified lignin should be selected to simultaneously reduce the fermentation inhibitors concentration and non-productive cellulase adsorption for saving resources and maximizing the enzymatic hydrolysis productivity. Meanwhile, the adsorption micro-mechanisms of modified lignin with fermentation inhibitors and cellulase remain elusive. In this review, different pretreatment effects toward lignin structure, and their impacts on subsequent enzymatic hydrolysis are analyzed. The main modification methods for lignin are presented. Density functional theory is used to screen suitable modification methods for the simultaneous reduction of fermentation inhibitors and non-productive cellulase adsorption. Lignin-fermentation inhibitors and lignin-cellulase interaction mechanisms are discussed using different advanced analysis techniques. This article addresses the gap in previous reviews concerning the application of modified lignin in the enhancement of bioethanol production. For the first time, based on existing studies, this work posits the hypothesis of applying theoretical simulations to screen efficient modified lignin-based adsorbents, in order to achieve a dual optimization of the detoxification and saccharification processes. We aim to improve the integrated lignocellulose transformation procedure for the effective generation of cleaner bioethanol.
{"title":"Structure changes of lignin and their effects on enzymatic hydrolysis for bioethanol production: a focus on lignin modification","authors":"Jinju Hou , Qiuzhuo Zhang , Fuxiang Tian , Fuwen Liu , Jingxian Jiang , Jiaolong Qin , Huifeng Wang , Jing Wang , Shufang Chang , Xiaojun Hu","doi":"10.1016/j.jbiotec.2024.07.012","DOIUrl":"10.1016/j.jbiotec.2024.07.012","url":null,"abstract":"<div><p>Enzymatic hydrolysis contributes to obtaining fermentable sugars using pretreated lignocellulose materials for bioethanol generation. Unfortunately, the pretreatment of lignocellulose causes low substrate enzymatic hydrolysis, which is due to the structure changes of lignin to produce main phenolic by-products and non-productive cellulase adsorption. It is reported that modified lignin enhances the speed of enzymatic hydrolysis through single means to decrease the negative effects of fermentation inhibitors or non-productive cellulase adsorption. However, a suitable modified lignin should be selected to simultaneously reduce the fermentation inhibitors concentration and non-productive cellulase adsorption for saving resources and maximizing the enzymatic hydrolysis productivity. Meanwhile, the adsorption micro-mechanisms of modified lignin with fermentation inhibitors and cellulase remain elusive. In this review, different pretreatment effects toward lignin structure, and their impacts on subsequent enzymatic hydrolysis are analyzed. The main modification methods for lignin are presented. Density functional theory is used to screen suitable modification methods for the simultaneous reduction of fermentation inhibitors and non-productive cellulase adsorption. Lignin-fermentation inhibitors and lignin-cellulase interaction mechanisms are discussed using different advanced analysis techniques. This article addresses the gap in previous reviews concerning the application of modified lignin in the enhancement of bioethanol production. For the first time, based on existing studies, this work posits the hypothesis of applying theoretical simulations to screen efficient modified lignin-based adsorbents, in order to achieve a dual optimization of the detoxification and saccharification processes. We aim to improve the integrated lignocellulose transformation procedure for the effective generation of cleaner bioethanol.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 61-73"},"PeriodicalIF":4.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1016/j.jbiotec.2024.07.014
Meenakshi Das, Soumen K. Maiti
Cyanobacteria are oxygen-evolving prokaryotes that can be engineered for biofuel production from solar energy, CO2, and water. Isobutanol (IB) has the potential to serve as an alternative fuel and important chemical feedstock. The research involves engineering Synechocystis sp. PCC 6803, for photosynthetic isobutanol production via the 2-keto-acid pathway and their cultivation in lab-scale photobioreactors. This synthetic pathway involves the heterologous expression of two enzymes, α-ketoisovalerate decarboxylase (Kivd) and alcohol dehydrogenase (Yqhd), under a strong light-inducible promotor, psbA2, known to show increased gene expression under high light. The use of psbA2 could be a valuable strategy for isobutanol production as economic scaling up demands the utilization of natural sunlight, which also provides very high light intensity at midday, facilitating increased production. The study reports isobutanol production from engineered strains containing both pathway genes and with only kivd. In shake flask studies, the highest isobutanol titre of 75 mg L−1 (12th day) was achieved from an engineered strain DM12 under optimized light intensity. DM12 was cultivated in a 2 L flat panel photobioreactor, resulting in a maximum isobutanol titre of 371.8 mg L−1 (10th day) with 2 % CO2 and 200 μmol photons m−2 s−1. Cultivation of DM12 in a photobioreactor under mimic diurnal sunlight demonstrated the highest productivity of 39 mg L−1 day−1 with the maximum titre of 308.5 mg L−1 (9th day). This work lays the foundation for sustainable, large-scale biobutanol production using solar energy.
{"title":"Employment of light-inducible promoter in genetically engineered cyanobacteria for photosynthetic isobutanol production with simulated diurnal sunlight and CO2","authors":"Meenakshi Das, Soumen K. Maiti","doi":"10.1016/j.jbiotec.2024.07.014","DOIUrl":"10.1016/j.jbiotec.2024.07.014","url":null,"abstract":"<div><p>Cyanobacteria are oxygen-evolving prokaryotes that can be engineered for biofuel production from solar energy, CO<sub>2,</sub> and water. Isobutanol (IB) has the potential to serve as an alternative fuel and important chemical feedstock. The research involves engineering <em>Synechocystis</em> sp. PCC 6803, for photosynthetic isobutanol production via the 2-keto-acid pathway and their cultivation in lab-scale photobioreactors. This synthetic pathway involves the heterologous expression of two enzymes, α-ketoisovalerate decarboxylase (Kivd) and alcohol dehydrogenase (Yqhd), under a strong light-inducible promotor, psbA2, known to show increased gene expression under high light. The use of psbA2 could be a valuable strategy for isobutanol production as economic scaling up demands the utilization of natural sunlight, which also provides very high light intensity at midday, facilitating increased production. The study reports isobutanol production from engineered strains containing both pathway genes and with only <em>kivd</em>. In shake flask studies, the highest isobutanol titre of 75 mg L<sup>−1</sup> (12th day) was achieved from an engineered strain DM12 under optimized light intensity. DM12 was cultivated in a 2 L flat panel photobioreactor, resulting in a maximum isobutanol titre of 371.8 mg L<sup>−1</sup> (10th day) with 2 % CO<sub>2</sub> and 200 μmol photons m<sup>−2</sup> s<sup>−1</sup>. Cultivation of DM12 in a photobioreactor under mimic diurnal sunlight demonstrated the highest productivity of 39 mg L<sup>−1</sup> day<sup>−1</sup> with the maximum titre of 308.5 mg L<sup>−1</sup> (9th day). This work lays the foundation for sustainable, large-scale biobutanol production using solar energy.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 31-40"},"PeriodicalIF":4.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.jbiotec.2024.07.015
Kehao Yuan , Zongchao Huo , Ya`ning Zhang , Zuran Guo , Yucan Chang , Yunming Jin , Lining Gao , Tong Zhang , Yanwei Li , Qinyuan Ma , Xiuzhen Gao
During the deamination and amination processes of meso-diaminopimelate dehydrogenase (meso-DAPDH) from Symbiobacterium thermophilum (StDAPDH), residue R71 was observed to display distinct functions. H154 has been proposed as a basic residue that facilitates water molecules to attack the D-chiral carbon of meso-DAP during deamination. Inspired by the phenomenon of R71, the effects of H154 during deamination and amination were investigated in this study with the goal of enhancing the amination activities of StDAPDH. Single site saturation mutagenesis indicated that almost all of the H154 mutants completely lost their deamination activity towards meso-DAP. However, some H154 variants showed enhanced kcat/Km values towards pyruvic acid and other bulky 2-keto acids, such as 2-oxovaleric acid, 4-methyl-2-oxopentanoic acid, 2-ketobutyric acid, and 3-methyl-2-oxobutanoic acid. When combined with the previously reported W121L/H227I mutant, triple mutants with significantly improved kcat/Km values (2.4-, 2.5-, 2.5-, and 4.0-fold) towards these 2-keto acids were obtained. Despite previous attempts, mutations at the H154 site did not yield the desired results. Moreover, this study not only recognizes the distinctive impact of H154 on both the deamination and amination reactions, but also provides guidance for further high-throughput screening in protein engineering and understanding the catalytic mechanism of StDAPDH.
{"title":"Enhancing the amination activity of meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum by modifying the crucial residue His154 for deamination","authors":"Kehao Yuan , Zongchao Huo , Ya`ning Zhang , Zuran Guo , Yucan Chang , Yunming Jin , Lining Gao , Tong Zhang , Yanwei Li , Qinyuan Ma , Xiuzhen Gao","doi":"10.1016/j.jbiotec.2024.07.015","DOIUrl":"10.1016/j.jbiotec.2024.07.015","url":null,"abstract":"<div><p>During the deamination and amination processes of <em>meso</em>-diaminopimelate dehydrogenase (<em>meso</em>-DAPDH) from <em>Symbiobacterium thermophilum</em> (StDAPDH), residue R71 was observed to display distinct functions. H154 has been proposed as a basic residue that facilitates water molecules to attack the D-chiral carbon of <em>meso</em>-DAP during deamination. Inspired by the phenomenon of R71, the effects of H154 during deamination and amination were investigated in this study with the goal of enhancing the amination activities of StDAPDH. Single site saturation mutagenesis indicated that almost all of the H154 mutants completely lost their deamination activity towards <em>meso</em>-DAP. However, some H154 variants showed enhanced <em>k</em><sub>cat</sub>/<em>K</em><sub>m</sub> values towards pyruvic acid and other bulky 2-keto acids, such as 2-oxovaleric acid, 4-methyl-2-oxopentanoic acid, 2-ketobutyric acid, and 3-methyl-2-oxobutanoic acid. When combined with the previously reported W121L/H227I mutant, triple mutants with significantly improved <em>k</em><sub>cat</sub>/<em>K</em><sub>m</sub> values (2.4-, 2.5-, 2.5-, and 4.0-fold) towards these 2-keto acids were obtained. Despite previous attempts, mutations at the H154 site did not yield the desired results. Moreover, this study not only recognizes the distinctive impact of H154 on both the deamination and amination reactions, but also provides guidance for further high-throughput screening in protein engineering and understanding the catalytic mechanism of StDAPDH.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 1-6"},"PeriodicalIF":4.1,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.jbiotec.2024.07.016
Hoon-Min Lee , Tae-Ho Kim , Jong-Ho Park , Na-Yeong Heo , Hyun-Seung Kim , Dae Eung Kim , Mi Kyeong Lee , Gyun Min Lee , Jungmok You , Yeon-Gu Kim
Sialylation during N-glycosylation plays an important role in the half-life of therapeutic glycoproteins in vivo and has sparked interest in the production of therapeutic proteins using recombinant Chinese hamster ovary (rCHO) cells. To improve the sialylation of therapeutic proteins, we examined the effect of sialyllactose supplementation on sialylation of Fc-fusion glycoproteins produced in rCHO cells. Two enzymatically-synthesized sialyllactoses, 3′-sialyllactose (3′-SL) and 6′-sialyllactose (6′-SL), were administered separately to two rCHO cell lines producing the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44, respectively. Two sialyllactoses successfully increased sialylation of Fc-fusion glycoprotein in both cell lines, as evidenced by isoform distribution, sialylated N-glycan formation, and sialic acid content. Increased sialylation by adding sialyllactose was likely the result of increased amount of intracellular CMP-sialic acid (CMP-SA), the direct nucleotide sugar for sialylation. Furthermore, the degree of sialylation enhanced by sialyllactoses was slightly effective or nearly similar compared with the addition of N-acetylmannosamine (ManNAc), a representative nucleotide sugar precursor, to increase sialylation of glycoproteins. The effectiveness of sialyllactose was also confirmed using three commercially available CHO cell culture media. Taken together, these results suggest that enzymatically-synthesized sialyllactose represents a promising candidate for culture media supplementation to increase sialylation of glycoproteins in rCHO cell culture.
N-糖基化过程中的糖基化对治疗性糖蛋白在体内的半衰期起着重要作用,这引发了人们对使用重组中国仓鼠卵巢(rCHO)细胞生产治疗性蛋白质的兴趣。为了改善治疗蛋白的糖基化,我们研究了补充半乳糖对 rCHO 细胞生产的 Fc 融合糖蛋白糖基化的影响。我们将两种酶法合成的半乳糖--3'-sialyllactose(3'-SL)和 6'-sialyllactose(6'-SL)--分别添加到产生相同 Fc 融合糖蛋白的两种 rCHO 细胞系中,这两种细胞系分别来自 DUKX-B11 和 DG44。两种半乳糖成功地增加了两种细胞系中 Fc 融合糖蛋白的半乳糖化,这一点可以从同工酶分布、半乳糖化 N-聚糖形成和半乳糖酸含量得到证明。通过添加半乳糖提高苷酰化可能是细胞内 CMP-SA(苷酰化的直接核苷酸)含量增加的结果。此外,与添加具有代表性的核苷酸糖前体 N-乙酰甘露胺(ManNAc)来增加糖蛋白的糖基化相比,半乳糖增强糖基化的程度略有效果或几乎相似。使用三种市售的 CHO 细胞培养基也证实了半乳糖的有效性。总之,这些结果表明,酶法合成的半乳糖是一种很有前途的候选物质,可用于补充培养基以增加 rCHO 细胞培养中糖蛋白的半乳糖化。
{"title":"Sialyllactose supplementation enhances sialylation of Fc-fusion glycoprotein in recombinant Chinese hamster ovary cell culture","authors":"Hoon-Min Lee , Tae-Ho Kim , Jong-Ho Park , Na-Yeong Heo , Hyun-Seung Kim , Dae Eung Kim , Mi Kyeong Lee , Gyun Min Lee , Jungmok You , Yeon-Gu Kim","doi":"10.1016/j.jbiotec.2024.07.016","DOIUrl":"10.1016/j.jbiotec.2024.07.016","url":null,"abstract":"<div><p>Sialylation during <em>N</em>-glycosylation plays an important role in the half-life of therapeutic glycoproteins <em>in vivo</em> and has sparked interest in the production of therapeutic proteins using recombinant Chinese hamster ovary (rCHO) cells. To improve the sialylation of therapeutic proteins, we examined the effect of sialyllactose supplementation on sialylation of Fc-fusion glycoproteins produced in rCHO cells. Two enzymatically-synthesized sialyllactoses, 3′-sialyllactose (3′-SL) and 6′-sialyllactose (6′-SL), were administered separately to two rCHO cell lines producing the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44, respectively. Two sialyllactoses successfully increased sialylation of Fc-fusion glycoprotein in both cell lines, as evidenced by isoform distribution, sialylated <em>N</em>-glycan formation, and sialic acid content. Increased sialylation by adding sialyllactose was likely the result of increased amount of intracellular CMP-sialic acid (CMP-SA), the direct nucleotide sugar for sialylation. Furthermore, the degree of sialylation enhanced by sialyllactoses was slightly effective or nearly similar compared with the addition of <em>N</em>-acetylmannosamine (ManNAc), a representative nucleotide sugar precursor, to increase sialylation of glycoproteins. The effectiveness of sialyllactose was also confirmed using three commercially available CHO cell culture media. Taken together, these results suggest that enzymatically-synthesized sialyllactose represents a promising candidate for culture media supplementation to increase sialylation of glycoproteins in rCHO cell culture.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":"Pages 180-189"},"PeriodicalIF":4.1,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1016/j.jbiotec.2024.07.009
Daniela Liccardo , Alessandra Valletta , Gianrico Spagnuolo , Caterina Vinciguerra , Maria Rosaria Lauria , Alessia Perrotta , Carmela Del Giudice , Francesca De Luca , Giuseppe Rengo , Sandro Rengo , Carlo Rengo , Alessandro Cannavo
Periodontitis (PDS) is a chronic inflammatory disease initiated by a dysbiosis of oral pathogenic bacterial species, such as Porphyromonas gingivalis (Pg). These bacteria can penetrate the bloodstream, releasing various endo and exotoxins that fuel the infection, and stimulate toxic inflammation in different compartments, including the brain. However, the specific mechanisms by which PDS/Pg contribute to brain disorders, such as Alzheimer’s disease (AD), remain unclear. This study assessed the effects of Pg’s virulence factors - lipopolysaccharide (LPS-Pg) and gingipains (gps) K (Kgp) and Rgp - on SH-SY5Y cells. Our results demonstrated that LPS-Pg activated signaling through the Toll-like receptor (TLR)-2/4 induced a significant downregulation of G protein-coupled receptor kinase 5 (GRK5). Additionally, LPS-Pg stimulation resulted in a robust increase in Tau phosphorylation (pTau) and p53 levels, while causing a marked reduction in Bcl2 and increased cell death compared to unstimulated cells (Ns). LPS-Pg also elevated inducible nitric oxide synthase (iNOS) expression, leading to oxidative damage. In cells overexpressing GRK5 via Adenovirus, LPS-Pg failed to increase iNOS and pTau levels compared to GFP control cells. High GRK5 levels also prevented the nuclear accumulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). Furthermore, the overexpression of a GRK5 mutant form lacking the nuclear localization signal (ΔNLS) nearly abolished LPS-Pg induced p53 and iNOS upregulation. Finally, we tested whether Kgp and Rgp mediated similar effects and our data showed that both gps caused a marked downregulation of GRK5 leading to increased p53 and pTau levels.
In conclusion, this study provides further insight into the toxic effects elicited by Pg in cells and suggests that preventing GRK5 deficiency may be a valid strategy to mitigate Pg-induced toxic effects (i.e. cell death, oxidative damage, and Tau hyperphosphorylation) in SH-SY5Y cells, which are typical molecular hallmarks of neurodegenerative disorders.
{"title":"Porphyromonas gingivalis virulence factors induce toxic effects in SH-SY5Y neuroblastoma cells: GRK5 modulation as a protective strategy","authors":"Daniela Liccardo , Alessandra Valletta , Gianrico Spagnuolo , Caterina Vinciguerra , Maria Rosaria Lauria , Alessia Perrotta , Carmela Del Giudice , Francesca De Luca , Giuseppe Rengo , Sandro Rengo , Carlo Rengo , Alessandro Cannavo","doi":"10.1016/j.jbiotec.2024.07.009","DOIUrl":"10.1016/j.jbiotec.2024.07.009","url":null,"abstract":"<div><p>Periodontitis (PDS) is a chronic inflammatory disease initiated by a dysbiosis of oral pathogenic bacterial species, such as Porphyromonas gingivalis (Pg). These bacteria can penetrate the bloodstream, releasing various endo and exotoxins that fuel the infection, and stimulate toxic inflammation in different compartments, including the brain. However, the specific mechanisms by which PDS/Pg contribute to brain disorders, such as Alzheimer’s disease (AD), remain unclear. This study assessed the effects of Pg’s virulence factors - lipopolysaccharide (LPS-Pg) and gingipains (gps) K (Kgp) and Rgp - on SH-SY5Y cells. Our results demonstrated that LPS-Pg activated signaling through the Toll-like receptor (TLR)-2/4 induced a significant downregulation of G protein-coupled receptor kinase 5 (GRK5). Additionally, LPS-Pg stimulation resulted in a robust increase in Tau phosphorylation (pTau) and p53 levels, while causing a marked reduction in Bcl2 and increased cell death compared to unstimulated cells (Ns). LPS-Pg also elevated inducible nitric oxide synthase (iNOS) expression, leading to oxidative damage. In cells overexpressing GRK5 via Adenovirus, LPS-Pg failed to increase iNOS and pTau levels compared to GFP control cells. High GRK5 levels also prevented the nuclear accumulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). Furthermore, the overexpression of a GRK5 mutant form lacking the nuclear localization signal (ΔNLS) nearly abolished LPS-Pg induced p53 and iNOS upregulation. Finally, we tested whether Kgp and Rgp mediated similar effects and our data showed that both gps caused a marked downregulation of GRK5 leading to increased p53 and pTau levels.</p><p>In conclusion, this study provides further insight into the toxic effects elicited by Pg in cells and suggests that preventing GRK5 deficiency may be a valid strategy to mitigate Pg-induced toxic effects (i.e. cell death, oxidative damage, and Tau hyperphosphorylation) in SH-SY5Y cells, which are typical molecular hallmarks of neurodegenerative disorders.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 7-16"},"PeriodicalIF":4.1,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}