The making of biohydrogen from organic waste has been done by researchers because it is quite promising as an alternative fuel that can replace fossil fuels. the purpose of this research is to know the economic analysis of biohydrogen gas production from banana peel waste. first the preparation of banana skin waste by reducing the size, then mixed with mud and distilled water with a certain ratio. after that it is inserted into the fermenter and anaerobic fermentation is carried out for a certain time and pH variation. gas formed is measured using a gas analyzer. from this study the results obtained that by using a simple economic Journal of Chemical Process Engineering e-ISSN Number 2655 2967 54 analysis by calculating the breakdown of costs for once the production of BEP units obtained as much as 620 liters and the rupiah BEP around Rp. 9,300,000. from the results of this study it can be concluded that the production of biohydrogen is feasible to be developed. PENDAHULUAN Pemakaian bahan bakar fosil di Indonesia yang berlebihan dan terjadi sejak dahulu telah mengakibatkan semakin langkanya persediaan bahan bakar. Adanya krisis energi dan masalah lingkungan yang ditimbulkan, maka perlu dikembangkan suatu energi alternatif yang dapat menggantikan peran bahan bakar berbasis fosil [1]. Seiring dengan perkembangan teknologi dan pesatnya pertumbuhan jumlah penduduk menuntut semakin meningkatnya kebutuhan energi. Penemuan baru di bidang energi alternatif dari biomassa semakin berkembang. Salah satu energi alternatif yang berpotensi untuk di kembangkan adalah biohidrogen [2]. Biohidrogen merupakan sumber energi yang bersih, efisien, dan dapat diperbaharui karena proses pembakaran biohidrogen di udara hanya menghasilkan uap air dan energi panas. Keunggulan dari biohidrogen adalah dapat dihasilkan dari bahan yang dapat diperbaharui, ramah lingkungan, hasil pembakaran berupa uap air yang tidakmenyebabkan efek rumah kaca, hujan asam dan merusak lapisan ozon Limbah organik yang cukup melimpah di Indonesia adalah kulit pisang. Kulit pisang merupakan bahan buangan (limbah buah pisang) yang cukup banyak jumlahnya, yaitu kira-kira 1/3 dari buah pisang yang belum dikupas. Pada umumnya kulit pisang ini belum dimanfaatkan secara nyata, hanya dibuang sebagai sampah yang dapat menimbulkan suatu permasalahan [3] [4]. Berdasarkan data produksi pisang di Indonesia terlihat pada Tabel. 1 bahwa jumlah biohidrogen dari limbah kulit pisang secara fermentasi anaerob, yang ditinjau dari segi kelayakan analisa ekonominya apakah layak untuk dikembangkan lebih jauh atau memerlukan efisiensi di beberapa tahap yang diperlukan. Berdasarkan latar belakang diatas, dilakukan penelitian lebih dalam mengenai proses produksi. Tabel. 1 Produksi Pisang di Indonesia Pertahun Tahun Produksi (ton)
研究人员已经从有机废物中制造生物氢,因为它很有希望成为替代化石燃料的替代燃料。本研究的目的是了解香蕉皮废弃物生物制氢的经济分析。首先通过减小香蕉皮废料的粒径来制备香蕉皮废料,然后用泥浆和蒸馏水按一定比例混合。然后将其插入发酵罐,进行一定时间和pH变化的厌氧发酵。形成的气体用气体分析仪测量。从这项研究中获得的结果是,通过使用简单的经济化学过程工程杂志e-ISSN号2655 2967 54分析,通过计算成本的分解,一次性生产BEP单位获得620升,BEP印尼盾约为9,300,000印尼盾。从研究结果可以看出,生物氢生产是可行的。penahuluan Pemakaian bahan bakar化石di Indonesia yang berlebihan dan terjadi sejak dahulu telah mengakibatkan semakin langkanya persediaan bahan bakar。Adanya krisis energi dan masalah lingkungan yang ditimbulkan, maka perlu dikembangkan suatu能源替代yang dapat menggantikan peran bahan bakar基化石[1]。我的意思是说,我们的技术是我们的,我们的技术是我们的,我们的技术是我们的。Penemuan baru di bidang能源替代燃料生物质semakin berkembang。Salah satu能源替代品yang berpotentisi untuk di kembangkan adalah biohydrogen[2]。biohydrogen merupakan sumber energi yang bersih, efisien, dandapat diperbaharui karena生产pembakaran biohydrogen diudara hanya menghasilkan uap air danenergi panas。keungulan dari生物氢adalah dapat dihasilkan dari bahan yang dapat diperbaharui, ramah lingkungan, hasil pembakaran berupa uap air yang tidakmenyebabkan efek rumah kaca, hujan asam dan merusak lapisan ozon Limbah organik yang cuup melimpah di Indonesia adalah kulit pisang。Kulit pisang merupakan bahan buangan (limbah buah pisang) yang cuup banyak jumlahnya, yitu kira-kira 1/3 dari buah pisang yang belum dikupas。Pada umumnya kulit pisang ini belum dimanfaatkan secara nyata, hanya dibuang sebagai sampah yang dapat menimbulkan suatu permasalahan[3][4]。Berdasarkan数据产品duksi pisang di Indonesia terlihat pa . 1 bahwa jumlah生物氢dari limbah kulit pisang secara发酵厌氧,yang ditinjau dari segi kelayakan anisa econominya apakah layak untuk dikembangkan lebih jauh atau memerlukan efisiensi di beberapa tahap yang diperlukan。Berdasarkan latar belakang数据,dilakukan penelitian lebih dalam mengenai加工产品。表1印尼产量(吨)
{"title":"Produksi Biohidrogen dari Sampah Organik Kulit Pisang dengan cara Fermentasi Anaerob dengan Peninjauan Analisa Ekonomi Sederhana","authors":"Muhlis Muhlis, Setyawati Yani, N. Nurjannah","doi":"10.33536/jcpe.v7i1.1152","DOIUrl":"https://doi.org/10.33536/jcpe.v7i1.1152","url":null,"abstract":"The making of biohydrogen from organic waste has been done by researchers because it is quite promising as an alternative fuel that can replace fossil fuels. the purpose of this research is to know the economic analysis of biohydrogen gas production from banana peel waste. first the preparation of banana skin waste by reducing the size, then mixed with mud and distilled water with a certain ratio. after that it is inserted into the fermenter and anaerobic fermentation is carried out for a certain time and pH variation. gas formed is measured using a gas analyzer. from this study the results obtained that by using a simple economic Journal of Chemical Process Engineering e-ISSN Number 2655 2967 54 analysis by calculating the breakdown of costs for once the production of BEP units obtained as much as 620 liters and the rupiah BEP around Rp. 9,300,000. from the results of this study it can be concluded that the production of biohydrogen is feasible to be developed. PENDAHULUAN Pemakaian bahan bakar fosil di Indonesia yang berlebihan dan terjadi sejak dahulu telah mengakibatkan semakin langkanya persediaan bahan bakar. Adanya krisis energi dan masalah lingkungan yang ditimbulkan, maka perlu dikembangkan suatu energi alternatif yang dapat menggantikan peran bahan bakar berbasis fosil [1]. Seiring dengan perkembangan teknologi dan pesatnya pertumbuhan jumlah penduduk menuntut semakin meningkatnya kebutuhan energi. Penemuan baru di bidang energi alternatif dari biomassa semakin berkembang. Salah satu energi alternatif yang berpotensi untuk di kembangkan adalah biohidrogen [2]. Biohidrogen merupakan sumber energi yang bersih, efisien, dan dapat diperbaharui karena proses pembakaran biohidrogen di udara hanya menghasilkan uap air dan energi panas. Keunggulan dari biohidrogen adalah dapat dihasilkan dari bahan yang dapat diperbaharui, ramah lingkungan, hasil pembakaran berupa uap air yang tidakmenyebabkan efek rumah kaca, hujan asam dan merusak lapisan ozon Limbah organik yang cukup melimpah di Indonesia adalah kulit pisang. Kulit pisang merupakan bahan buangan (limbah buah pisang) yang cukup banyak jumlahnya, yaitu kira-kira 1/3 dari buah pisang yang belum dikupas. Pada umumnya kulit pisang ini belum dimanfaatkan secara nyata, hanya dibuang sebagai sampah yang dapat menimbulkan suatu permasalahan [3] [4]. Berdasarkan data produksi pisang di Indonesia terlihat pada Tabel. 1 bahwa jumlah biohidrogen dari limbah kulit pisang secara fermentasi anaerob, yang ditinjau dari segi kelayakan analisa ekonominya apakah layak untuk dikembangkan lebih jauh atau memerlukan efisiensi di beberapa tahap yang diperlukan. Berdasarkan latar belakang diatas, dilakukan penelitian lebih dalam mengenai proses produksi. Tabel. 1 Produksi Pisang di Indonesia Pertahun Tahun Produksi (ton)","PeriodicalId":15308,"journal":{"name":"Journal of Chemical Engineering & Process Technology","volume":"77 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91010534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Hanifah, E. Mardawati, S. Rosalinda, Desy Nurliasari, R. Kastaman
AbstractOil Palm Empty Fruit Bunch (OPEFB) is a type of solid waste from the palm oil processing industry. The components of OPEFB include cellulose, hemicellulose, and lignin. OPEFB has a large cellulose content, so it possesses the potential to be used as a bioplastic material. The purpose of this research was to examine the stages of the bioplastics' production process and its characterization. The cellulose content of OPEFB as raw material and during the isolation process which includes hydrolysis, delignification, pulping, and bleaching are 39.59%, 56.00%, 59.85%, 61.48%, and 68.20%, respectively. Cellulose isolation produces α-cellulose content of 97.87%. The resulting cellulose acetate has an acetyl content of 25.93%. The bioplastics were then characterized to determine the effect of cellulose acetate, starch, chitosan, and glycerol on the physical and mechanical properties of the plastics. The results of the physical properties characterization include biodegradability, water absorption, and density with values of 78.73%, 38.26%, and 1.2% respectively. The results of the mechanical properties characterization include tensile strength, elongation, and modulus of elasticity with values of 0.729 MPa, 4.13%, and 17.5 MPa, respectively. The functional groups in the bioplastics, which are O-H, C-H, C-O, C=O, and N-H, are produced from the mixing process between cellulose acetate, starch, chitosan, and glycerol.
{"title":"Analysis of Cellulose and Cellulose Acetate Production Stages from Oil Palm Empty Fruit Bunch (OPEFB) and Its Application to Bioplastics","authors":"A. Hanifah, E. Mardawati, S. Rosalinda, Desy Nurliasari, R. Kastaman","doi":"10.33536/jcpe.v7i1.1136","DOIUrl":"https://doi.org/10.33536/jcpe.v7i1.1136","url":null,"abstract":"AbstractOil Palm Empty Fruit Bunch (OPEFB) is a type of solid waste from the palm oil processing industry. The components of OPEFB include cellulose, hemicellulose, and lignin. OPEFB has a large cellulose content, so it possesses the potential to be used as a bioplastic material. The purpose of this research was to examine the stages of the bioplastics' production process and its characterization. The cellulose content of OPEFB as raw material and during the isolation process which includes hydrolysis, delignification, pulping, and bleaching are 39.59%, 56.00%, 59.85%, 61.48%, and 68.20%, respectively. Cellulose isolation produces α-cellulose content of 97.87%. The resulting cellulose acetate has an acetyl content of 25.93%. The bioplastics were then characterized to determine the effect of cellulose acetate, starch, chitosan, and glycerol on the physical and mechanical properties of the plastics. The results of the physical properties characterization include biodegradability, water absorption, and density with values of 78.73%, 38.26%, and 1.2% respectively. The results of the mechanical properties characterization include tensile strength, elongation, and modulus of elasticity with values of 0.729 MPa, 4.13%, and 17.5 MPa, respectively. The functional groups in the bioplastics, which are O-H, C-H, C-O, C=O, and N-H, are produced from the mixing process between cellulose acetate, starch, chitosan, and glycerol.","PeriodicalId":15308,"journal":{"name":"Journal of Chemical Engineering & Process Technology","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91063448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bayu Sastra Dewangga, Mochammad Alief Setyanugraha, L. Edahwati
Magnesium phosphate (Mg3(PO4)2) is an organic compound formed from magnesium salts derived from phosphoric acid (H3PO4) in other words, elemental magnesium that is sandwiched between the phosphate anions. In addition, magnesium phosphate has been needed by industry, especially in the field of advanced and biological materials. However, what is currently needed is the high price of basic materials that require imports. The mineral dolomite is widely distributed in Indonesia, contains calcium (Ca) and magnesium (Mg) in it so that it can be used as an alternative base material for the synthesis of
{"title":"Uji Karakteristik Magnesium Fosfat dari Pelarutan Mineral Dolomit dengan Asam Fosfat","authors":"Bayu Sastra Dewangga, Mochammad Alief Setyanugraha, L. Edahwati","doi":"10.33536/jcpe.v7i1.1146","DOIUrl":"https://doi.org/10.33536/jcpe.v7i1.1146","url":null,"abstract":"Magnesium phosphate (Mg3(PO4)2) is an organic compound formed from magnesium salts derived from phosphoric acid (H3PO4) in other words, elemental magnesium that is sandwiched between the phosphate anions. In addition, magnesium phosphate has been needed by industry, especially in the field of advanced and biological materials. However, what is currently needed is the high price of basic materials that require imports. The mineral dolomite is widely distributed in Indonesia, contains calcium (Ca) and magnesium (Mg) in it so that it can be used as an alternative base material for the synthesis of","PeriodicalId":15308,"journal":{"name":"Journal of Chemical Engineering & Process Technology","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75643325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liquid smoke is an alternative raw material for making biohandsanitizer because its main content can be used as an inhibitor of microbial growth. This study aims to determine whether liquid smoke can be used as a raw material for biohand sanitizers, to determine the inhibitory power of liquid smoke on bacterial growth with essential oil made from lime leaves. The method used is the process of producing liquid smoke by means of pyrolysis. Grade 3 liquid smoke is distilled to produce grade 1 and 2 liquid smoke. The biohandsanitizer is made by mixing grade 1 liquid smoke with essential oil. Comparison of liquid smoke and essential oil that meets the requirements of 80:20 with a pH value of 4.55. Analysis of Total Plate Number (ALT) if microbial growth in culture media for all types of samples is <1.0x101, so the raw materials used are very effective in inhibiting Journal of Chemical Process Engineering e-ISSN Number 2655 2967 48 microbial growth as the purpose of this study. Handsanitizer standards that meet the requirements are in the pH range of 4-10 (SNI 06-2588-1992) and the Total Plate Number standard for hand sanitizer products is <1.0x103. GCMS analysis, 31% content of liquid smoke is trans-caryophyllene which is an effective organic compound as an antibacterial. PENDAHULUAN Proses pencegahan penyebaran bakteri, jamur dan virus yang paling tepat adalah mencuci tangan dangan menggunakan sabun dan air yang mengalir. Membiasakan diri menggunakan masker atau melakukan cuci tangan menggunakan sabun atau handsanitizer setiap selesai beraktivitas [1]. Akan tetapi perkembangan sosial masyarakat modern menuntut agar aktifitas manusia untuk selalu bergerak dengan cepat dan menggunakan waktu seefisien mungkin, sehingga antiseptik sediaan gel pembersih tangan atau handsanitizer merupakan produk pilihan masyarakat karena mudah dibawa kemana-mana dan cukup tersedia di pasaran. Penggunaan handzanitizer sangat mudah dengan meneteskan atau menyemprotkan pada telapak tangan sudah cukup efektif [2]. Penggunaan bahan baku biohandzanitizer secara umum masih didominasi oleh penggunaan alkohol. Pemilihan asap cair sebagai bahan baku berangkat dari riset yang telah dilakukan sebelumnya. Diketahui komponen senyawa yang terdapat pada asap cair dari biomassa kulit jambu mente terdiri dari phenol dan turunanya, benzenediol dan turunannya, Pyroline, Alpha-D-Lyxofuranoside, heptine dan pyran [3]. Efektifitas asap cair sebagai bakterisida dan fungisida disebabkan oleh asap cair limbah biomassa memiliki kandungan senyawa yang bersifat antibakteri yaitu senyawa fenol dan asam. Fraksi fenol dan asam ini dapat menghambat pertumbuhan serangga dan bakteri [4]. Kebutuhan bahan baku alternatif yang bisa digunakan sebagai antiseptik khususnya hand sanitizer selain alkohol. Salah satu bahan yang jadi pertimbangan adalah asap cair. Secara umum asap cair adalah suatu hasil destilasi/pemisahan atau pengembunan (kondensasi) dari uap hasil pembakaran biomassa melalui proses pirolisis. Pe
液体烟是制备生物洗手液的一种替代原料,因为其主要成分可以作为微生物生长的抑制剂。本研究旨在确定液体烟雾是否可以作为生物手消毒液的原料,并以酸橙叶精油为原料测定液体烟雾对细菌生长的抑制能力。所使用的方法是通过热解产生液体烟雾的过程。3级液体烟经蒸馏后产生1级和2级液体烟。该生物洗手液由一级液体烟与精油混合制成。液体烟与pH值为4.55、符合80:20要求的精油对比。总板数(Total Plate Number, ALT)分析若所有类型样品的培养基中微生物生长均<1.0 × 101,则所使用的原料对抑制微生物生长非常有效。Journal of Chemical Process Engineering e-ISSN Number 2655 2967 48是本研究的目的。符合要求的洗手液标准pH值范围为4-10 (SNI 06-2588-1992),洗手液产品的Total Plate Number标准为<1.0x103。GCMS分析表明,烟液中反式石竹烯含量为31%,是一种有效的抗菌有机化合物。彭达仑,彭达仑,彭达仑,杨达仑,杨达仑,杨达仑,杨达仑,杨达仑,杨达仑,杨达仑,杨达仑,杨达仑。蒙古那肯口罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩面罩Akan tetapi perkembangan social masyarakat modern menuntuagar aktifitas manusia untuk selalu bergerak dengan cepat menggunakan waktu seefisien mungkin, sehinga antiseptitiks and gel pembersih tangan atau洗手液merupakan产品pilihan masyarakat karena mudah dibawa kemana-mana dancucuup tersedia di pasaran。Penggunaan handzanizer sangat mudah dengan meneteskan atau menyemprotkan pada telapak tangan sudah cuup effektif[2]。彭古南巴汉巴库生物消毒剂secara umummasih didominasolh彭古南酒精。佩米里汗主席拜会了杨特拉·迪拉坎·斯贝隆尼亚。Diketahui komponen senyawa yang terdapat pada asap cair dari biomassa kulit jambu mente terdiri dari苯酚dan turunanya,苯二醇dan turunanya, Pyroline, α - d - lyxofuranoside,庚烷dan pyran[3]。黄芪、黄芪、黄芪、黄芪、黄芪、黄芪、黄芪、黄芪、黄芪、黄芪、黄芪、黄芪、黄芪、黄芪、黄芪、黄芪、黄芪。[4].中国农业科学[j]。Kebutuhan bahan baku可选阳bisa digunakan sebagai抗菌khususnya洗手液selain酒精。Salah satu bahan yang jadi pertimbangan adalah asap主席。Secara umum asap cair adalah suatu hasil desilasi /pemisahan atau pengembunan (kondensasi) dari uap hasil pembakaran biomassa melalui proprosis。Pembakaran ini dilakukan baik secara tidak langsung maupun langsung dari bahan yang banyak mengandung karbon dansenyawasenyawa lain。Dari hasil penelitian juga menunjukan bahwa asap cair Dari kulit biji mete terdapat senyawa 1-2, Benzenediol dengan jumlah person area menapai 16,01%[3]。Asap cair dari biomassa memoriliki pH 2,548 serta kadar fenol sebesar 0,84% yang dapat menghambat perkembangan bakteri s.aureus[5]。萨拉赫(Salah satu bentuk penggunaan asap cair),杨迪古纳肯(yitu sebagai pengawet bahan makanan)。Berdasarkan hasil penelitian diperoleh jika 2% konsentrasi asap cair dari limbah tempurung kelapa sangat optimal mengawikan ikan bandeng。Konsetrasi air setelah direndam dengan asap cair tempurung kelapa yang memiliki konsentrasi 2% yitu 70,02% sedangkan untuk kadar protein dan kadar lemak yitu 3,73% dan 20,40%[6]。beberapappenelitian menunjukkan jika asap cair bisa digunakan sebagai desinfektan。Asap cair memiliki efektifitas yang sebanding dengan酒精70% sebagi desinfektan pada konsentrasi 12,5% mampu menghambat pertumbuhan koloni mikroba[7]。请尽快回复我的电话:kemampuan untuk untuk menghambat pertumbuhan bakteri。Makin besar konsentrasi asap cair maka pertumbuhan bakteri Makin sedikit[8]。[9]引用本文:[a].中国日报网。洗手液分布于dari bahan dasar dari醇,芦荟精油分布于dari ekstrak kulit jeruk nipis (Citrus x sinensis)。Kandungan dari kulit jeruk juga sangat bermanfaat sebagai penghalus kulit dan sebagai antiseptik。[10].甘肃巴汉aktifnya merupakan酒精酒精对巴氏病毒的影响[j]。琼脂
{"title":"Pengaruh Asap Cair Sebagai Biohandsanitizer Dengan Penambahan Essential Oil Daun Jeruk Nipis","authors":"M. Arman, D. Darnengsih, M. Munira, M. Mustafiah","doi":"10.33536/jcpe.v7i1.1193","DOIUrl":"https://doi.org/10.33536/jcpe.v7i1.1193","url":null,"abstract":"Liquid smoke is an alternative raw material for making biohandsanitizer because its main content can be used as an inhibitor of microbial growth. This study aims to determine whether liquid smoke can be used as a raw material for biohand sanitizers, to determine the inhibitory power of liquid smoke on bacterial growth with essential oil made from lime leaves. The method used is the process of producing liquid smoke by means of pyrolysis. Grade 3 liquid smoke is distilled to produce grade 1 and 2 liquid smoke. The biohandsanitizer is made by mixing grade 1 liquid smoke with essential oil. Comparison of liquid smoke and essential oil that meets the requirements of 80:20 with a pH value of 4.55. Analysis of Total Plate Number (ALT) if microbial growth in culture media for all types of samples is <1.0x101, so the raw materials used are very effective in inhibiting Journal of Chemical Process Engineering e-ISSN Number 2655 2967 48 microbial growth as the purpose of this study. Handsanitizer standards that meet the requirements are in the pH range of 4-10 (SNI 06-2588-1992) and the Total Plate Number standard for hand sanitizer products is <1.0x103. GCMS analysis, 31% content of liquid smoke is trans-caryophyllene which is an effective organic compound as an antibacterial. PENDAHULUAN Proses pencegahan penyebaran bakteri, jamur dan virus yang paling tepat adalah mencuci tangan dangan menggunakan sabun dan air yang mengalir. Membiasakan diri menggunakan masker atau melakukan cuci tangan menggunakan sabun atau handsanitizer setiap selesai beraktivitas [1]. Akan tetapi perkembangan sosial masyarakat modern menuntut agar aktifitas manusia untuk selalu bergerak dengan cepat dan menggunakan waktu seefisien mungkin, sehingga antiseptik sediaan gel pembersih tangan atau handsanitizer merupakan produk pilihan masyarakat karena mudah dibawa kemana-mana dan cukup tersedia di pasaran. Penggunaan handzanitizer sangat mudah dengan meneteskan atau menyemprotkan pada telapak tangan sudah cukup efektif [2]. Penggunaan bahan baku biohandzanitizer secara umum masih didominasi oleh penggunaan alkohol. Pemilihan asap cair sebagai bahan baku berangkat dari riset yang telah dilakukan sebelumnya. Diketahui komponen senyawa yang terdapat pada asap cair dari biomassa kulit jambu mente terdiri dari phenol dan turunanya, benzenediol dan turunannya, Pyroline, Alpha-D-Lyxofuranoside, heptine dan pyran [3]. Efektifitas asap cair sebagai bakterisida dan fungisida disebabkan oleh asap cair limbah biomassa memiliki kandungan senyawa yang bersifat antibakteri yaitu senyawa fenol dan asam. Fraksi fenol dan asam ini dapat menghambat pertumbuhan serangga dan bakteri [4]. Kebutuhan bahan baku alternatif yang bisa digunakan sebagai antiseptik khususnya hand sanitizer selain alkohol. Salah satu bahan yang jadi pertimbangan adalah asap cair. Secara umum asap cair adalah suatu hasil destilasi/pemisahan atau pengembunan (kondensasi) dari uap hasil pembakaran biomassa melalui proses pirolisis. Pe","PeriodicalId":15308,"journal":{"name":"Journal of Chemical Engineering & Process Technology","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75356152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Vindri Vincensia Saru, Mutiya Zevi, Luluk Edahwati
{"title":"Sintesis dan Karakteristik Struvite Dengan Proses Bubble","authors":"Maria Vindri Vincensia Saru, Mutiya Zevi, Luluk Edahwati","doi":"10.33536/jcpe.v7i1.1151","DOIUrl":"https://doi.org/10.33536/jcpe.v7i1.1151","url":null,"abstract":"","PeriodicalId":15308,"journal":{"name":"Journal of Chemical Engineering & Process Technology","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82012804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"KARAKTERISASI SIFAT MEKANIK DAN STRUKTUR MIKRO ASSAB 608 HASIL PERLAKUAN PANAS UNTUK APLIKASI OUTER OLEO STRUT LANDING GEAR","authors":"Halim Asiri","doi":"10.33536/jcpe.v7i1.1171","DOIUrl":"https://doi.org/10.33536/jcpe.v7i1.1171","url":null,"abstract":"","PeriodicalId":15308,"journal":{"name":"Journal of Chemical Engineering & Process Technology","volume":"94 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83908018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asrianti Chalik, Ruslan Kalla, N. Nurjannah, M. Arman
{"title":"Produksi Biogas secara Anaerob dari Popok Bayi Bekas dan Limbah Organik","authors":"Asrianti Chalik, Ruslan Kalla, N. Nurjannah, M. Arman","doi":"10.33536/jcpe.v6i2.698","DOIUrl":"https://doi.org/10.33536/jcpe.v6i2.698","url":null,"abstract":"","PeriodicalId":15308,"journal":{"name":"Journal of Chemical Engineering & Process Technology","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77526010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pembuatan Biodiesel Dari Biji Karet Dengan Proses Alkoholisis Sebagai Alternatif Sumber Bahan Bakar Ekonomis","authors":"Kiagus Ahmad Roni, Sri Martini","doi":"10.33536/jcpe.v6i2.738","DOIUrl":"https://doi.org/10.33536/jcpe.v6i2.738","url":null,"abstract":"","PeriodicalId":15308,"journal":{"name":"Journal of Chemical Engineering & Process Technology","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74821865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agus Salim, Neny Rasnyanti M Aras, Boy Chandra Sitanggang
Adsorption of pollutants using biomass has been widely studied, two of which are rice husk ash and seaweed. The purpose of this study was to determine the effect using seaweed combined with rice husk ash as a bioadsorbent in reducing liquid waste industry. The purpose of this research to examines the combination of two biomasses in reducing the value of waste contamination and to determine the weight of the adsorbent and the optimum contact time on the ability of the bioadsorbent to adsorb liquid waste. The effectiveness of bioadsorbent was tested through several parameters pH, turbidity, Cd metal content, Total Suspended Solids (TSS) and Chemical Oxygen Demand (COD). The most effective optimum dose in reducing the liquid waste load of the beverage industry is 0.5 grams for 30 minutes in 150 mL of liquid waste and 1.5 grams for 30 minutes in Journal of Chemical Process Engineering e-ISSN Number 2655 2967 104 reducing Cd content which was tested using rice husk ash adsorbents. Then, the combination of seaweed and rice husk ash was varied 100, 75, 50, and 25(%). From this combination, 100% seaweed has the highest effectiveness in decreasing 27% pH level , 75.16% turbidity, 91.43% of TSS of and 97.77% of COD level.
{"title":"Modifikasi Bioadsorben Rumput Laut (Eucheuma Cottonii)-Abu Sekam Padi Sebagai Bioadsorben Limbah Cair Industri Minuman Ringan","authors":"Agus Salim, Neny Rasnyanti M Aras, Boy Chandra Sitanggang","doi":"10.33536/jcpe.v6i2.800","DOIUrl":"https://doi.org/10.33536/jcpe.v6i2.800","url":null,"abstract":"Adsorption of pollutants using biomass has been widely studied, two of which are rice husk ash and seaweed. The purpose of this study was to determine the effect using seaweed combined with rice husk ash as a bioadsorbent in reducing liquid waste industry. The purpose of this research to examines the combination of two biomasses in reducing the value of waste contamination and to determine the weight of the adsorbent and the optimum contact time on the ability of the bioadsorbent to adsorb liquid waste. The effectiveness of bioadsorbent was tested through several parameters pH, turbidity, Cd metal content, Total Suspended Solids (TSS) and Chemical Oxygen Demand (COD). The most effective optimum dose in reducing the liquid waste load of the beverage industry is 0.5 grams for 30 minutes in 150 mL of liquid waste and 1.5 grams for 30 minutes in Journal of Chemical Process Engineering e-ISSN Number 2655 2967 104 reducing Cd content which was tested using rice husk ash adsorbents. Then, the combination of seaweed and rice husk ash was varied 100, 75, 50, and 25(%). From this combination, 100% seaweed has the highest effectiveness in decreasing 27% pH level , 75.16% turbidity, 91.43% of TSS of and 97.77% of COD level.","PeriodicalId":15308,"journal":{"name":"Journal of Chemical Engineering & Process Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81949967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most chemical processes are closely related to nonlinear processes so that control issues become a challenge for an engineer and the chemical industry itself. This study aims to integrate Aspen Plus Dynamics and Matlab Simulink as an effort to eliminate linearization techniques so that nonlinear processes can be controlled optimally. The method used is steady state simulation using Aspen Plus in the distillation process with a case study of the separation of propane and isobutane. Furthermore, dynamic simulation using Aspen Plus Dynamics. The process that has been built in Aspen Plus Dynamics is then integrated with Matlab Simulink through the AMSimulation block. The results of this study are that the steady-state and dynamics simulations were successfully run. Aspen Plus Dynamics Journal of Chemical Process Engineering e-ISSN Number 2655 2967 2 and Matlab Simulink are integrated and able to run together at the same time. There are three controllers installed, namely reflux drum level control, top column pressure control, and reboiler level control. The three controllers are able to control the process well, as evidenced by the process being able to return to the setpoint. PENDAHULUAN Industri kimia mengolah bahan baku menjadi suatu produk dengan nilai ekonomi yang tinggi dalam jumlah yang besar. Dalam prosesnya, adanya interaksi yang kuat antar variabel proses, kondisi operasi yang berbeda – beda menyebabkan pentingnya mendesain pengendali yang handal untuk menjaga keselamatan lingkungan, memaksimalkan hasil produksi, dan meminimalkan biaya operasi. Sebagian besar proses kimia berkaitan erat dengan proses nonlinier, banyak proses fisik diwakili oleh model nonlinier sehingga masalah pengendalian menjadi tantangan bagi seorang engineer dan industri kimia itu sendiri. Banyak peneliti memilih menggunakan metode linier untuk mengatasi permasalahan pengendali nonlinier dengan cara linierisasi. Teknik linierisasi terbatas dalam mengendalikan proses kimia dengan tingkat nonlinier yang tinggi [1]. Hal yang paling umum terjadi adalah adanya ketidaksamaan antara model dengan proses yang ada. Model tidak akan selalu bisa mewakili proses secara utuh karena proses sering terpengaruh banyak gangguan yang tidak dapat diidentifikasi. Selama ini, penelitian mensimulasikan suatu proses menggunakan aspen plus dan mengendalikan proses yang telah dibangun di aspen plus menggunakan matlab simulink secara terpisah. Sutikno dkk mensimulasikan kolom distilasi deisobutanizer di aspen plus dynamics kemudian proses tersebut dikendalikan secara terpisah menggunakan pengendali IMC di matlab simulink [2][3]. Sutikno dkk juga mensimulasikan nonkonvensional kolom/rectifier dengan menggunakan pengendali MPC [4][5]. Model proses yang diambil dari aspen plus dilinierisa si sehingga model proses belum mewakili proses yang sebenarnya. Suatu sistem dikatakan nonlinier jika prinsip superposisi tidak berlaku. Jadi, untuk sistem nonlinier respons terhadap dua input tidak dapat dihitung d
大多数化学过程与非线性过程密切相关,因此控制问题对工程师和化学工业本身都是一个挑战。本研究旨在整合Aspen Plus Dynamics和Matlab Simulink,以消除线性化技术,从而使非线性过程能够得到最佳控制。以丙烷和异丁烷的分离为例,采用Aspen Plus对精馏过程进行稳态模拟。此外,利用Aspen Plus Dynamics进行了动态仿真。在Aspen Plus Dynamics中构建的过程然后通过AMSimulation块与Matlab Simulink集成。研究结果表明,系统的稳态和动力学仿真均取得了成功。Aspen Plus Dynamics Journal of Chemical Process Engineering e-ISSN号2655 2967 2和Matlab Simulink集成在一起,可以同时运行。安装了回流鼓液位控制、顶柱压力控制和再沸器液位控制三个控制器。这三个控制器能够很好地控制过程,因为过程能够返回设定值。pendahulan工业,蒙古,巴哈,巴库,门加迪,水,产品,登干,nilai,经济,杨廷吉,dalam, jumlah,杨。Dalam prosesnya, adanya interaksi yang kuat antar可变过程,kondisi operasi yang berbeda - beda menyebabkan pentingnya mendesain pengendali yang handal untuk menjaga keselamatan lingkungan, memaksimalkan hasil produksi, dan memimalkan biaya operasi。Sebagian besar处理kimia berkaitan erdengan处理非线性,banyak处理finisik diwakili oleh模型非线性sehinga masalah pengendalian menjadi tantangan bagi seorang工程师danindustri kimia itsendiri。Banyak peneliti memiliilih menggunakan melineier untuk mengatasi permasalahan pengendali nonlineier dengan cara linierisi。[1].中国科学技术发展与发展研究[j]。Hal yang paling umum terjadi adalah adanya ketidaksamaan antara模型dengan proproyang ada。模型潮汐与水的关系模型潮汐与水的关系模型潮汐与水的关系模型潮汐与水的关系模型Selama ini, penelitian mensimulasikan suatu处理孟古纳坎白杨加dan mengendalkan处理yang telah dibangundi白杨加孟古纳坎matlab simulink secara terpisah。[2][3]. Sutikno dkk mensimulasikan kolom distillasi deisobutanizer di aspen +动力学kemudian过程简析[j]。[4][5]。非常规化kolom/整流器在灯干、孟古纳坎、彭根达利等地的应用。模型处理杨丹木、白杨、白杨树和白杨树,模型处理白杨树、白杨树和白杨树。苏图系统双katakan非线性jika原理叠加。简而言之,系统的非线性响应通常是双输入双输入的,而非双输入双输入的。Kebanyakan kasus hubungan yang sebenarya tidak cuup linier namun banyak hubungan fisik服务diwakili oleh persamaan linier。“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”“”Dalam prakteknya,榕树系统yang melibatkan hubungan非线性变量[6]。彭古南转移真菌sebagai模型dari sebuah处理yang akan dikendalikan merupakan sebuah teknik linierissi。Namun pada kenyataannya, sebagian besar在工业领域的研究表明,该研究是基于非线性的。彭古纳的teknik linierisasi akan mengakibatkan ketidakcocokan antara提出yang sebenarya登干模型。Apabila ketidakcocokan meningkat, maka tingkat penurunan kinerja pengendali juga meningkat。Pada peneltian sebelumnya, peneliti menggunakan转移真菌sebagai模型提出yang akan dikendalikan[7][8][9][10]。[11].北京大学学报(自然科学版)。杨森加特,非线性记忆模型,杨sesuai,杨梅瓦基里。Penelitian ini bertujuan mengintegraskan antara Aspen Plus Dynamics和Matlab Simulink sebagai upaya untuk menghilangkan teknik linierisasi。邓甘·德米克提出了一种基于非线性模型的非线性数学模型。用matlab simulink实现了白杨的积分和动力学过程。Artinya提出了yang dibanjun diaspen加上动态secara的实时数据处理,dikendalikan menggunakan的matlab simulink。Hal ini dapat menguji kinerja pengendali padada模型处理的是精细的,严格的,非非线性的。Tanpa adanya antarmuka, desain pengendali hanya dapat diuji menggunakan模型dinamis linier dalam matlab yang menyebabkan adanya ketidakpastian tentangbagaimana pengendali dapat bekerja pada处理非线性yang sebenarya。 本研究选择的案例研究是丙烷和异戊二烯分离的蒸馏过程[12]。研究方法包括踏实态和dynamics过程的几个步骤,使用使用eissn技术技术杂志2655 2967 aspen plus[13],然后将aspen plus dynamics集成到simulink matlab。接下来,安装控制器并分析模拟结果。使用阿斯彭软件运行的苯丙胺合成一列的精炼情境模拟。第一步是由丙烷和异戊二烷组成的成分输入。然后选择热力学属性Chao-Seader。这是因为几乎所有的碳
{"title":"Integrasi Aspen Plus Dynamics dengan Matlab Simulink (Studi Kasus: Simulasi Proses Distilasi Propana-Isobutana)","authors":"Zahrotul Azizah, Trisna Kumala Dhaniswara","doi":"10.33536/jcpe.v6i2.989","DOIUrl":"https://doi.org/10.33536/jcpe.v6i2.989","url":null,"abstract":"Most chemical processes are closely related to nonlinear processes so that control issues become a challenge for an engineer and the chemical industry itself. This study aims to integrate Aspen Plus Dynamics and Matlab Simulink as an effort to eliminate linearization techniques so that nonlinear processes can be controlled optimally. The method used is steady state simulation using Aspen Plus in the distillation process with a case study of the separation of propane and isobutane. Furthermore, dynamic simulation using Aspen Plus Dynamics. The process that has been built in Aspen Plus Dynamics is then integrated with Matlab Simulink through the AMSimulation block. The results of this study are that the steady-state and dynamics simulations were successfully run. Aspen Plus Dynamics Journal of Chemical Process Engineering e-ISSN Number 2655 2967 2 and Matlab Simulink are integrated and able to run together at the same time. There are three controllers installed, namely reflux drum level control, top column pressure control, and reboiler level control. The three controllers are able to control the process well, as evidenced by the process being able to return to the setpoint. PENDAHULUAN Industri kimia mengolah bahan baku menjadi suatu produk dengan nilai ekonomi yang tinggi dalam jumlah yang besar. Dalam prosesnya, adanya interaksi yang kuat antar variabel proses, kondisi operasi yang berbeda – beda menyebabkan pentingnya mendesain pengendali yang handal untuk menjaga keselamatan lingkungan, memaksimalkan hasil produksi, dan meminimalkan biaya operasi. Sebagian besar proses kimia berkaitan erat dengan proses nonlinier, banyak proses fisik diwakili oleh model nonlinier sehingga masalah pengendalian menjadi tantangan bagi seorang engineer dan industri kimia itu sendiri. Banyak peneliti memilih menggunakan metode linier untuk mengatasi permasalahan pengendali nonlinier dengan cara linierisasi. Teknik linierisasi terbatas dalam mengendalikan proses kimia dengan tingkat nonlinier yang tinggi [1]. Hal yang paling umum terjadi adalah adanya ketidaksamaan antara model dengan proses yang ada. Model tidak akan selalu bisa mewakili proses secara utuh karena proses sering terpengaruh banyak gangguan yang tidak dapat diidentifikasi. Selama ini, penelitian mensimulasikan suatu proses menggunakan aspen plus dan mengendalikan proses yang telah dibangun di aspen plus menggunakan matlab simulink secara terpisah. Sutikno dkk mensimulasikan kolom distilasi deisobutanizer di aspen plus dynamics kemudian proses tersebut dikendalikan secara terpisah menggunakan pengendali IMC di matlab simulink [2][3]. Sutikno dkk juga mensimulasikan nonkonvensional kolom/rectifier dengan menggunakan pengendali MPC [4][5]. Model proses yang diambil dari aspen plus dilinierisa si sehingga model proses belum mewakili proses yang sebenarnya. Suatu sistem dikatakan nonlinier jika prinsip superposisi tidak berlaku. Jadi, untuk sistem nonlinier respons terhadap dua input tidak dapat dihitung d","PeriodicalId":15308,"journal":{"name":"Journal of Chemical Engineering & Process Technology","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80110494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}