Pub Date : 2024-07-14DOI: 10.1016/j.jbiotec.2024.07.003
José Luis Spinoso-Castillo , Eucario Mancilla-Álvarez , Jericó Jabín Bello-Bello
Flooding caused by climate change puts the productivity of sugarcane cultivation at risk. The objective of this study was to evaluate the effect of in vitro flooding stress on sugarcane plantlets. Sugarcane plantlets were grown in test tubes containing Murashige and Skoog semi-solid medium without growth regulators as a control treatment and two stress levels using a double layer with sterile distilled water to simulate hypoxia and anoxia. After 15 d of culture, the number of new shoots, plantlet height, number of leaves, number of roots, root length, stomatal density, percentage of closed stomata and percentage of dry matter were evaluated. In addition, biochemical variables such as chlorophylls, carotenoids, phosphoenolpyruvate (PEP), Rubisco, total proteins (TP), proline (Pr), glycine-betaine (GB), phenols, antioxidant capacity and lipid peroxidation were determined in all treatments. Results showed a higher number of new shoots, leaves and percentage of closed stomata in the flooded plantlets, while plantlet height, number of roots, stomatal density, and dry matter were higher in the control treatment. Regarding, chlorophyll, carotenoid, PEP and Rubisco contents decreased in the flooded treatments, while TP and phenol contents were higher in the partially submerged treatment. Antioxidant capacity and lipid peroxidation increased in the fully submerged treatment. Pr and GB contents did not show changes in any of the evaluated treatments. Stress induced by excess water in a double layer in vitro is an alternative method to determining physiological and biochemical mechanisms of tolerance to hypoxia and anoxia caused by flooding for breeding programs in sugarcane.
{"title":"In vitro response of sugarcane (Saccharum spp. Hybrid) plantlets to flooding stress","authors":"José Luis Spinoso-Castillo , Eucario Mancilla-Álvarez , Jericó Jabín Bello-Bello","doi":"10.1016/j.jbiotec.2024.07.003","DOIUrl":"10.1016/j.jbiotec.2024.07.003","url":null,"abstract":"<div><p>Flooding caused by climate change puts the productivity of sugarcane cultivation at risk. The objective of this study was to evaluate the effect of <em>in vitro</em> flooding stress on sugarcane plantlets. Sugarcane plantlets were grown in test tubes containing Murashige and Skoog semi-solid medium without growth regulators as a control treatment and two stress levels using a double layer with sterile distilled water to simulate hypoxia and anoxia. After 15 d of culture, the number of new shoots, plantlet height, number of leaves, number of roots, root length, stomatal density, percentage of closed stomata and percentage of dry matter were evaluated. In addition, biochemical variables such as chlorophylls, carotenoids, phosphoenolpyruvate (PEP), Rubisco, total proteins (TP), proline (Pr), glycine-betaine (GB), phenols, antioxidant capacity and lipid peroxidation were determined in all treatments. Results showed a higher number of new shoots, leaves and percentage of closed stomata in the flooded plantlets, while plantlet height, number of roots, stomatal density, and dry matter were higher in the control treatment. Regarding, chlorophyll, carotenoid, PEP and Rubisco contents decreased in the flooded treatments, while TP and phenol contents were higher in the partially submerged treatment. Antioxidant capacity and lipid peroxidation increased in the fully submerged treatment. Pr and GB contents did not show changes in any of the evaluated treatments. Stress induced by excess water in a double layer <em>in vitro</em> is an alternative method to determining physiological and biochemical mechanisms of tolerance to hypoxia and anoxia caused by flooding for breeding programs in sugarcane.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 74-80"},"PeriodicalIF":4.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.jbiotec.2024.07.008
Ida M. Makhubela , Alexander Zawaira , Dean Brady , Daniel P. Pienaar
The natural aroma compound (+)-nootkatone was obtained in selective conversions of up to 74 mol% from inexpensive (+)-valencene substrate by using a comparatively greener biocatalytic process developed based on modifications of the previously published Firmenich method. Buffer identity and concentration, pH, temperature and downstream work-up procedures were optimized to produce a crude product in which >90 % of (+)-valencene had been converted, with high chemoselectivity observed for (+)-nootkatone production. Interestingly, the biotransformation was carried out efficiently at temperatures as low as 21 ºC. Surprisingly, the best results were obtained when an acidic pH in the range of 3–6 was applied, as compared to the previously published procedure in which it appeared to be necessary to buffer the pH optimally and fixed throughout at 8.5. Furthermore, there was no need to maintain a pure oxygen atmosphere to achieve good (+)-nootkatone yields. Instead, air bubbled continuously at a low rate through the reaction mixture via a submerged glass capillary was sufficient to enable the desired lipoxygenase-catalyzed oxidation reactions to occur efficiently. No valencene epoxide side-products were detected in the organic product extract by a standard GCMS protocol. Only traces of the anticipated corresponding α- and β-nootkatol intermediates were routinely observed.
{"title":"Multifactorial optimization enables the identification of a greener method to produce (+)-nootkatone","authors":"Ida M. Makhubela , Alexander Zawaira , Dean Brady , Daniel P. Pienaar","doi":"10.1016/j.jbiotec.2024.07.008","DOIUrl":"10.1016/j.jbiotec.2024.07.008","url":null,"abstract":"<div><p>The natural aroma compound (+)-nootkatone was obtained in selective conversions of up to 74 mol% from inexpensive (+)-valencene substrate by using a comparatively greener biocatalytic process developed based on modifications of the previously published Firmenich method. Buffer identity and concentration, pH, temperature and downstream work-up procedures were optimized to produce a crude product in which >90 % of (+)-valencene had been converted, with high chemoselectivity observed for (+)-nootkatone production. Interestingly, the biotransformation was carried out efficiently at temperatures as low as 21 ºC. Surprisingly, the best results were obtained when an acidic pH in the range of 3–6 was applied, as compared to the previously published procedure in which it appeared to be necessary to buffer the pH optimally and fixed throughout at 8.5. Furthermore, there was no need to maintain a pure oxygen atmosphere to achieve good (+)-nootkatone yields. Instead, air bubbled continuously at a low rate through the reaction mixture <em>via</em> a submerged glass capillary was sufficient to enable the desired lipoxygenase-catalyzed oxidation reactions to occur efficiently. No valencene epoxide side-products were detected in the organic product extract by a standard GCMS protocol. Only traces of the anticipated corresponding α- and β-nootkatol intermediates were routinely observed.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 41-48"},"PeriodicalIF":4.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168165624001949/pdfft?md5=1bac3a2b5792cdf7e9e8c679248ccbb6&pid=1-s2.0-S0168165624001949-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1016/j.jbiotec.2024.07.006
Seyed Babak Loghmani , Eric Zitzow , Luisa Schwarzmüller , Yvonne Humboldt , Philip Eisenberg , Bernd Kreikemeyer , Nadine Veith , Ursula Kummer , Tomas Fiedler
Enterococcus faecalis is a versatile lactic acid bacterium with a large variety of implications for humans. While some strains of this species are pathobionts being resistant against most of the common antibiotics, other strains are regarded as biological protectants or even probiotics. Accordingly, E. faecalis strains largely differ in the size and content of their accessory genome. In this study, we describe the genome-scale metabolic network reconstruction of E. faecalis ATCC 19433, a non-resistant human-associated strain. A comparison of the genome-scale metabolic model (GSM) of E. faecalis ATCC 19433 with a previously published GSM of the multi-resistant pathobiontic E. faecalis V583 reveals high similarities in the central metabolic abilities of these two human associated strains. This is reflected, e.g., in the identical amino acid auxotrophies. The ATCC 19433 strain, however, has a 14.1% smaller genome than V583 and lacks the multiple antibiotic resistance genes and genes involved in capsule formation. Based on the measured metabolic fluxes at different growth rates, the energy demand at zero growth was calculated to be about 40% lower for the ATCC 19433 strain compared to V583. Furthermore, the ATCC 19433 strain seems less prone to the depletion of amino acids utilizable for energy metabolism. This might hint at a lower overall energy demand of the ATCC 19433 strain as compared to V583.
{"title":"Comparing Genome Scale Metabolic Models of the non-resistant Enterococcus faecalis ATCC 19433 and the multi-resistant Enterococcus faecalis V583","authors":"Seyed Babak Loghmani , Eric Zitzow , Luisa Schwarzmüller , Yvonne Humboldt , Philip Eisenberg , Bernd Kreikemeyer , Nadine Veith , Ursula Kummer , Tomas Fiedler","doi":"10.1016/j.jbiotec.2024.07.006","DOIUrl":"10.1016/j.jbiotec.2024.07.006","url":null,"abstract":"<div><p><em>Enterococcus faecalis</em> is a versatile lactic acid bacterium with a large variety of implications for humans. While some strains of this species are pathobionts being resistant against most of the common antibiotics, other strains are regarded as biological protectants or even probiotics. Accordingly, <em>E. faecalis</em> strains largely differ in the size and content of their accessory genome. In this study, we describe the genome-scale metabolic network reconstruction of <em>E. faecalis</em> ATCC 19433, a non-resistant human-associated strain. A comparison of the genome-scale metabolic model (GSM) of <em>E. faecalis</em> ATCC 19433 with a previously published GSM of the multi-resistant pathobiontic <em>E. faecalis</em> V583 reveals high similarities in the central metabolic abilities of these two human associated strains. This is reflected, e.g., in the identical amino acid auxotrophies. The ATCC 19433 strain, however, has a 14.1% smaller genome than V583 and lacks the multiple antibiotic resistance genes and genes involved in capsule formation. Based on the measured metabolic fluxes at different growth rates, the energy demand at zero growth was calculated to be about 40% lower for the ATCC 19433 strain compared to V583. Furthermore, the ATCC 19433 strain seems less prone to the depletion of amino acids utilizable for energy metabolism. This might hint at a lower overall energy demand of the ATCC 19433 strain as compared to V583.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168165624001925/pdfft?md5=1ba001f61d78da3ee6273ca114eeb527&pid=1-s2.0-S0168165624001925-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141599917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1016/j.jbiotec.2024.07.001
Viviana Chiappini, Debora Casbarra, Maria Luisa Astolfi, Anna Maria Girelli
This study aimed at Candida rugosa lipase immobilization on a low-cost and readily available support. Among agro-industrial crops, hemp tea waste was chosen as the carrier because it provides higher immobilization performance than hemp flower and leaf wastes. Support characterization by ATR-FTIR, SEM and elemental analysis and the optimization of the adsorption immobilization process were performed. The lipase adsorption immobilization was obtained by soaking the support with hexane under mild agitation for 2 h and a successively incubating the enzyme for 1 h at room temperature without removing the solvent. The esterification of oleic acid with n-decanol was tested in a solvent-free system by studying some parameters that influence the reaction, such as the substrates molar ratio, the lipase activity/oleic acid ratio, reaction temperature and the presence/absence of molecular sieves. The biocatalyst showed the ability to bring the esterification reaction to equilibrium under 60 min and good reusability (maintaining 60 % of its original activity after three successive esterification reactions) but low conversion (21 %) at the optimized conditions (40 °C, 1:2 substrates molar ratio, 0.56 lipase/oleic acid ratio, without sieves). Comparing the results with those obtained by free lipase form at the same activity (1 U) and experimental conditions, slightly higher conversion (%) appeared for the free lipase. All this highlighted that probably the source of lipase for its carbohydrate-binding pocket and lid structure affected the esterification of oleic acid but certainly, the immobilization didn’t induce any lipase conformational change also allowing the reuse of the catalytic material.
{"title":"Investigation on solvent-free esterification of oleic acid by hemp tea waste-immobilized Candida rugosa lipase","authors":"Viviana Chiappini, Debora Casbarra, Maria Luisa Astolfi, Anna Maria Girelli","doi":"10.1016/j.jbiotec.2024.07.001","DOIUrl":"10.1016/j.jbiotec.2024.07.001","url":null,"abstract":"<div><p>This study aimed at <em>Candida rugosa</em> lipase immobilization on a low-cost and readily available support. Among agro-industrial crops, hemp tea waste was chosen as the carrier because it provides higher immobilization performance than hemp flower and leaf wastes. Support characterization by ATR-FTIR, SEM and elemental analysis and the optimization of the adsorption immobilization process were performed. The lipase adsorption immobilization was obtained by soaking the support with hexane under mild agitation for 2 h and a successively incubating the enzyme for 1 h at room temperature without removing the solvent. The esterification of oleic acid with n-decanol was tested in a solvent-free system by studying some parameters that influence the reaction, such as the substrates molar ratio, the lipase activity/oleic acid ratio, reaction temperature and the presence/absence of molecular sieves. The biocatalyst showed the ability to bring the esterification reaction to equilibrium under 60 min and good reusability (maintaining 60 % of its original activity after three successive esterification reactions) but low conversion (21 %) at the optimized conditions (40 °C, 1:2 substrates molar ratio, 0.56 lipase/oleic acid ratio, without sieves). Comparing the results with those obtained by free lipase form at the same activity (1 U) and experimental conditions, slightly higher conversion (%) appeared for the free lipase. All this highlighted that probably the source of lipase for its carbohydrate-binding pocket and lid structure affected the esterification of oleic acid but certainly, the immobilization didn’t induce any lipase conformational change also allowing the reuse of the catalytic material.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":"Pages 118-127"},"PeriodicalIF":4.1,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.jbiotec.2024.06.020
Zheng-Mei Li , Yan Lin , Cong-hui Luo , Qiu-Li Sun , Chun-Liu Mi , Xiao-yin Wang , Tian-Yun Wang
In eukaryotes, the localization of small ribosomal subunits to mRNA transcripts requires the translation of Kozak elements at the starting site. The sequence of Kozak elements affects the translation efficiency of protein synthesis. However, whether the upstream nucleotide of Kozak sequence affects the expression of recombinant proteins in Chinese hamster ovary (CHO) cells remains unclear. In order to find the optimal sequence to enhance recombinant proteins expression in CHO cells, −10 to +4 sequences around ATG in 100 CHO genes were compared, and the extended Kozak elements with different translation intensities were constructed. Using the classic Kozak element as control, the effects of optimized extended Kozak elements on the secreted alkaline phosphatase (SEAP) and human serum albumin (HSA) gene were studied. The results showed that the optimized extended Kozak sequence can enhance the stable expression level of recombinant proteins in CHO cells. Furthermore, it was found that the increased expression level of the recombinant protein was not related with higher transcription level. In summary, optimizing extended Kozak elements can enhance the expression of recombinant proteins in CHO cells, which contributes to the construction of an efficient expression system for CHO cells.
在真核生物中,将小核糖体亚基定位到 mRNA 转录本上需要翻译起始位点上的 Kozak 元素。Kozak 元素的序列会影响蛋白质合成的翻译效率。然而,Kozak 序列的上游核苷酸是否会影响重组蛋白在中国仓鼠卵巢(CHO)细胞中的表达仍不清楚。为了找到提高重组蛋白在CHO细胞中表达的最佳序列,我们比较了100个CHO基因中ATG周围的-10至+4序列,并构建了具有不同翻译强度的扩展Kozak元件。以经典 Kozak 元件为对照,研究了优化的扩展 Kozak 元件对分泌型碱性磷酸酶(SEAP)和人血清白蛋白(HSA)基因的影响。结果表明,优化的扩展 Kozak 序列能提高重组蛋白在 CHO 细胞中的稳定表达水平。此外,研究还发现,重组蛋白表达水平的提高与转录水平的提高无关。综上所述,优化扩展 Kozak 元件可提高重组蛋白在 CHO 细胞中的表达,有助于构建 CHO 细胞的高效表达系统。
{"title":"Optimization of extended Kozak elements enhances recombinant proteins expression in CHO cells","authors":"Zheng-Mei Li , Yan Lin , Cong-hui Luo , Qiu-Li Sun , Chun-Liu Mi , Xiao-yin Wang , Tian-Yun Wang","doi":"10.1016/j.jbiotec.2024.06.020","DOIUrl":"10.1016/j.jbiotec.2024.06.020","url":null,"abstract":"<div><p>In eukaryotes, the localization of small ribosomal subunits to mRNA transcripts requires the translation of Kozak elements at the starting site. The sequence of Kozak elements affects the translation efficiency of protein synthesis. However, whether the upstream nucleotide of Kozak sequence affects the expression of recombinant proteins in Chinese hamster ovary (CHO) cells remains unclear. In order to find the optimal sequence to enhance recombinant proteins expression in CHO cells, −10 to +4 sequences around ATG in 100 CHO genes were compared, and the extended Kozak elements with different translation intensities were constructed. Using the classic Kozak element as control, the effects of optimized extended Kozak elements on the secreted alkaline phosphatase (SEAP) and human serum albumin (HSA) gene were studied. The results showed that the optimized extended Kozak sequence can enhance the stable expression level of recombinant proteins in CHO cells. Furthermore, it was found that the increased expression level of the recombinant protein was not related with higher transcription level. In summary, optimizing extended Kozak elements can enhance the expression of recombinant proteins in CHO cells, which contributes to the construction of an efficient expression system for CHO cells.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":"Pages 96-102"},"PeriodicalIF":4.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-29DOI: 10.1016/j.jbiotec.2024.06.008
Ji-Min Woo , Hyun-Joo Kim , Se‑Yeun Hwang, Eun-Ji Seo, Jin-Byung Park
α,ω-Dicarboxylic acids, ω-aminoalkanoic acids, and α,ω-diaminoalkanes are valuable building blocks for the production of biopolyesters and biopolyamides. One of the key steps in producing these chemicals is the oxidation of ω-hydroxycarboxylic acids using alcohol dehydrogenases (e.g., ChnD of Acinetobacter sp. NCIMB 9871). However, the reaction and structural features of these enzymes remain mostly undiscovered. Thereby, we have investigated characteristics of ChnD based on enzyme kinetics, substrate-docking simulations, and mutation studies. Kinetic analysis revealed a distinct preference of ChnD for medium chain ω-hydroxycarboxylic acids, with the highest catalytic efficiency of 18.0 mM−1s−1 for 12-hydroxydodecanoic acid among C6 to C12 ω-hydroxycarboxylic acids. The high catalytic efficiency was attributed to the positive interactions between the carboxyl group of the substrates and the guanidino group of two arginine residues (i.e., Arg62 and Arg266) in the substrate binding site. The ChnD_R62L variant showed the increased efficiency and affinity, particularly for fatty alcohols (i.e., C6–C10) and branched-chain fatty alcohols, such as 3-methyl-2-buten-1-ol. Overall, this study contributes to the deeper understanding of medium-chain primary aliphatic alcohol dehydrogenases and their applications for the production of industrially relevant chemicals such as α,ω-dicarboxylic acids, ω-aminoalkanoic acids, and α,ω-diaminoalkanes from renewable biomass.
{"title":"Structure modeling-based characterization of ChnD, the 6-hydroxyhexanoate dehydrogenase from Acinetobacter sp. strain NCIMB 9871","authors":"Ji-Min Woo , Hyun-Joo Kim , Se‑Yeun Hwang, Eun-Ji Seo, Jin-Byung Park","doi":"10.1016/j.jbiotec.2024.06.008","DOIUrl":"10.1016/j.jbiotec.2024.06.008","url":null,"abstract":"<div><p>α,ω-Dicarboxylic acids, ω-aminoalkanoic acids, and α,ω-diaminoalkanes are valuable building blocks for the production of biopolyesters and biopolyamides. One of the key steps in producing these chemicals is the oxidation of ω-hydroxycarboxylic acids using alcohol dehydrogenases (e.g., ChnD of <em>Acinetobacter</em> sp. NCIMB 9871). However, the reaction and structural features of these enzymes remain mostly undiscovered. Thereby, we have investigated characteristics of ChnD based on enzyme kinetics, substrate-docking simulations, and mutation studies. Kinetic analysis revealed a distinct preference of ChnD for medium chain ω-hydroxycarboxylic acids, with the highest catalytic efficiency of 18.0 mM<sup>−1</sup>s<sup>−1</sup> for 12-hydroxydodecanoic acid among C6 to C12 ω-hydroxycarboxylic acids. The high catalytic efficiency was attributed to the positive interactions between the carboxyl group of the substrates and the guanidino group of two arginine residues (i.e., Arg62 and Arg266) in the substrate binding site. The ChnD_R62L variant showed the increased efficiency and affinity, particularly for fatty alcohols (i.e., C6–C10) and branched-chain fatty alcohols, such as 3-methyl-2-buten-1-ol. Overall, this study contributes to the deeper understanding of medium-chain primary aliphatic alcohol dehydrogenases and their applications for the production of industrially relevant chemicals such as α,ω-dicarboxylic acids, ω-aminoalkanoic acids, and α,ω-diaminoalkanes from renewable biomass.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":"Pages 90-95"},"PeriodicalIF":4.1,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1016/j.jbiotec.2024.06.018
Yanbo Hu , Yiming Li , Yi Cao , Yuzhu Shen , Xianjun Zou , Jiaxin Liu , Jun Zhao
Ginsenoside, the principal active constituent of ginseng, exhibits enhanced bioavailability and medicinal efficacy in rare ginsenosides compared to major ginsenosides. Current research is focused on efficiently and selectively removing sugar groups attached to the major ginsenoside sugar chains to convert them into rare ginsenosides that meet the demands of medical industry and functional foods. The methods for preparing rare ginsenosides encompass chemical, microbial, and enzymatic approaches. Among these, the enzyme conversion method is highly favored by researchers due to its exceptional specificity and robust efficiency. This review summarizes the biological activities of different rare ginsenosides, explores the various glycosidases used in the biotransformation of different major ginsenosides as substrates, and elucidates their respective corresponding biotransformation pathways. These findings will provide valuable references for the development, utilization, and industrial production of ginsenosides.
{"title":"Advancements in enzymatic biotransformation and bioactivities of rare ginsenosides: A review","authors":"Yanbo Hu , Yiming Li , Yi Cao , Yuzhu Shen , Xianjun Zou , Jiaxin Liu , Jun Zhao","doi":"10.1016/j.jbiotec.2024.06.018","DOIUrl":"10.1016/j.jbiotec.2024.06.018","url":null,"abstract":"<div><p>Ginsenoside, the principal active constituent of ginseng, exhibits enhanced bioavailability and medicinal efficacy in rare ginsenosides compared to major ginsenosides. Current research is focused on efficiently and selectively removing sugar groups attached to the major ginsenoside sugar chains to convert them into rare ginsenosides that meet the demands of medical industry and functional foods. The methods for preparing rare ginsenosides encompass chemical, microbial, and enzymatic approaches. Among these, the enzyme conversion method is highly favored by researchers due to its exceptional specificity and robust efficiency. This review summarizes the biological activities of different rare ginsenosides, explores the various glycosidases used in the biotransformation of different major ginsenosides as substrates, and elucidates their respective corresponding biotransformation pathways. These findings will provide valuable references for the development, utilization, and industrial production of ginsenosides.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":"Pages 78-89"},"PeriodicalIF":4.1,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Here we report that non-thermal atmospheric-pressure plasma exposure can improve Brassica juncea (leaf mustard) seed germination rate from 50 % to 98 %. The commercially relevant germination rate was achieved by plasma exposure for only 10 minutes and the effect sustains at least for one month under an appropriate storage condition. Improved germination by plasma exposure was also observed for Brassica rapa subsp. pekinensis (Chinese cabbage) seeds. The plasma device used is simple. No pure gas flow system is necessary and it is easy to handle. A large number of seeds can be treated by simply scaling up the device. Plasma exposure can be a practical method for improving seed germination of crop plants important for agriculture.
{"title":"Non-thermal atmospheric-pressure plasma exposure as a practical method for improvement of Brassica juncea seed germination","authors":"Mime Kobayashi , Sho Yamaguchi , Shintaro Kusano , Shinya Kumagai , Toshiro Ito","doi":"10.1016/j.jbiotec.2024.06.019","DOIUrl":"10.1016/j.jbiotec.2024.06.019","url":null,"abstract":"<div><p>Here we report that non-thermal atmospheric-pressure plasma exposure can improve <em>Brassica juncea</em> (leaf mustard) seed germination rate from 50 % to 98 %. The commercially relevant germination rate was achieved by plasma exposure for only 10 minutes and the effect sustains at least for one month under an appropriate storage condition. Improved germination by plasma exposure was also observed for <em>Brassica rapa</em> subsp. <em>pekinensis</em> (Chinese cabbage) seeds. The plasma device used is simple. No pure gas flow system is necessary and it is easy to handle. A large number of seeds can be treated by simply scaling up the device. Plasma exposure can be a practical method for improving seed germination of crop plants important for agriculture.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":"Pages 103-108"},"PeriodicalIF":4.1,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016816562400186X/pdfft?md5=55026990c00859cb30ddd829cb1dd8db&pid=1-s2.0-S016816562400186X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1016/j.jbiotec.2024.06.017
Basma A. Omran , Muhammad Fazle Rabbee , Kwang-Hyun Baek
Clavibacter michiganensis subsp. michiganensis (Cmm) and C. michiganensis subsp. capsici (Cmc) are phytopathogenic bacteria that cause bacterial canker disease in tomatoes and peppers, respectively. Bacterial canker disease poses serious challenges to solanaceous crops, causing significant yield losses and economic costs. Effective management necessitates the development of sustainable control strategies employing nanobiotechnology. In this study, the antibacterial effects of four Aspergillus sojae-mediated nanoformulations, including cobalt oxide nanoparticles (Co3O4 NPs), zinc oxide nanoparticles (ZnO NPs), cobalt ferrite nanoparticles (CoFe2O4 NPs), and CoFe2O4/functionalized multi-walled carbon nanotube (fMWCNT) bionanocomposite, were evaluated against Cmm and Cmc. The diameters of the zone of inhibition of A. sojae-mediated Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmm and Cmc were 23.60 mm, 22.09 mm, 27.65 mm, 22.51 mm, and 19.33 mm, 17.66 mm, 21.64 mm, 18.77 mm, respectively. The broth microdilution assay was conducted to determine the minimal inhibitory and bactericidal concentrations. The MICs of Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmm were 2.50 mg/mL, 1.25 mg/mL, 2.50 mg/mL, and 2.50 mg/mL, respectively. While, their respective MBCs against Cmm were 5.00 mg/mL, 2.50 mg/mL, 5.00 mg/mL, and 5.00 mg/mL. The respective MICs of Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmc were 2.50 mg/mL, 1.25 mg/mL, 5.00 mg/mL, and 5.00 mg/mL. While, their respective MBCs against Cmc were 5.00 mg/mL, 2.50 mg/mL, 10.00 mg/mL, and 10.00 mg/mL. The morphological and ultrastructural changes of Cmm and Cmc cells were observed using field-emission scanning and transmission electron microscopy before and after treatment with sub-minimal inhibitory concentrations of the nanoformulations. Nanoformulation-treated bacterial cells became deformed and disrupted, displaying pits, deep cavities, and groove-like structures. The cell membrane detached from the bacterial cell wall, electron-dense particles accumulated in the cytoplasm, cellular components disintegrated, and the cells were lysed. Direct physical interactions between the prepared nanoformulations with Cmm and Cmc cells might be the major mechanism for their antibacterial potency. Further research is required for the in vivo application of the mycosynthesized nanoformulations as countermeasures to combat bacterial phytopathogens.
{"title":"Biologically inspired nanoformulations for the control of bacterial canker pathogens Clavibacter michiganensis subsp. michiganensis and subsp. capsici","authors":"Basma A. Omran , Muhammad Fazle Rabbee , Kwang-Hyun Baek","doi":"10.1016/j.jbiotec.2024.06.017","DOIUrl":"10.1016/j.jbiotec.2024.06.017","url":null,"abstract":"<div><p><em>Clavibacter michiganensis</em> subsp. <em>michiganensis</em> (<em>Cmm</em>) and <em>C. michiganensis</em> subsp. <em>capsici</em> (<em>Cmc</em>) are phytopathogenic bacteria that cause bacterial canker disease in tomatoes and peppers, respectively. Bacterial canker disease poses serious challenges to solanaceous crops, causing significant yield losses and economic costs. Effective management necessitates the development of sustainable control strategies employing nanobiotechnology. In this study, the antibacterial effects of four <em>Aspergillus sojae</em>-mediated nanoformulations, including cobalt oxide nanoparticles (Co<sub>3</sub>O<sub>4</sub> NPs), zinc oxide nanoparticles (ZnO NPs), cobalt ferrite nanoparticles (CoFe<sub>2</sub>O<sub>4</sub> NPs), and CoFe<sub>2</sub>O<sub>4</sub>/functionalized multi-walled carbon nanotube (fMWCNT) bionanocomposite, were evaluated against <em>Cmm</em> and <em>Cmc</em>. The diameters of the zone of inhibition of <em>A. sojae</em>-mediated Co<sub>3</sub>O<sub>4</sub> NPs, ZnO NPs, CoFe<sub>2</sub>O<sub>4</sub> NPs, and CoFe<sub>2</sub>O<sub>4</sub>/fMWCNT bionanocomposite against <em>Cmm</em> and <em>Cmc</em> were 23.60 mm, 22.09 mm, 27.65 mm, 22.51 mm, and 19.33 mm, 17.66 mm, 21.64 mm, 18.77 mm, respectively. The broth microdilution assay was conducted to determine the minimal inhibitory and bactericidal concentrations. The MICs of Co<sub>3</sub>O<sub>4</sub> NPs, ZnO NPs, CoFe<sub>2</sub>O<sub>4</sub> NPs, and CoFe<sub>2</sub>O<sub>4</sub>/fMWCNT bionanocomposite against <em>Cmm</em> were 2.50 mg/mL, 1.25 mg/mL, 2.50 mg/mL, and 2.50 mg/mL, respectively. While, their respective MBCs against <em>Cmm</em> were 5.00 mg/mL, 2.50 mg/mL, 5.00 mg/mL, and 5.00 mg/mL. The respective MICs of Co<sub>3</sub>O<sub>4</sub> NPs, ZnO NPs, CoFe<sub>2</sub>O<sub>4</sub> NPs, and CoFe<sub>2</sub>O<sub>4</sub>/fMWCNT bionanocomposite against <em>Cmc</em> were 2.50 mg/mL, 1.25 mg/mL, 5.00 mg/mL, and 5.00 mg/mL. While, their respective MBCs against <em>Cmc</em> were 5.00 mg/mL, 2.50 mg/mL, 10.00 mg/mL, and 10.00 mg/mL. The morphological and ultrastructural changes of <em>Cmm</em> and <em>Cmc</em> cells were observed using field-emission scanning and transmission electron microscopy before and after treatment with sub-minimal inhibitory concentrations of the nanoformulations. Nanoformulation-treated bacterial cells became deformed and disrupted, displaying pits, deep cavities, and groove-like structures. The cell membrane detached from the bacterial cell wall, electron-dense particles accumulated in the cytoplasm, cellular components disintegrated, and the cells were lysed. Direct physical interactions between the prepared nanoformulations with <em>Cmm</em> and <em>Cmc</em> cells might be the major mechanism for their antibacterial potency. Further research is required for the <em>in vivo</em> application of the mycosynthesized nanoformulations as countermeasures to combat bacterial phytopathogens.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":"Pages 34-47"},"PeriodicalIF":4.1,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141457087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Combining phytochemicals and nanotechnology to improve the unfavorable innate properties of phytochemicals and develop them into potent nanomedicines to enhance antitumor efficacy has become a novel strategy for cancer chemoprevention. Melanoma is the most aggressive, metastatic, and deadly disease of the primary cutaneous neoplasms. In this study, we fabricated phytoconstituent-derived zingerone nanoparticles (NPs) and validated their effects on cell adhesion and motility in melanoma B16F10 cells. Our data indicated that zingerone NPs significantly induced cytotoxicity and anti-colony formation and inhibited cell migration and invasion. Moreover, zingerone NPs dramatically interfered with the cytoskeletal reorganization and markedly delayed the period of cell adhesion. Our results also revealed that zingerone NPs-mediated downregulation of MMPs (matrix metalloproteinases) activity is associated with inhibiting cell adhesion and motility. We further evaluated the effects of zingerone NPs on Src/FAK /Paxillin signaling, our data showed that zingerone NPs significantly inhibited the protein activities of Src, FAK, and Paxillin, indicating that they play important roles in zingerone NP-mediated anti-motility and anti-invasion in melanoma cells. Accordingly, the phytoconstituent-zingerone NPs can strengthen the inhibition of tumor growth, invasion, and metastasis in malignant melanoma. Altogether, these multi-pharmacological benefits of zingerone NPs will effectively achieve the purpose of melanoma prevention and invasion inhibition.
{"title":"Phytoconstituent-derived zingerone nanoparticles disrupt the cell adhesion mechanism and suppress cell motility in melanoma B16F10 cells","authors":"Li-Wen Chu , Jun-Yih Chen , Yun-Wen Chen , Shuchen Hsieh , Mei-Lang Kung","doi":"10.1016/j.jbiotec.2024.06.015","DOIUrl":"10.1016/j.jbiotec.2024.06.015","url":null,"abstract":"<div><p>Combining phytochemicals and nanotechnology to improve the unfavorable innate properties of phytochemicals and develop them into potent nanomedicines to enhance antitumor efficacy has become a novel strategy for cancer chemoprevention. Melanoma is the most aggressive, metastatic, and deadly disease of the primary cutaneous neoplasms. In this study, we fabricated phytoconstituent-derived zingerone nanoparticles (NPs) and validated their effects on cell adhesion and motility in melanoma B16F10 cells. Our data indicated that zingerone NPs significantly induced cytotoxicity and anti-colony formation and inhibited cell migration and invasion. Moreover, zingerone NPs dramatically interfered with the cytoskeletal reorganization and markedly delayed the period of cell adhesion. Our results also revealed that zingerone NPs-mediated downregulation of MMPs (matrix metalloproteinases) activity is associated with inhibiting cell adhesion and motility. We further evaluated the effects of zingerone NPs on Src/FAK /Paxillin signaling, our data showed that zingerone NPs significantly inhibited the protein activities of Src, FAK, and Paxillin, indicating that they play important roles in zingerone NP-mediated anti-motility and anti-invasion in melanoma cells. Accordingly, the phytoconstituent-zingerone NPs can strengthen the inhibition of tumor growth, invasion, and metastasis in malignant melanoma. Altogether, these multi-pharmacological benefits of zingerone NPs will effectively achieve the purpose of melanoma prevention and invasion inhibition.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":"Pages 48-58"},"PeriodicalIF":4.1,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141436964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}