Pub Date : 2017-09-05DOI: 10.4172/2155-952X.1000268
Ritika Gupta
Nanotechnology is increasing importance in diabetics’ research in the recent decade. It is a field that involves nanomaterials, nanostructures, nanoparticle design and their applications in humans etc. It also provides more accurate information for diagnosing diabetes mellitus. Nanotechnology has enhanced drug delivery to those areas which were unfavorable for macromolecules. It is offering new implantable sensing technologies thus providing accurate medical information. The combination of nanotechnology and medicine has created a new field “nanomedicine” to enhance human health care. Some of the applications of nanotechnology in treating diabetes mellitus are artificial pancreas, instead of pancreas transplantation use of artificial beta cells, for oral delivery of insulin use of nanospheres as biodegradable polymeric carriers etc. In this study, applications of nanotechnology in treating diabetes mellitus are discussed.
{"title":"Diabetes Treatment by Nanotechnology","authors":"Ritika Gupta","doi":"10.4172/2155-952X.1000268","DOIUrl":"https://doi.org/10.4172/2155-952X.1000268","url":null,"abstract":"Nanotechnology is increasing importance in diabetics’ research in the recent decade. It is a field that involves nanomaterials, nanostructures, nanoparticle design and their applications in humans etc. It also provides more accurate information for diagnosing diabetes mellitus. Nanotechnology has enhanced drug delivery to those areas which were unfavorable for macromolecules. It is offering new implantable sensing technologies thus providing accurate medical information. The combination of nanotechnology and medicine has created a new field “nanomedicine” to enhance human health care. Some of the applications of nanotechnology in treating diabetes mellitus are artificial pancreas, instead of pancreas transplantation use of artificial beta cells, for oral delivery of insulin use of nanospheres as biodegradable polymeric carriers etc. In this study, applications of nanotechnology in treating diabetes mellitus are discussed.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"16 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2017-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82736565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-08-28DOI: 10.4172/2155-952X.1000269
W. F. Elbossaty
Silver nanoparticles (Ag-NP) are being used increasingly in wound dressings, catheters and various household products due to their antimicrobial activity. Ag-NP synthesized by different methods, one of them biological method, in which extract from plant can used as reducing agent in synthesis of metal nanoparticles. Synthesis of Ag-NP in fresh green tea extract has been carried out in this work as an environment friendly approach. Ag-NP was obtained by the reduction of Ag+ ions through the action of green tea infusions. Scanning Electron Microscope (SEM) was used for the determination of the average diameter of the Ag-NP which were found of 20 nm in green tea infusion .The growth of nanoparticles is monitored by UV-VIS spectrophotometer and complemented with characterization using Transmission Electron Microscopy and Fourier Transform Infrared Spectroscopy.
{"title":"Green Tea as Biological System for the Synthesis of Silver Nanoparticles","authors":"W. F. Elbossaty","doi":"10.4172/2155-952X.1000269","DOIUrl":"https://doi.org/10.4172/2155-952X.1000269","url":null,"abstract":"Silver nanoparticles (Ag-NP) are being used increasingly in wound dressings, catheters and various household products due to their antimicrobial activity. Ag-NP synthesized by different methods, one of them biological method, in which extract from plant can used as reducing agent in synthesis of metal nanoparticles. Synthesis of Ag-NP in fresh green tea extract has been carried out in this work as an environment friendly approach. Ag-NP was obtained by the reduction of Ag+ ions through the action of green tea infusions. Scanning Electron Microscope (SEM) was used for the determination of the average diameter of the Ag-NP which were found of 20 nm in green tea infusion .The growth of nanoparticles is monitored by UV-VIS spectrophotometer and complemented with characterization using Transmission Electron Microscopy and Fourier Transform Infrared Spectroscopy.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"100 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73618524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-26DOI: 10.4172/2155-952X.1000265
Kirsi Rosenqvist, Merja Gursöy, E. Könönen, U. Gursoy, A. Juppo
Bioactive glass (BAG) and clodronate are both used for bone regeneration. In this pilot clinical study, we compared the effect of BAG and a novel BAG+clodronate combination as a topical maintenance phase treatment for chronic periodontitis. Two dental residual pockets were treated in each subject (n=10): one with BAG alone and the other with combination product, by applying the products subgingivally for 10 min once a week for four weeks. We describe the effects of these investigational products to the clinical parameters of periodontitis and two bone metabolism markers (osteoprotegerin and osteocalcin). Additionally, subjective satisfaction for the treatment was evaluated. The results must be considered as directional, understanding that further investigation is needed to confirm the findings. Based on clinical parameters measured both treatments could benefit as maintenance therapy for chronic periodontitis. The positive effect of the combination product on tooth sensitivity may bring additional benefits in comparison to the use of BAG alone. Both treatments were well tolerated and safe.
{"title":"Comparison between a novel combination of bioactive glass with clodronate and bioactive glass alone as a treatment for chronic periodontitis","authors":"Kirsi Rosenqvist, Merja Gursöy, E. Könönen, U. Gursoy, A. Juppo","doi":"10.4172/2155-952X.1000265","DOIUrl":"https://doi.org/10.4172/2155-952X.1000265","url":null,"abstract":"Bioactive glass (BAG) and clodronate are both used for bone regeneration. In this pilot clinical study, we compared the effect of BAG and a novel BAG+clodronate combination as a topical maintenance phase treatment for chronic periodontitis. Two dental residual pockets were treated in each subject (n=10): one with BAG alone and the other with combination product, by applying the products subgingivally for 10 min once a week for four weeks. We describe the effects of these investigational products to the clinical parameters of periodontitis and two bone metabolism markers (osteoprotegerin and osteocalcin). Additionally, subjective satisfaction for the treatment was evaluated. The results must be considered as directional, understanding that further investigation is needed to confirm the findings. Based on clinical parameters measured both treatments could benefit as maintenance therapy for chronic periodontitis. The positive effect of the combination product on tooth sensitivity may bring additional benefits in comparison to the use of BAG alone. Both treatments were well tolerated and safe.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"1 1","pages":"265"},"PeriodicalIF":0.0,"publicationDate":"2017-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83067923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-24DOI: 10.4172/2155-952X.1000266
Pushpendra Singh, R. Sharma, R. Singh
The present investigation was undertaken with an aim to produce α-amylase in cost effective way keeping its market potential into consideration. This result obtained from present study prove that Bacillus licheniformis is the maximum α-amylase producing strain isolated from soil under suitable conditions. This study will very helpful for upcoming researchers to uncover the various aspect of enzyme production by microorganism. The present investigation was undertaken with an aim to produce higher amount of amylase with pure compounds in submerged fermentation. To screen the isolates for promising α-amylase producing capability and one of the most promising isolate is further scale up. Amylase constitutes a class of industrial enzymes having approximately 20% of the enzyme market. α-amylase has found its application in a range of industries including food, brewing, distilling industry, textile, paper pharmaceutical and bioconversion of solid waste etc. Microorganism used in present investigation, isolated from rhizospheric regions of giant newar variety of Raphanus sativus grown in district Jaunpur, (Uttar Pradesh) India. A total of 30 natural isolates were scanned for α-amylase activity out of which 20 isolates were biochemically characterized. Based on ribotyping all the isolates were identified and one of the most promising amylase producer, i.e., Bacillus licheniformis was finally selected for further studies. The experiments were carried out in triplicates and mean value was taken. Nutritional source such as carbon and nitrogen sources were optimized for the production of α-amylase in free cell condition. Maximum α-amylase production was observed at 24 h. of incubation. Three different types of media such as Semi-synthetic, complex media I and complex media II tested and various parameters were optimized for enhance the alpha-amylase yield. It was found that identified soil microorganism Bacillus licheniformis is the best strain for α-amylase production and complex media-I gave maximum yield.
{"title":"Maximum α-Amylase Production by Molecular and Biochemical Characterized Soil Microorganism","authors":"Pushpendra Singh, R. Sharma, R. Singh","doi":"10.4172/2155-952X.1000266","DOIUrl":"https://doi.org/10.4172/2155-952X.1000266","url":null,"abstract":"The present investigation was undertaken with an aim to produce α-amylase in cost effective way keeping its market potential into consideration. This result obtained from present study prove that Bacillus licheniformis is the maximum α-amylase producing strain isolated from soil under suitable conditions. This study will very helpful for upcoming researchers to uncover the various aspect of enzyme production by microorganism. The present investigation was undertaken with an aim to produce higher amount of amylase with pure compounds in submerged fermentation. To screen the isolates for promising α-amylase producing capability and one of the most promising isolate is further scale up. Amylase constitutes a class of industrial enzymes having approximately 20% of the enzyme market. α-amylase has found its application in a range of industries including food, brewing, distilling industry, textile, paper pharmaceutical and bioconversion of solid waste etc. Microorganism used in present investigation, isolated from rhizospheric regions of giant newar variety of Raphanus sativus grown in district Jaunpur, (Uttar Pradesh) India. A total of 30 natural isolates were scanned for α-amylase activity out of which 20 isolates were biochemically characterized. Based on ribotyping all the isolates were identified and one of the most promising amylase producer, i.e., Bacillus licheniformis was finally selected for further studies. The experiments were carried out in triplicates and mean value was taken. Nutritional source such as carbon and nitrogen sources were optimized for the production of α-amylase in free cell condition. Maximum α-amylase production was observed at 24 h. of incubation. Three different types of media such as Semi-synthetic, complex media I and complex media II tested and various parameters were optimized for enhance the alpha-amylase yield. It was found that identified soil microorganism Bacillus licheniformis is the best strain for α-amylase production and complex media-I gave maximum yield.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83460841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-18DOI: 10.4172/2155-952X.1000264
L. Q. Al-Karam
In this accomplishment, zinc oxide nanoparticles were make-believe by hail make advances reason zinc acetate as a precursor. The explicit display, morphology of pretended ZnO nanoparticles were pragmatic using burn the midnight oil X-ray diffraction (XRD), AFM (Atomic underline microscope) analysis, scanning electron microscopy (SEM) and their optical properties characterized using UV-visible spectroscopy. XRD niggardly simple turn the intended ZnO duplicate is highly crystalline, having wurtzite crystal structure. AFM tight-fisted essential ramble the fitted ZnO sample is of high purity. UV-Vis absorption sweep showed a regular field for ZnO nanoparticles and exertion chasm explicit close to the typical energy gap of ZnO nanoparticles. The SEM get the hang shows range ZnO nanoparticles designed in this scrutinize are spherical in shape with a smooth rise. The surface rudeness inquiry need TR220 unambiguous acceptable results of prepared ZnO/ polystyrene samples.
{"title":"Mechanical Tribology and Antibacterial Activity of ZnO/Polystyrene Nanocomposite","authors":"L. Q. Al-Karam","doi":"10.4172/2155-952X.1000264","DOIUrl":"https://doi.org/10.4172/2155-952X.1000264","url":null,"abstract":"In this accomplishment, zinc oxide nanoparticles were make-believe by hail make advances reason zinc acetate as a precursor. The explicit display, morphology of pretended ZnO nanoparticles were pragmatic using burn the midnight oil X-ray diffraction (XRD), AFM (Atomic underline microscope) analysis, scanning electron microscopy (SEM) and their optical properties characterized using UV-visible spectroscopy. XRD niggardly simple turn the intended ZnO duplicate is highly crystalline, having wurtzite crystal structure. AFM tight-fisted essential ramble the fitted ZnO sample is of high purity. UV-Vis absorption sweep showed a regular field for ZnO nanoparticles and exertion chasm explicit close to the typical energy gap of ZnO nanoparticles. The SEM get the hang shows range ZnO nanoparticles designed in this scrutinize are spherical in shape with a smooth rise. The surface rudeness inquiry need TR220 unambiguous acceptable results of prepared ZnO/ polystyrene samples.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"11 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74674826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-06-30DOI: 10.4172/2155-952X.1000263
Tomasz AAAAga, Paulina Weiher, M. Paszkiewicz, D. Nidzworski
Endospores of Bacillus subtilis have been used extensively as a platform for recombinant protein display for nearly two decades. Main use of the spore surface display system is generation of oral vaccines against many human and animal pathogens. Formulation of oral vaccine based on spores is an attractive approach to alternative vaccination due to the timesaving and relative easiness of production. Another advantage of such formulation is stability of presented antigens. It is assumed that the spore coat structure prevents degradation of displayed proteins by many destructive factors such as heat, proteases or stomach environment. However, there is little scientific background and substantial lack of experiments verifying this statement. In our work, we tested protective properties of spores against degradation of displayed antigens in harsh environment. We constructed B. subtilis strains producing spores presenting highly conserved long α-helix (LAH) region of the influenza A virus hemagglutinin. The constructs were obtained by fusion of LAH antigen to protein CotB or CotZ from the spore coat. We treated recombinant spores with destructive agents such as heat, protease, low pH and high-energy irradiation to test protective features of the spore coat. After treatment, spore coat extracts were analyzed by western blot to study fate of the displayed antigen. Results that we publish indicate that spore coat protects displayed antigen from degradation. This work is a strong support of hypothesis stating protective properties of spore surface display system against antigen degradation.
{"title":"Bacillus subtilis Spore Surface Display System Protects Recombinant Proteins from Degradation-Verified Hypothesis","authors":"Tomasz AAAAga, Paulina Weiher, M. Paszkiewicz, D. Nidzworski","doi":"10.4172/2155-952X.1000263","DOIUrl":"https://doi.org/10.4172/2155-952X.1000263","url":null,"abstract":"Endospores of Bacillus subtilis have been used extensively as a platform for recombinant protein display for nearly two decades. Main use of the spore surface display system is generation of oral vaccines against many human and animal pathogens. Formulation of oral vaccine based on spores is an attractive approach to alternative vaccination due to the timesaving and relative easiness of production. Another advantage of such formulation is stability of presented antigens. It is assumed that the spore coat structure prevents degradation of displayed proteins by many destructive factors such as heat, proteases or stomach environment. However, there is little scientific background and substantial lack of experiments verifying this statement. In our work, we tested protective properties of spores against degradation of displayed antigens in harsh environment. We constructed B. subtilis strains producing spores presenting highly conserved long α-helix (LAH) region of the influenza A virus hemagglutinin. The constructs were obtained by fusion of LAH antigen to protein CotB or CotZ from the spore coat. We treated recombinant spores with destructive agents such as heat, protease, low pH and high-energy irradiation to test protective features of the spore coat. After treatment, spore coat extracts were analyzed by western blot to study fate of the displayed antigen. Results that we publish indicate that spore coat protects displayed antigen from degradation. This work is a strong support of hypothesis stating protective properties of spore surface display system against antigen degradation.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"1 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2017-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90071322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-06-29DOI: 10.4172/2155-952X.1000261
P. Hennebert, Amandine Anderson, P. Merdy
Environmental assessment of engineered nanoparticles (ENPs) currently suffers from lack of data on production, emission, behaviour and fate in natural compartments. This paper aims to bring factual data on production amounts of ENPs and emission of mineral elements in a colloidal or nanoparticulate forms stemming from products, (e.g. cosmetics, paints, concretes) and from two potential waste sinks, namely municipal sewage sludge and nonhazardous waste landfill sludge. Based on the declaration of production and importation of ENPs in France in 2014, we set out a classification of ENPs substances comprising carbon black, organic pigments, miscellaneous organic substances and mineral ENPs. These mineral ENPs were sub-classified on the basis of production and CLP ecotoxicological and hazard classifications. Major elements (Group #1) encompass ENPs substances ubiquitous in total contents, and also as a colloid fraction in waste leachates (Si, Ca, Ti, Al, Mg, Fe, Mn, P). Minor elements were divided as ENPs with soluble substances and dissolved metal ions non-classified as ecotoxic (Group #2: Ba, Bi, Cr (III), Sr, Zr, La, Pd, Mo, W, Y, Au) or with soluble substances classified as ecotoxic and hazard statement code in the CLP regulation (Group #3: Ce, Cu, Zn, Ni, Sb, Ag, Co). Paints, concrete and particularly cosmetics proved to be sources of ENPs. Colloidal forms of elements or ENPs were found in leachate obtained from paint (Si), in cosmetics leachates (Al, Si, Ti and Zn), and in one demolition concrete (Ti). No nanoparticulate forms or fraction of Ag, Ce, Ti and Zn were identified by TEM/EDS in municipal sewage sludge. However, sewage sludge could be a sink for Group #3 elements such as Ag and Ce, since their total concentrations were significant. Based on landfill leachates from municipal solid wastes, the colloidal fraction frequently contained elements of Group #3 (Ni, Zn, Cu, Co and Sb) but with low mean concentration and more rarely Ag and Ce, indicating that the fluxes of these elements from the landfill cells should be low, except for Ce. Landfills seem to not emit ENPs in their leachates. From a regulative aspect, monitoring of Ag in sewage sludge for agricultural use could be of concern.
工程纳米颗粒(ENPs)的环境评估目前缺乏关于其生产、排放、行为和在自然隔间中的命运的数据。本文旨在提供有关产品(如化妆品、油漆、混凝土)和两个潜在废物池(即城市污水污泥和无害垃圾填埋场污泥)中ENPs的产量和胶体或纳米颗粒形式矿物元素排放的实际数据。根据2014年法国ENPs的生产和进口申报,我们对ENPs物质进行了分类,包括炭黑、有机颜料、杂项有机物质和矿物ENPs。这些矿物ENPs在生产和CLP生态毒理学和危害分类的基础上进行了再分类。主要元素(# 1)包含经验物质无处不在的全部内容,并作为胶体分数在垃圾渗滤液(硅、钙、钛、铝、镁、铁、锰、P)。小元素被划分为经验与可溶性物质和溶解金属离子未分类的ecotoxic(组# 2:Ba、Bi、铬(III)、Sr、锆、洛杉矶,Pd,密苏里州,W, Y, Au)和可溶性物质列为ecotoxic CLP监管和风险声明代码(组# 3:Ce、铜、锌、镍、某人,Ag)有限公司)。油漆、混凝土,特别是化妆品被证明是环境污染物的来源。在从油漆(Si),化妆品(Al, Si, Ti和Zn)和一种拆除混凝土(Ti)中获得的渗滤液中发现了胶体形式的元素或ENPs。在城市污水污泥中,透射电镜/能谱分析未发现银、铈、钛和锌的纳米颗粒形式或组分。然而,污水污泥可能是3族元素(如Ag和Ce)的汇,因为它们的总浓度很高。以城市生活垃圾渗滤液为例,其胶体组分中常见的是3族元素(Ni、Zn、Cu、Co和Sb),但平均浓度较低,Ag和Ce的含量较低,说明除Ce外,这些元素在垃圾填埋场的通量较低。垃圾填埋场的渗滤液中似乎不排放ENPs。从监管的角度来看,监测农业用污泥中的银是值得关注的。
{"title":"Mineral Nanoparticles in Waste: Potential Sources, Occurrence in Some Engineered Nanomaterials Leachates, Municipal Sewage Sludges and Municipal Landfill Sludges","authors":"P. Hennebert, Amandine Anderson, P. Merdy","doi":"10.4172/2155-952X.1000261","DOIUrl":"https://doi.org/10.4172/2155-952X.1000261","url":null,"abstract":"Environmental assessment of engineered nanoparticles (ENPs) currently suffers from lack of data on production, emission, behaviour and fate in natural compartments. This paper aims to bring factual data on production amounts of ENPs and emission of mineral elements in a colloidal or nanoparticulate forms stemming from products, (e.g. cosmetics, paints, concretes) and from two potential waste sinks, namely municipal sewage sludge and nonhazardous waste landfill sludge. Based on the declaration of production and importation of ENPs in France in 2014, we set out a classification of ENPs substances comprising carbon black, organic pigments, miscellaneous organic substances and mineral ENPs. These mineral ENPs were sub-classified on the basis of production and CLP ecotoxicological and hazard classifications. Major elements (Group #1) encompass ENPs substances ubiquitous in total contents, and also as a colloid fraction in waste leachates (Si, Ca, Ti, Al, Mg, Fe, Mn, P). Minor elements were divided as ENPs with soluble substances and dissolved metal ions non-classified as ecotoxic (Group #2: Ba, Bi, Cr (III), Sr, Zr, La, Pd, Mo, W, Y, Au) or with soluble substances classified as ecotoxic and hazard statement code in the CLP regulation (Group #3: Ce, Cu, Zn, Ni, Sb, Ag, Co). Paints, concrete and particularly cosmetics proved to be sources of ENPs. Colloidal forms of elements or ENPs were found in leachate obtained from paint (Si), in cosmetics leachates (Al, Si, Ti and Zn), and in one demolition concrete (Ti). No nanoparticulate forms or fraction of Ag, Ce, Ti and Zn were identified by TEM/EDS in municipal sewage sludge. However, sewage sludge could be a sink for Group #3 elements such as Ag and Ce, since their total concentrations were significant. Based on landfill leachates from municipal solid wastes, the colloidal fraction frequently contained elements of Group #3 (Ni, Zn, Cu, Co and Sb) but with low mean concentration and more rarely Ag and Ce, indicating that the fluxes of these elements from the landfill cells should be low, except for Ce. Landfills seem to not emit ENPs in their leachates. From a regulative aspect, monitoring of Ag in sewage sludge for agricultural use could be of concern.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"11 1","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76889870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-06-29DOI: 10.4172/2155-952X.1000262
Kristina M. Mahan, Rosemary K. Le, Joshua S. Yuan, A. Ragauskas
Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. This review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weight lignin compounds and laccase supplementation.
{"title":"A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus","authors":"Kristina M. Mahan, Rosemary K. Le, Joshua S. Yuan, A. Ragauskas","doi":"10.4172/2155-952X.1000262","DOIUrl":"https://doi.org/10.4172/2155-952X.1000262","url":null,"abstract":"Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. This review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weight lignin compounds and laccase supplementation.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"2197 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86559164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-06-02DOI: 10.4172/2155-952X.1000259
Supreet Kaur, N. Arora, Sawinder Kaur
Solid state fermentation was carried out for the production of pigments by using agricultural wastes. Yellow pigments were produced; the absorbance maxima of Pigment extract was measured by spectral analysis. Out of these agricultural wastes broken wheat (0.996 OD) was best for the pigment production. The maximum pigment yield (137.8 U/g) was seen at 12th day. The study revealed that the addition of nitrogen source improves the metabolic activity of the organism. Monosodium glutamate and ammonium nitrate improved the growth than other supplements. Various parameters were optimized to check the pigment stability. Pigments showed high stability at low temperatures (30-60°C) and become low at high temperature (above 60°C) and high stability at near-neutrality pH values (8.0) when compared to acidic pH values (4.0-6.0). FTIR analysis was performed to determine the chemical bonds in a molecule by infrared absorption spectra of Pigments. IR indicated that it is a phenolic compound and has broad stretching OH, C=C and C-H groups of the aromatic ring. It can be concluded that the microbial pigment produced can find application in the areas of textile, pharmaceuticals and food industries.
{"title":"Characterization of Yellow Pigments Produced by Pencillium sp. under Solid State Cultivation","authors":"Supreet Kaur, N. Arora, Sawinder Kaur","doi":"10.4172/2155-952X.1000259","DOIUrl":"https://doi.org/10.4172/2155-952X.1000259","url":null,"abstract":"Solid state fermentation was carried out for the production of pigments by using agricultural wastes. Yellow pigments were produced; the absorbance maxima of Pigment extract was measured by spectral analysis. Out of these agricultural wastes broken wheat (0.996 OD) was best for the pigment production. The maximum pigment yield (137.8 U/g) was seen at 12th day. The study revealed that the addition of nitrogen source improves the metabolic activity of the organism. Monosodium glutamate and ammonium nitrate improved the growth than other supplements. Various parameters were optimized to check the pigment stability. Pigments showed high stability at low temperatures (30-60°C) and become low at high temperature (above 60°C) and high stability at near-neutrality pH values (8.0) when compared to acidic pH values (4.0-6.0). FTIR analysis was performed to determine the chemical bonds in a molecule by infrared absorption spectra of Pigments. IR indicated that it is a phenolic compound and has broad stretching OH, C=C and C-H groups of the aromatic ring. It can be concluded that the microbial pigment produced can find application in the areas of textile, pharmaceuticals and food industries.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"30 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2017-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89425072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-05-16DOI: 10.4172/2155-952X.1000258
M. Kirsch, H. Korth, J. Fandrey, K. Ferenz
N-Nitrosomelatonin (NOMela) is well known for its capabilities to transnitrosate nucleophiles such as thiols and ascorbate thereby generating nitric oxide (NO)-releasing compounds. Like molsidomine, NOMela is one of the few NO-releasing substrates not inducing nitrate tolerance and may be therefore highly suitable as NO-therapeutical. As the physical and chemical properties of NOMela do not allow its direct application (oral or intravascular) in animals/ humans, the encapsulation with biodegradable poly(lactide-co-glycolide) (PLGA) polymers was performed and NOreleasing kinetics were studied. NOMela could be successfully encapsulated in PLGA (NOMela-PLGA) with an efficiency of 85% thereby prolonging its half-life time in aqueous solution (e.g. in the cytoplasm of endothelial and smooth muscle cells) about 3-fold. In the presence of “activated hydroxy compounds“ like vitamin C and thus under physiological conditions, NOMela-PLGA yielded two therapeutically relevant hormones, melatonin and nitric oxide, via reactions only known (until now) for unencapsulated, freely diffusing NOMela. Importantly, in the absence of any activated hydroxy compound the unwanted hydrolysis reaction of NOMela dominated, generating the non-functional nitrite (and not nitric oxide). These findings suggested that PLGA-encapsulated NOMela will be highly attractive as a novel NO-releasing drug lacking common side-effects of classical NO-releasing molecules such as glyceroltrinitrate.
n -亚硝基褪黑素(NOMela)以其转运亚硝基化亲核试剂如硫醇和抗坏血酸的能力而闻名,从而产生一氧化氮(NO)释放化合物。与莫西多明一样,NOMela是少数不诱导硝酸盐耐受性的no释放底物之一,因此可能非常适合作为no治疗药物。由于诺美拉的物理和化学性质不允许其直接应用于动物/人类(口服或血管内),因此采用可生物降解的聚乳酸-羟基乙酸酯(PLGA)聚合物进行包封,并研究了不释放动力学。将NOMela成功包封在PLGA (NOMela-PLGA)中,包封效率为85%,从而使其在水溶液(如内皮细胞和平滑肌细胞的细胞质)中的半衰期延长约3倍。在维生素C等“活性羟基化合物”存在的情况下,因此在生理条件下,NOMela- plga产生了两种与治疗相关的激素,褪黑激素和一氧化氮,通过(迄今为止)已知的未封装、自由扩散的NOMela的反应。重要的是,在没有任何活性羟基化合物的情况下,NOMela的无用水解反应占主导地位,产生非功能亚硝酸盐(而不是一氧化氮)。这些发现表明,plga封装的NOMela作为一种新型no释放药物将具有很高的吸引力,它没有传统no释放分子(如甘油三硝酸酯)的常见副作用。
{"title":"Encapsulation of N-Nitroso-melatonin with Poly(lactide-co-glycolide)","authors":"M. Kirsch, H. Korth, J. Fandrey, K. Ferenz","doi":"10.4172/2155-952X.1000258","DOIUrl":"https://doi.org/10.4172/2155-952X.1000258","url":null,"abstract":"N-Nitrosomelatonin (NOMela) is well known for its capabilities to transnitrosate nucleophiles such as thiols and ascorbate thereby generating nitric oxide (NO)-releasing compounds. Like molsidomine, NOMela is one of the few NO-releasing substrates not inducing nitrate tolerance and may be therefore highly suitable as NO-therapeutical. As the physical and chemical properties of NOMela do not allow its direct application (oral or intravascular) in animals/ humans, the encapsulation with biodegradable poly(lactide-co-glycolide) (PLGA) polymers was performed and NOreleasing kinetics were studied. NOMela could be successfully encapsulated in PLGA (NOMela-PLGA) with an efficiency of 85% thereby prolonging its half-life time in aqueous solution (e.g. in the cytoplasm of endothelial and smooth muscle cells) about 3-fold. In the presence of “activated hydroxy compounds“ like vitamin C and thus under physiological conditions, NOMela-PLGA yielded two therapeutically relevant hormones, melatonin and nitric oxide, via reactions only known (until now) for unencapsulated, freely diffusing NOMela. Importantly, in the absence of any activated hydroxy compound the unwanted hydrolysis reaction of NOMela dominated, generating the non-functional nitrite (and not nitric oxide). These findings suggested that PLGA-encapsulated NOMela will be highly attractive as a novel NO-releasing drug lacking common side-effects of classical NO-releasing molecules such as glyceroltrinitrate.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"64 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2017-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89586498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}