Pub Date : 2024-07-18DOI: 10.1016/j.jbiotec.2024.07.013
Sum Lai Lozada , Jose Alberto Gómez , Katherine Menéndez , Tania Gómez , Daidee Montes de Oca , Jose L. Durán , Olga Lidia Fernández , Yoel Perera , Gabriela Rivas , Tammy Boggiano-Ayo , Nuris Ledon , Tania Carmenate
Interleukin-2 (IL-2) has been used in cancer treatment for over 30 years. However, due to its high toxicity, new mutant variants have been developed. These variants retain some of the biological properties of the original molecule but offer other therapeutic advantages. At the Center of Molecular Immunology, the IL-2 no-alpha mutein, an IL-2 agonist with lower toxicity than wtIL-2, has been designed, produced, and is currently being evaluated in a Phase I/II clinical trial. The mutein is produced in E. coli as an insoluble material that must be refolded in vitro to yield a fully active protein. Controlled oxidation steps are essential in the purification process of recombinant proteins produced in E. coli to ensure the proper formation of the disulfide bonds in the molecules. In this case, the new purification process includes a copper-catalyzed air oxidation step to induce disulfide bond establishment. The optimal conditions of pH, copper, protein and detergent concentration for this step were determined through screening. The produced protein demonstrated a conserved 3D structure, higher purity, and greater biological activity than the obtained by established process without the oxidation step. Four batches were produced and evaluated, demonstrating the consistency of the new process.
{"title":"Oxidative refolding by Copper-catalyzed air oxidation consistently increases the homogeneity and activity of a Novel Interleukin-2 mutein","authors":"Sum Lai Lozada , Jose Alberto Gómez , Katherine Menéndez , Tania Gómez , Daidee Montes de Oca , Jose L. Durán , Olga Lidia Fernández , Yoel Perera , Gabriela Rivas , Tammy Boggiano-Ayo , Nuris Ledon , Tania Carmenate","doi":"10.1016/j.jbiotec.2024.07.013","DOIUrl":"10.1016/j.jbiotec.2024.07.013","url":null,"abstract":"<div><p>Interleukin-2 (IL-2) has been used in cancer treatment for over 30 years. However, due to its high toxicity, new mutant variants have been developed. These variants retain some of the biological properties of the original molecule but offer other therapeutic advantages. At the Center of Molecular Immunology, the IL-2 no-alpha mutein, an IL-2 agonist with lower toxicity than wtIL-2, has been designed, produced, and is currently being evaluated in a Phase I/II clinical trial. The mutein is produced in <em>E. coli</em> as an insoluble material that must be refolded <em>in vitro</em> to yield a fully active protein. Controlled oxidation steps are essential in the purification process of recombinant proteins produced in <em>E. coli</em> to ensure the proper formation of the disulfide bonds in the molecules. In this case, the new purification process includes a copper-catalyzed air oxidation step to induce disulfide bond establishment. The optimal conditions of pH, copper, protein and detergent concentration for this step were determined through screening. The produced protein demonstrated a conserved 3D structure, higher purity, and greater biological activity than the obtained by established process without the oxidation step. Four batches were produced and evaluated, demonstrating the consistency of the new process.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 81-90"},"PeriodicalIF":4.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.jbiotec.2024.07.010
Francesco Iannacci , João Medeiros Garcia Alcântara , Martina Marani , Paolo Camesasca , Michele Chen , Fani Sousa , Massimo Morbidelli , Mattia Sponchioni
Therapeutic oligonucleotides (ONs) are typically manufactured via solid-phase synthesis, characterized by limited scalability and huge environmental footprint, limiting their availability. Biomanufactured ONs have the potential to reduce the immunogenic side-effects, and to improve the sustainability of their chemical counterparts. Rhodovulum sulfidophilum was demonstrated a valuable host for the extracellular production of recombinant ONs. However, low viable cell densities and product titer were reported so far. In this work, perfusion cell cultures were established for the intensification of ON biomanufacturing. First, the perfusion conditions were simulated in 50 mL spin tubes, selected as a scale-down model of the process, with the aim of optimizing the medium composition and process parameters. This optimization stage led to an increase in the cell density by 44 % compared to the reference medium formulation. In addition, tests at increasing perfusion rates were conducted until achieving the maximum viable cell density (VCDmax), allowing the determination of the minimum cell-specific perfusion rate (CSPRmin) required to sustain the cell culture. Intriguingly, we discovered in this system also a maximum CSPR, above which growth inhibition starts. By leveraging this process optimization, we show for the first time the conduction of perfusion cultures of R. sulfidophilum in bench-scale bioreactors. This process development pipeline allowed stable cultures for more than 20 days and the continuous biomanufacturing of ONs, testifying the great potential of perfusion processes.
治疗性寡核苷酸(ONs)通常通过固相合成法制造,其特点是可扩展性有限且对环境影响巨大,从而限制了其可用性。生物制造的寡核苷酸有可能减少免疫原性副作用,并提高其化学对应物的可持续性。实验证明,嗜硫红藻是细胞外生产重组 ONs 的重要宿主。然而,迄今为止所报道的可存活细胞密度和产品滴度都很低。在这项工作中,建立了灌注细胞培养物,用于强化ON的生物制造。首先,在 50 毫升旋管中模拟灌注条件,选择 50 毫升旋管作为工艺的缩小模型,目的是优化培养基成分和工艺参数。在这一优化阶段,细胞密度比参考培养基配方提高了 44%。此外,我们还进行了增加灌注速率的测试,直至达到最大存活细胞密度(VCDmax),从而确定了维持细胞培养所需的最小细胞特定灌注速率(CSPRmin)。有趣的是,我们在该系统中还发现了一个最大 CSPR,超过该值就会开始抑制生长。通过利用这一工艺优化,我们首次展示了在台式生物反应器中进行嗜硫杆菌灌流培养的过程。这一工艺开发管道可使培养物稳定生长 20 多天,并可连续进行 ON 生物制造,证明了灌流工艺的巨大潜力。
{"title":"High-density perfusion cultures of the marine bacterium Rhodovulum sulfidophilum for the biomanufacturing of oligonucleotides","authors":"Francesco Iannacci , João Medeiros Garcia Alcântara , Martina Marani , Paolo Camesasca , Michele Chen , Fani Sousa , Massimo Morbidelli , Mattia Sponchioni","doi":"10.1016/j.jbiotec.2024.07.010","DOIUrl":"10.1016/j.jbiotec.2024.07.010","url":null,"abstract":"<div><p>Therapeutic oligonucleotides (ONs) are typically manufactured via solid-phase synthesis, characterized by limited scalability and huge environmental footprint, limiting their availability. Biomanufactured ONs have the potential to reduce the immunogenic side-effects, and to improve the sustainability of their chemical counterparts. <em>Rhodovulum sulfidophilum</em> was demonstrated a valuable host for the extracellular production of recombinant ONs. However, low viable cell densities and product titer were reported so far. In this work, perfusion cell cultures were established for the intensification of ON biomanufacturing. First, the perfusion conditions were simulated in 50 mL spin tubes, selected as a scale-down model of the process, with the aim of optimizing the medium composition and process parameters. This optimization stage led to an increase in the cell density by 44 % compared to the reference medium formulation. In addition, tests at increasing perfusion rates were conducted until achieving the maximum viable cell density (VCD<sub>max</sub>), allowing the determination of the minimum cell-specific perfusion rate (CSPR<sub>min</sub>) required to sustain the cell culture. Intriguingly, we discovered in this system also a maximum CSPR, above which growth inhibition starts. By leveraging this process optimization, we show for the first time the conduction of perfusion cultures of <em>R. sulfidophilum</em> in bench-scale bioreactors. This process development pipeline allowed stable cultures for more than 20 days and the continuous biomanufacturing of ONs, testifying the great potential of perfusion processes.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":"Pages 152-160"},"PeriodicalIF":4.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168165624001962/pdfft?md5=b661b5bd1729aa57a79fb7be08d1178e&pid=1-s2.0-S0168165624001962-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ricinoleic acid (RA) from castor oil was employed in biotransformation of peach-flavoured γ-decalactone (GDL), using a Candida parapsilosis strain (MTCC13027) which was isolated from waste of pineapple crown base. Using four variables—pH, cell density, amount of RA, and temperature—the biotransformation parameters were optimized using RSM and BBD. Under optimized conditions (pH 6, 10 % of microbial cells, 10 g/L RA at 28°C), the conversion was maximum and resulted to 80 % (+)-GDL (4.4 g/L/120 h) yield in shake flask (500 mL). Furthermore, optimization was achieved by adjusting the aeration and agitation parameters in a 3 L bioreactor, which were then replicated in a 10 L bioreactor to accurately determine the amount of (+)-GDL. In bioreactor condition, 4.7 g/L (>85 %) of (+)-GDL is produced with 20 % and 40 % dissolved oxygen (1.0 vvm) at 150 rpm in 72 h and 66 h, respectively. Further, a new Al-Mg-Ca-Si composite column-chromatography method is developed to purify enantiospecific (+)-GDL (99.9 %). This (+)-GDL is 100 % nature-identical as validated through 14C-radio-carbon dating. Thorough chemical investigation of enantiospecific (+)-GDL is authenticated for its use as flavour. This bioflavour has been developed through a cost-effective biotechnological process in response to the demand from the food industry on commercial scale.
{"title":"A sustainable bioprocess technology for producing food-flavour (+)-γ-decalactone from castor oil-derived ricinoleic acid using enzymatic activity of Candida parapsilosis: Scale-up optimization and purification using novel composite","authors":"Naziya Syed , Suman Singh , Shivani Chaturvedi , Prashant Kumar , Deepak Kumar , Abhinav Jain , Praveen Kumar Sharma , Ashween Deepak Nannaware , Chandan Singh Chanotiya , Rahul Bhambure , Pankaj Kumar , Alok Kalra , Prasant Kumar Rout","doi":"10.1016/j.jbiotec.2024.07.011","DOIUrl":"10.1016/j.jbiotec.2024.07.011","url":null,"abstract":"<div><p>Ricinoleic acid (RA) from castor oil was employed in biotransformation of peach-flavoured γ-decalactone (GDL), using a <em>Candida parapsilosis</em> strain (MTCC13027) which was isolated from waste of pineapple crown base. Using four variables—pH, cell density, amount of RA, and temperature—the biotransformation parameters were optimized using RSM and BBD. Under optimized conditions (pH 6, 10 % of microbial cells, 10 g/L RA at 28°C), the conversion was maximum and resulted to 80 % (+)-GDL (4.4 g/L/120 h) yield in shake flask (500 mL). Furthermore, optimization was achieved by adjusting the aeration and agitation parameters in a 3 L bioreactor, which were then replicated in a 10 L bioreactor to accurately determine the amount of (+)-GDL. In bioreactor condition, 4.7 g/L (>85 %) of (+)-GDL is produced with 20 % and 40 % dissolved oxygen (1.0 vvm) at 150 rpm in 72 h and 66 h, respectively. Further, a new Al-Mg-Ca-Si composite column-chromatography method is developed to purify enantiospecific (+)-GDL (99.9 %). This (+)-GDL is 100 % nature-identical as validated through <sup>14</sup>C-radio-carbon dating. Thorough chemical investigation of enantiospecific (+)-GDL is authenticated for its use as flavour. This bioflavour has been developed through a cost-effective biotechnological process in response to the demand from the food industry on commercial scale.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 17-30"},"PeriodicalIF":4.1,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141691802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.1016/j.jbiotec.2024.07.005
Gomathi Subramani, Rameshpathy Manian
The use of lignocellulosic biomass to create natural flavor has drawn attention from researchers. A key flavoring ingredient that is frequently utilized in the food industry is vanillin. In this present study, Pediococcus acidilactici PA VIT effectively involved in the production of bio-vanillin by using Ferulic acid as an intermediate with a yield of 11.43 µg/mL. The bio-vanillin produced by Pediococcus acidilactici PA VIT was examined using FTIR, XRD, HPLC, and SEM techniques. These characterizations exhibited a unique fingerprinting signature like that of standard vanillin. Additionally, the one variable at a time method, placket Burmann method, and response surface approach, were employed to optimize bio-vanillin. Based on the central composite rotary design, the most important process factors were determined such as agitation speed, substrate concentration, and inoculum size. After optimization, bio-vanillin was found to have tenfold increase, with a maximum yield of 376.4 µg/mL obtained using the response surface approach. The kinetic study was performed to analyze rate of reaction and effect of metal ions in the production of bio-vanillin showing Km of 10.25, and Vmax of 1250 were required for the reaction. The metal ions that enhance the yield of bio-vanillin are Ca2+, k+, and Mg2+ and the metal ions that affects the yield of bio-vanillin are Pb+ and Cr+ were identified from the effect of metal ions in the bio-vanillin production.
利用木质纤维素生物质制造天然香料引起了研究人员的关注。食品工业中经常使用的一种关键调味成分是香兰素。在本研究中,Pediococcus acidilactici PA VIT 以阿魏酸为中间体,有效地参与了生物香兰素的生产,产量为 11.43 µg/mL。使用傅立叶变换红外光谱、XRD、高效液相色谱和扫描电镜技术对 Pediococcus acidilactici PA VIT 生产的生物香兰素进行了检测。这些表征显示出与标准香兰素相同的独特指纹特征。此外,还采用了一次一变量法、placket Burmann 法和响应面法来优化生物香兰素。根据中心复合旋转设计,确定了最重要的工艺因素,如搅拌速度、底物浓度和接种物大小。优化后发现,生物香兰素的产量增加了十倍,利用响应面法得到的最高产量为 376.4 µg/mL。动力学研究分析了生物香兰素生产过程中的反应速率和金属离子的影响,结果表明反应所需的 Km 为 10.25,Vmax 为 1250。根据金属离子对生物香兰素生产的影响,确定了提高生物香兰素产量的金属离子为 Ca2+、k+ 和 Mg2+,影响生物香兰素产量的金属离子为 Pb+和 Cr+。
{"title":"Optimizing bio-vanillin synthesis from ferulic acid via Pediococcus acidilactici: A systematic approach to process enhancement and yield maximization","authors":"Gomathi Subramani, Rameshpathy Manian","doi":"10.1016/j.jbiotec.2024.07.005","DOIUrl":"10.1016/j.jbiotec.2024.07.005","url":null,"abstract":"<div><p>The use of lignocellulosic biomass to create natural flavor has drawn attention from researchers. A key flavoring ingredient that is frequently utilized in the food industry is vanillin. In this present study, <em>Pediococcus acidilactici</em> PA VIT effectively involved in the production of bio-vanillin by using Ferulic acid as an intermediate with a yield of 11.43 µg/mL. The bio-vanillin produced by <em>Pediococcus acidilactici</em> PA VIT was examined using FTIR, XRD, HPLC, and SEM techniques. These characterizations exhibited a unique fingerprinting signature like that of standard vanillin. Additionally, the one variable at a time method, placket Burmann method, and response surface approach, were employed to optimize bio-vanillin. Based on the central composite rotary design, the most important process factors were determined such as agitation speed, substrate concentration, and inoculum size. After optimization, bio-vanillin was found to have tenfold increase, with a maximum yield of 376.4 µg/mL obtained using the response surface approach. The kinetic study was performed to analyze rate of reaction and effect of metal ions in the production of bio-vanillin showing Km of 10.25, and Vmax of 1250 were required for the reaction. The metal ions that enhance the yield of bio-vanillin are Ca<sup>2+</sup>, k<sup>+</sup>, and Mg<sup>2+</sup> and the metal ions that affects the yield of bio-vanillin are Pb<sup>+</sup> and Cr<sup>+</sup> were identified from the effect of metal ions in the bio-vanillin production.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 49-60"},"PeriodicalIF":4.1,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141688946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.jbiotec.2024.07.007
Rachel Javorova , Bronislava Rezuchova , Lubomira Feckova , Renata Novakova , Dominika Csolleiova , Maria Kopacova , Vladimir Patoprsty , Filip Opaterny , Beatrica Sevcikova , Jan Kormanec
We have created a novel synthetic biology expression system allowing easy refactoring of biosynthetic gene clusters (BGCs) as monocistronic transcriptional units. The system is based on a set of plasmids containing a strong kasOp* promoter, RBS and terminators. It allows the cloning of biosynthetic genes into transcriptional units kasOp*-gene(s)-terminator flanked by several rare restriction cloning sites that can be sequentially combined into the artificial BGC in three compatible Streptomyces integration vectors. They allow a simultaneous integration of these BGCs at three different attB sites in the Streptomyces chromosome. The system was validated with biosynthetic genes from two known BGCs for aromatic polyketides landomycin and mithramycin.
{"title":"A new synthetic biology system for investigating the biosynthesis of antibiotics and other secondary metabolites in streptomycetes","authors":"Rachel Javorova , Bronislava Rezuchova , Lubomira Feckova , Renata Novakova , Dominika Csolleiova , Maria Kopacova , Vladimir Patoprsty , Filip Opaterny , Beatrica Sevcikova , Jan Kormanec","doi":"10.1016/j.jbiotec.2024.07.007","DOIUrl":"https://doi.org/10.1016/j.jbiotec.2024.07.007","url":null,"abstract":"<div><p>We have created a novel synthetic biology expression system allowing easy refactoring of biosynthetic gene clusters (BGCs) as monocistronic transcriptional units. The system is based on a set of plasmids containing a strong <em>kasOp*</em> promoter, RBS and terminators. It allows the cloning of biosynthetic genes into transcriptional units <em>kasOp</em>*-gene(s)-terminator flanked by several rare restriction cloning sites that can be sequentially combined into the artificial BGC in three compatible <em>Streptomyces</em> integration vectors. They allow a simultaneous integration of these BGCs at three different <em>attB</em> sites in the <em>Streptomyces</em> chromosome. The system was validated with biosynthetic genes from two known BGCs for aromatic polyketides landomycin and mithramycin.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":"Pages 128-138"},"PeriodicalIF":4.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141605264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.jbiotec.2024.07.004
Yiran Huang , Tao Ma , Zhiyuan Wan , Cheng Zhong , Jianyi Wang
Automatically finding novel pathways plays an important role in the initial designs of metabolic pathways in synthetic biology and metabolic engineering. Although path-finding methods have been successfully applied in identifying valuable synthetic pathways, few efforts have been made in fusing atom group tracking into building stoichiometry model to search metabolic pathways from arbitrary start compound via Mixed Integer Linear Programming (MILP). We propose a novel method called AFP to find metabolic pathways by incorporating atom group tracking into reaction stoichiometry via MILP. AFP tracks the movements of atom groups in the reaction stoichiometry to construct MILP model to search the pathways containing atom groups exchange in the reactions and adapts the MILP model to provide the options of searching pathways from an arbitrary or given compound to the target compound. Combining atom group tracking with reaction stoichiometry to build MILP model for pathfinding may promote the search of well-designed alternative pathways at the stoichiometric modeling level. The experimental comparisons to the known pathways show that our proposed method AFP is more effective to recover the known pathways than other existing methods and is capable of discovering biochemically feasible pathways producing the metabolites of interest.
{"title":"AFP: Finding pathways accounting for stoichiometry along with atom group tracking in metabolic network","authors":"Yiran Huang , Tao Ma , Zhiyuan Wan , Cheng Zhong , Jianyi Wang","doi":"10.1016/j.jbiotec.2024.07.004","DOIUrl":"10.1016/j.jbiotec.2024.07.004","url":null,"abstract":"<div><p>Automatically finding novel pathways plays an important role in the initial designs of metabolic pathways in synthetic biology and metabolic engineering. Although path-finding methods have been successfully applied in identifying valuable synthetic pathways, few efforts have been made in fusing atom group tracking into building stoichiometry model to search metabolic pathways from arbitrary start compound via Mixed Integer Linear Programming (MILP). We propose a novel method called AFP to find metabolic pathways by incorporating atom group tracking into reaction stoichiometry via MILP. AFP tracks the movements of atom groups in the reaction stoichiometry to construct MILP model to search the pathways containing atom groups exchange in the reactions and adapts the MILP model to provide the options of searching pathways from an arbitrary or given compound to the target compound. Combining atom group tracking with reaction stoichiometry to build MILP model for pathfinding may promote the search of well-designed alternative pathways at the stoichiometric modeling level. The experimental comparisons to the known pathways show that our proposed method AFP is more effective to recover the known pathways than other existing methods and is capable of discovering biochemically feasible pathways producing the metabolites of interest.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":"Pages 139-151"},"PeriodicalIF":4.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.jbiotec.2024.07.002
Zsuzsánna Réthi-Nagy, Szilvia Juhász
The human microbiome is a diverse ecosystem of microorganisms that reside in the body and influence various aspects of health and well-being. Recent advances in sequencing technology have brought to light microbial communities in organs and tissues that were previously considered sterile. The gut microbiota plays an important role in host physiology, including metabolic functions and immune modulation. Disruptions in the balance of the microbiome, known as dysbiosis, have been linked to diseases such as cancer, inflammatory bowel disease and metabolic disorders. In addition, the administration of antibiotics can lead to dysbiosis by disrupting the structure and function of the gut microbial community. Targeting strategies are the key to rebalancing the microbiome and fighting disease, including cancer, through interventions such as probiotics, fecal microbiota transplantation (FMT), and bacteria-based therapies. Future research must focus on understanding the complex interactions between diet, the microbiome and cancer in order to optimize personalized interventions. Multidisciplinary collaborations are essential if we are going to translate microbiome research into clinical practice. This will revolutionize approaches to cancer prevention and treatment.
{"title":"Microbiome's Universe: Impact on health, disease and cancer treatment","authors":"Zsuzsánna Réthi-Nagy, Szilvia Juhász","doi":"10.1016/j.jbiotec.2024.07.002","DOIUrl":"10.1016/j.jbiotec.2024.07.002","url":null,"abstract":"<div><p>The human microbiome is a diverse ecosystem of microorganisms that reside in the body and influence various aspects of health and well-being. Recent advances in sequencing technology have brought to light microbial communities in organs and tissues that were previously considered sterile. The gut microbiota plays an important role in host physiology, including metabolic functions and immune modulation. Disruptions in the balance of the microbiome, known as dysbiosis, have been linked to diseases such as cancer, inflammatory bowel disease and metabolic disorders. In addition, the administration of antibiotics can lead to dysbiosis by disrupting the structure and function of the gut microbial community. Targeting strategies are the key to rebalancing the microbiome and fighting disease, including cancer, through interventions such as probiotics, fecal microbiota transplantation (FMT), and bacteria-based therapies. Future research must focus on understanding the complex interactions between diet, the microbiome and cancer in order to optimize personalized interventions. Multidisciplinary collaborations are essential if we are going to translate microbiome research into clinical practice. This will revolutionize approaches to cancer prevention and treatment.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":"Pages 161-179"},"PeriodicalIF":4.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.jbiotec.2024.07.003
José Luis Spinoso-Castillo , Eucario Mancilla-Álvarez , Jericó Jabín Bello-Bello
Flooding caused by climate change puts the productivity of sugarcane cultivation at risk. The objective of this study was to evaluate the effect of in vitro flooding stress on sugarcane plantlets. Sugarcane plantlets were grown in test tubes containing Murashige and Skoog semi-solid medium without growth regulators as a control treatment and two stress levels using a double layer with sterile distilled water to simulate hypoxia and anoxia. After 15 d of culture, the number of new shoots, plantlet height, number of leaves, number of roots, root length, stomatal density, percentage of closed stomata and percentage of dry matter were evaluated. In addition, biochemical variables such as chlorophylls, carotenoids, phosphoenolpyruvate (PEP), Rubisco, total proteins (TP), proline (Pr), glycine-betaine (GB), phenols, antioxidant capacity and lipid peroxidation were determined in all treatments. Results showed a higher number of new shoots, leaves and percentage of closed stomata in the flooded plantlets, while plantlet height, number of roots, stomatal density, and dry matter were higher in the control treatment. Regarding, chlorophyll, carotenoid, PEP and Rubisco contents decreased in the flooded treatments, while TP and phenol contents were higher in the partially submerged treatment. Antioxidant capacity and lipid peroxidation increased in the fully submerged treatment. Pr and GB contents did not show changes in any of the evaluated treatments. Stress induced by excess water in a double layer in vitro is an alternative method to determining physiological and biochemical mechanisms of tolerance to hypoxia and anoxia caused by flooding for breeding programs in sugarcane.
{"title":"In vitro response of sugarcane (Saccharum spp. Hybrid) plantlets to flooding stress","authors":"José Luis Spinoso-Castillo , Eucario Mancilla-Álvarez , Jericó Jabín Bello-Bello","doi":"10.1016/j.jbiotec.2024.07.003","DOIUrl":"10.1016/j.jbiotec.2024.07.003","url":null,"abstract":"<div><p>Flooding caused by climate change puts the productivity of sugarcane cultivation at risk. The objective of this study was to evaluate the effect of <em>in vitro</em> flooding stress on sugarcane plantlets. Sugarcane plantlets were grown in test tubes containing Murashige and Skoog semi-solid medium without growth regulators as a control treatment and two stress levels using a double layer with sterile distilled water to simulate hypoxia and anoxia. After 15 d of culture, the number of new shoots, plantlet height, number of leaves, number of roots, root length, stomatal density, percentage of closed stomata and percentage of dry matter were evaluated. In addition, biochemical variables such as chlorophylls, carotenoids, phosphoenolpyruvate (PEP), Rubisco, total proteins (TP), proline (Pr), glycine-betaine (GB), phenols, antioxidant capacity and lipid peroxidation were determined in all treatments. Results showed a higher number of new shoots, leaves and percentage of closed stomata in the flooded plantlets, while plantlet height, number of roots, stomatal density, and dry matter were higher in the control treatment. Regarding, chlorophyll, carotenoid, PEP and Rubisco contents decreased in the flooded treatments, while TP and phenol contents were higher in the partially submerged treatment. Antioxidant capacity and lipid peroxidation increased in the fully submerged treatment. Pr and GB contents did not show changes in any of the evaluated treatments. Stress induced by excess water in a double layer <em>in vitro</em> is an alternative method to determining physiological and biochemical mechanisms of tolerance to hypoxia and anoxia caused by flooding for breeding programs in sugarcane.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 74-80"},"PeriodicalIF":4.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.jbiotec.2024.07.008
Ida M. Makhubela , Alexander Zawaira , Dean Brady , Daniel P. Pienaar
The natural aroma compound (+)-nootkatone was obtained in selective conversions of up to 74 mol% from inexpensive (+)-valencene substrate by using a comparatively greener biocatalytic process developed based on modifications of the previously published Firmenich method. Buffer identity and concentration, pH, temperature and downstream work-up procedures were optimized to produce a crude product in which >90 % of (+)-valencene had been converted, with high chemoselectivity observed for (+)-nootkatone production. Interestingly, the biotransformation was carried out efficiently at temperatures as low as 21 ºC. Surprisingly, the best results were obtained when an acidic pH in the range of 3–6 was applied, as compared to the previously published procedure in which it appeared to be necessary to buffer the pH optimally and fixed throughout at 8.5. Furthermore, there was no need to maintain a pure oxygen atmosphere to achieve good (+)-nootkatone yields. Instead, air bubbled continuously at a low rate through the reaction mixture via a submerged glass capillary was sufficient to enable the desired lipoxygenase-catalyzed oxidation reactions to occur efficiently. No valencene epoxide side-products were detected in the organic product extract by a standard GCMS protocol. Only traces of the anticipated corresponding α- and β-nootkatol intermediates were routinely observed.
{"title":"Multifactorial optimization enables the identification of a greener method to produce (+)-nootkatone","authors":"Ida M. Makhubela , Alexander Zawaira , Dean Brady , Daniel P. Pienaar","doi":"10.1016/j.jbiotec.2024.07.008","DOIUrl":"10.1016/j.jbiotec.2024.07.008","url":null,"abstract":"<div><p>The natural aroma compound (+)-nootkatone was obtained in selective conversions of up to 74 mol% from inexpensive (+)-valencene substrate by using a comparatively greener biocatalytic process developed based on modifications of the previously published Firmenich method. Buffer identity and concentration, pH, temperature and downstream work-up procedures were optimized to produce a crude product in which >90 % of (+)-valencene had been converted, with high chemoselectivity observed for (+)-nootkatone production. Interestingly, the biotransformation was carried out efficiently at temperatures as low as 21 ºC. Surprisingly, the best results were obtained when an acidic pH in the range of 3–6 was applied, as compared to the previously published procedure in which it appeared to be necessary to buffer the pH optimally and fixed throughout at 8.5. Furthermore, there was no need to maintain a pure oxygen atmosphere to achieve good (+)-nootkatone yields. Instead, air bubbled continuously at a low rate through the reaction mixture <em>via</em> a submerged glass capillary was sufficient to enable the desired lipoxygenase-catalyzed oxidation reactions to occur efficiently. No valencene epoxide side-products were detected in the organic product extract by a standard GCMS protocol. Only traces of the anticipated corresponding α- and β-nootkatol intermediates were routinely observed.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 41-48"},"PeriodicalIF":4.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168165624001949/pdfft?md5=1bac3a2b5792cdf7e9e8c679248ccbb6&pid=1-s2.0-S0168165624001949-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1016/j.jbiotec.2024.07.006
Seyed Babak Loghmani , Eric Zitzow , Luisa Schwarzmüller , Yvonne Humboldt , Philip Eisenberg , Bernd Kreikemeyer , Nadine Veith , Ursula Kummer , Tomas Fiedler
Enterococcus faecalis is a versatile lactic acid bacterium with a large variety of implications for humans. While some strains of this species are pathobionts being resistant against most of the common antibiotics, other strains are regarded as biological protectants or even probiotics. Accordingly, E. faecalis strains largely differ in the size and content of their accessory genome. In this study, we describe the genome-scale metabolic network reconstruction of E. faecalis ATCC 19433, a non-resistant human-associated strain. A comparison of the genome-scale metabolic model (GSM) of E. faecalis ATCC 19433 with a previously published GSM of the multi-resistant pathobiontic E. faecalis V583 reveals high similarities in the central metabolic abilities of these two human associated strains. This is reflected, e.g., in the identical amino acid auxotrophies. The ATCC 19433 strain, however, has a 14.1% smaller genome than V583 and lacks the multiple antibiotic resistance genes and genes involved in capsule formation. Based on the measured metabolic fluxes at different growth rates, the energy demand at zero growth was calculated to be about 40% lower for the ATCC 19433 strain compared to V583. Furthermore, the ATCC 19433 strain seems less prone to the depletion of amino acids utilizable for energy metabolism. This might hint at a lower overall energy demand of the ATCC 19433 strain as compared to V583.
{"title":"Comparing Genome Scale Metabolic Models of the non-resistant Enterococcus faecalis ATCC 19433 and the multi-resistant Enterococcus faecalis V583","authors":"Seyed Babak Loghmani , Eric Zitzow , Luisa Schwarzmüller , Yvonne Humboldt , Philip Eisenberg , Bernd Kreikemeyer , Nadine Veith , Ursula Kummer , Tomas Fiedler","doi":"10.1016/j.jbiotec.2024.07.006","DOIUrl":"10.1016/j.jbiotec.2024.07.006","url":null,"abstract":"<div><p><em>Enterococcus faecalis</em> is a versatile lactic acid bacterium with a large variety of implications for humans. While some strains of this species are pathobionts being resistant against most of the common antibiotics, other strains are regarded as biological protectants or even probiotics. Accordingly, <em>E. faecalis</em> strains largely differ in the size and content of their accessory genome. In this study, we describe the genome-scale metabolic network reconstruction of <em>E. faecalis</em> ATCC 19433, a non-resistant human-associated strain. A comparison of the genome-scale metabolic model (GSM) of <em>E. faecalis</em> ATCC 19433 with a previously published GSM of the multi-resistant pathobiontic <em>E. faecalis</em> V583 reveals high similarities in the central metabolic abilities of these two human associated strains. This is reflected, e.g., in the identical amino acid auxotrophies. The ATCC 19433 strain, however, has a 14.1% smaller genome than V583 and lacks the multiple antibiotic resistance genes and genes involved in capsule formation. Based on the measured metabolic fluxes at different growth rates, the energy demand at zero growth was calculated to be about 40% lower for the ATCC 19433 strain compared to V583. Furthermore, the ATCC 19433 strain seems less prone to the depletion of amino acids utilizable for energy metabolism. This might hint at a lower overall energy demand of the ATCC 19433 strain as compared to V583.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"392 ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168165624001925/pdfft?md5=1ba001f61d78da3ee6273ca114eeb527&pid=1-s2.0-S0168165624001925-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141599917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}