首页 > 最新文献

Journal of Econometrics最新文献

英文 中文
Network and panel quantile effects via distribution regression 通过分布回归实现网络和面板量化效应
IF 6.3 3区 经济学 Q1 ECONOMICS Pub Date : 2024-03-01 DOI: 10.1016/j.jeconom.2020.08.009
Victor Chernozhukov , Iván Fernández-Val , Martin Weidner

This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome variables. The method is based upon projection of simultaneous confidence bands for distribution functions constructed from fixed effects distribution regression estimators. These fixed effects estimators are debiased to deal with the incidental parameter problem. Under asymptotic sequences where both dimensions of the data set grow at the same rate, the confidence bands for the quantile functions and effects have correct joint coverage in large samples. An empirical application to gravity models of trade illustrates the applicability of the methods to network data.

本文提供了一种在非线性网络和面板模型中同时构建量子函数和量子效应置信带的方法,该模型具有未观察到的双向效应、严格的外生协变量和可能的离散结果变量。该方法基于对由固定效应分布回归估计器构建的分布函数的同步置信带的预测。这些固定效应估计器经过去偏处理,以解决附带参数问题。在数据集的两个维度以相同速度增长的渐近序列下,量子函数和效应的置信带在大样本中具有正确的联合覆盖范围。对贸易引力模型的经验应用说明了这些方法对网络数据的适用性。
{"title":"Network and panel quantile effects via distribution regression","authors":"Victor Chernozhukov ,&nbsp;Iván Fernández-Val ,&nbsp;Martin Weidner","doi":"10.1016/j.jeconom.2020.08.009","DOIUrl":"https://doi.org/10.1016/j.jeconom.2020.08.009","url":null,"abstract":"<div><p>This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome variables. The method is based upon projection of simultaneous confidence bands for distribution functions constructed from fixed effects distribution regression estimators. These fixed effects estimators are debiased to deal with the incidental parameter problem. Under asymptotic sequences where both dimensions of the data set grow at the same rate, the confidence bands for the quantile functions and effects have correct joint coverage in large samples. An empirical application to gravity models of trade illustrates the applicability of the methods to network data.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105009"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304407620303390/pdfft?md5=95e8d9cc3d7ec76bead0f99a33c2f2f7&pid=1-s2.0-S0304407620303390-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140145344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kernel density estimation for undirected dyadic data 无向二元数据的核密度估计
IF 6.3 3区 经济学 Q1 ECONOMICS Pub Date : 2024-03-01 DOI: 10.1016/j.jeconom.2022.06.011
Bryan S. Graham , Fengshi Niu , James L. Powell

We study nonparametric estimation of density functions for undirected dyadic random variables (i.e., random variables defined for all ndefN2 unordered pairs of agents/nodes in a weighted network of order N). These random variables satisfy a local dependence property: any random variables in the network that share one or two indices may be dependent, while those sharing no indices in common are independent. In this setting, we show that density functions may be estimated by an application of the kernel estimation method of Rosenblatt (1956) and Parzen (1962). We suggest an estimate of their asymptotic variances inspired by a combination of (i) Newey’s (1994) method of variance estimation for kernel estimators in the “monadic” setting and (ii) a variance estimator for the (estimated) density of a simple network first suggested by Holland and Leinhardt (1976). More unusual are the rates of convergence and asymptotic (normal) distributions of our dyadic density estimates. Specifically, we show that they converge at the same rate as the (unconditional) dyadic sample mean: the square root of the number, N, of nodes. This differs from the results for nonparametric estimation of densities and regression functions for monadic data, which generally have a slower rate of convergence than their corresponding sample mean.

我们研究的是对无向二元随机变量(即为阶数为 N 的加权网络中所有 n≡defN2 无序代理/节点对定义的随机变量)密度函数的非参数估计。这些随机变量满足局部依赖特性:网络中任何共享一个或两个索引的随机变量都可能是依赖的,而那些不共享索引的随机变量则是独立的。在这种情况下,我们可以应用 Rosenblatt(1956 年)和 Parzen(1962 年)的核估计方法来估计密度函数。我们提出了一种对其渐近方差的估计方法,其灵感来自于 (i) Newey(1994 年)在 "一元 "设置中对核估计器进行方差估计的方法和 (ii) Holland 和 Leinhardt(1976 年)首次提出的简单网络(估计)密度的方差估计器。更特别的是我们的二元密度估计的收敛率和渐近(正态)分布。具体来说,我们证明它们的收敛速度与(无条件的)二元样本平均值相同:即节点数 N 的平方根。这不同于对一元数据的密度和回归函数进行非参数估计的结果,后者的收敛速度通常慢于相应的样本平均值。
{"title":"Kernel density estimation for undirected dyadic data","authors":"Bryan S. Graham ,&nbsp;Fengshi Niu ,&nbsp;James L. Powell","doi":"10.1016/j.jeconom.2022.06.011","DOIUrl":"https://doi.org/10.1016/j.jeconom.2022.06.011","url":null,"abstract":"<div><p><span>We study nonparametric estimation of density functions for undirected dyadic random variables (i.e., random variables defined for all </span><span><math><mrow><mi>n</mi><mover><mrow><mo>≡</mo></mrow><mrow><mi>d</mi><mi>e</mi><mi>f</mi></mrow></mover><mfenced><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mfenced></mrow></math></span><span> unordered pairs of agents/nodes in a weighted network of order </span><span><math><mi>N</mi></math></span><span><span><span>). These random variables satisfy a local dependence property: any random variables in the network that share one or two indices may be dependent, while those sharing no indices in common are independent. In this setting, we show that density functions may be estimated by an application of the kernel estimation method of </span>Rosenblatt<span> (1956) and Parzen (1962). We suggest an estimate of their asymptotic variances<span> inspired by a combination of (i) Newey’s (1994) method of variance estimation for kernel estimators in the “monadic” setting and (ii) a </span></span></span>variance estimator<span> for the (estimated) density of a simple network first suggested by Holland and Leinhardt (1976). More unusual are the rates of convergence and asymptotic (normal) distributions of our dyadic density estimates. Specifically, we show that they converge at the same rate as the (unconditional) dyadic sample mean: the square root of the number, </span></span><span><math><mi>N</mi></math></span><span>, of nodes. This differs from the results for nonparametric estimation of densities and regression functions for monadic data, which generally have a slower rate of convergence than their corresponding sample mean.</span></p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105336"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140145459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparison of the GB2 and skewed generalized log-t distributions with an application in finance GB2和偏态广义log-t分布在金融中的应用比较
IF 6.3 3区 经济学 Q1 ECONOMICS Pub Date : 2024-03-01 DOI: 10.1016/j.jeconom.2021.01.003
Joshua D. Higbee , James B. McDonald

Several families of statistical distributions have been used to model financial data. The four-parameter generalized beta of the second kind (GB2) and five-parameter skewed generalized t (SGT) have been fit to return and log-return data, respectively. We introduce the skewed generalized log-t (SGLT) distribution and note that the GB2 and SGLT share such distributions as the asymmetric log-Laplace (ALL), log-Laplace (LL), and log-normal (LN). We then compare the relative performance of the GB2 and SGLT in modeling the distribution of daily, weekly, and monthly stock return data. We find that the GB2 and SGLT perform similarly and that the three-parameter log-t (LT) distribution is quite robust.

有多个统计分布系列被用于建立金融数据模型。四参数第二类广义贝塔分布(GB2)和五参数偏斜广义对数 t 分布(SGT)已分别用于拟合收益率和对数收益率数据。我们介绍了偏斜广义对数 t(SGLT)分布,并指出 GB2 和 SGLT 与非对称对数拉普拉斯(ALL)、对数拉普拉斯(LL)和对数正态(LN)等分布相同。然后,我们比较了 GB2 和 SGLT 在模拟日、周和月股票收益率数据分布时的相对表现。我们发现,GB2 和 SGLT 的表现类似,而三参数 log-t (LT) 分布则相当稳健。
{"title":"A comparison of the GB2 and skewed generalized log-t distributions with an application in finance","authors":"Joshua D. Higbee ,&nbsp;James B. McDonald","doi":"10.1016/j.jeconom.2021.01.003","DOIUrl":"10.1016/j.jeconom.2021.01.003","url":null,"abstract":"<div><p>Several families of statistical distributions have been used to model financial data. The four-parameter generalized beta of the second kind (GB2) and five-parameter skewed generalized t (SGT) have been fit to return and log-return data, respectively. We introduce the skewed generalized log-t (SGLT) distribution and note that the GB2 and SGLT share such distributions as the asymmetric log-Laplace (ALL), log-Laplace (LL), and log-normal (LN). We then compare the relative performance of the GB2 and SGLT in modeling the distribution of daily, weekly, and monthly stock return data. We find that the GB2 and SGLT perform similarly and that the three-parameter log-t (LT) distribution is quite robust.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105064"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44576544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instrumental variable estimation with first-stage heterogeneity 第一阶段异质性的工具变量估计
IF 6.3 3区 经济学 Q1 ECONOMICS Pub Date : 2024-03-01 DOI: 10.1016/j.jeconom.2023.02.005
Alberto Abadie , Jiaying Gu , Shu Shen

We propose a simple data-driven procedure that exploits heterogeneity in the first-stage correlation between an instrument and an endogenous variable to improve the asymptotic mean squared error (MSE) of instrumental variable estimators. We show that the resulting gains in asymptotic MSE can be quite large in settings where there is substantial heterogeneity in the first-stage parameters. We also show that a naive procedure used in some applied work, which consists of selecting the composition of the sample based on the value of the first-stage t-statistic, may cause substantial over-rejection of a null hypothesis on a second-stage parameter. We apply the methods to study (1) the return to schooling using the minimum school leaving age as the exogenous instrument and (2) the effect of local economic conditions on voter turnout using energy supply shocks as the source of identification.

我们提出了一个简单的数据驱动程序,利用工具和内生变量之间第一阶段相关性的异质性来改善工具变量估计值的渐近均方误差(MSE)。我们的研究表明,在第一阶段参数存在大量异质性的情况下,渐近平均误差的增益可能相当大。我们还表明,一些应用研究中使用的天真程序,即根据第一阶段 t 统计量的值选择样本的组成,可能会导致对第二阶段参数的无效假设产生严重的过度拒绝。我们运用这些方法研究了(1)以最低离校年龄为外生工具的就学回报率,以及(2)以能源供应冲击为识别源的地方经济条件对投票率的影响。
{"title":"Instrumental variable estimation with first-stage heterogeneity","authors":"Alberto Abadie ,&nbsp;Jiaying Gu ,&nbsp;Shu Shen","doi":"10.1016/j.jeconom.2023.02.005","DOIUrl":"10.1016/j.jeconom.2023.02.005","url":null,"abstract":"<div><p><span><span>We propose a simple data-driven procedure that exploits heterogeneity in the first-stage correlation between an instrument and an endogenous variable<span> to improve the asymptotic mean squared error (MSE) of </span></span>instrumental variable estimators. We show that the resulting gains in asymptotic MSE can be quite large in settings where there is substantial heterogeneity in the first-stage parameters. We also show that a naive procedure used in some applied work, which consists of selecting the composition of the sample based on the value of the first-stage </span><span><math><mi>t</mi></math></span><span><span>-statistic, may cause substantial over-rejection of a null hypothesis on a second-stage parameter. We apply the methods to study (1) the return to schooling using the minimum school leaving age as the exogenous instrument and (2) the effect of local economic conditions on </span>voter turnout using energy supply shocks as the source of identification.</span></p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105425"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42651450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local regression distribution estimators 局部回归分布估计量
IF 6.3 3区 经济学 Q1 ECONOMICS Pub Date : 2024-03-01 DOI: 10.1016/j.jeconom.2021.01.006
Matias D. Cattaneo , Michael Jansson , Xinwei Ma

This paper investigates the large sample properties of local regression distribution estimators, which include a class of boundary adaptive density estimators as a prime example. First, we establish a pointwise Gaussian large sample distributional approximation in a unified way, allowing for both boundary and interior evaluation points simultaneously. Using this result, we study the asymptotic efficiency of the estimators, and show that a carefully crafted minimum distance implementation based on “redundant” regressors can lead to efficiency gains. Second, we establish uniform linearizations and strong approximations for the estimators, and employ these results to construct valid confidence bands. Third, we develop extensions to weighted distributions with estimated weights and to local L2 estimation. Finally, we illustrate our methods with two applications in program evaluation: counterfactual density testing, and IV specification and heterogeneity density analysis. Companion software packages in Stata and R are available.

本文研究了局部回归分布估计器的大样本特性,其中一类边界自适应密度估计器就是最好的例子。首先,我们以统一的方式建立了点式高斯大样本分布近似,同时允许边界和内部评估点。利用这一结果,我们研究了估计器的渐进效率,并表明基于 "冗余 "回归因子的精心设计的最小距离实现可以提高效率。其次,我们建立了估计器的统一线性化和强近似,并利用这些结果构建了有效的置信区间。第三,我们对带有估计权重的加权分布和局部 L2 估计进行了扩展。最后,我们用项目评估中的两个应用来说明我们的方法:反事实密度检验以及 IV 规范和异质性密度分析。可提供 Stata 和 R 的配套软件包。
{"title":"Local regression distribution estimators","authors":"Matias D. Cattaneo ,&nbsp;Michael Jansson ,&nbsp;Xinwei Ma","doi":"10.1016/j.jeconom.2021.01.006","DOIUrl":"10.1016/j.jeconom.2021.01.006","url":null,"abstract":"<div><p><span><span><span>This paper investigates the large sample properties of local regression distribution estimators, which include a class of boundary adaptive density estimators as a prime example. First, we establish a pointwise<span> Gaussian large sample distributional approximation in a unified way, allowing for both boundary and interior evaluation points simultaneously. Using this result, we study the </span></span>asymptotic efficiency of the estimators, and show that a carefully crafted minimum distance implementation based on “redundant” </span>regressors can lead to efficiency gains. Second, we establish uniform linearizations and strong approximations for the estimators, and employ these results to construct valid confidence bands. Third, we develop extensions to weighted distributions with estimated weights and to local </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> estimation. Finally, we illustrate our methods with two applications in program evaluation: counterfactual density testing, and IV specification and heterogeneity density analysis. Companion software packages in <span>Stata</span> and <span>R</span> are available.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105074"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48826557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations 使用瓦瑟斯坦生成对抗网络设计蒙特卡罗模拟
IF 6.3 3区 经济学 Q1 ECONOMICS Pub Date : 2024-03-01 DOI: 10.1016/j.jeconom.2020.09.013
Susan Athey , Guido W. Imbens , Jonas Metzger , Evan Munro

When researchers develop new econometric methods it is common practice to compare the performance of the new methods to those of existing methods in Monte Carlo studies. The credibility of such Monte Carlo studies is often limited because of the discretion the researcher has in choosing the Monte Carlo designs reported. To improve the credibility we propose using a class of generative models that has recently been developed in the machine learning literature, termed Generative Adversarial Networks (GANs) which can be used to systematically generate artificial data that closely mimics existing datasets. Thus, in combination with existing real data sets, GANs can be used to limit the degrees of freedom in Monte Carlo study designs for the researcher, making any comparisons more convincing. In addition, if an applied researcher is concerned with the performance of a particular statistical method on a specific data set (beyond its theoretical properties in large samples), she can use such GANs to assess the performance of the proposed method, e.g. the coverage rate of confidence intervals or the bias of the estimator, using simulated data which closely resembles the exact setting of interest. To illustrate these methods we apply Wasserstein GANs (WGANs) to the estimation of average treatment effects. In this example, we find that (i) there is not a single estimator that outperforms the others in all three settings, so researchers should tailor their analytic approach to a given setting, (ii) systematic simulation studies can be helpful for selecting among competing methods in this situation, and (iii) the generated data closely resemble the actual data.

当研究人员开发新的计量经济学方法时,通常的做法是在蒙特卡罗研究中将新方法的性能与现有方法的性能进行比较。这种蒙特卡罗研究的可信度往往有限,因为研究人员在选择所报告的蒙特卡罗设计时具有随意性。为了提高可信度,我们建议使用最近在机器学习文献中开发的一类生成模型,即生成对抗网络(GANs),它可以用来系统地生成与现有数据集非常相似的人工数据。因此,结合现有的真实数据集,GANs 可用于限制研究人员蒙特卡罗研究设计中的自由度,使任何比较更有说服力。此外,如果应用研究人员关注特定统计方法在特定数据集上的性能(超出其在大样本中的理论特性),她可以使用这种 GANs 评估所建议方法的性能,例如置信区间的覆盖率或估计器的偏差,使用的模拟数据与感兴趣的确切设置非常相似。为了说明这些方法,我们将 Wasserstein GANs(WGANs)应用于平均治疗效果的估计。在这个例子中,我们发现:(i) 没有一个估计器在所有三种情况下都优于其他估计器,因此研究人员应该根据给定的情况调整他们的分析方法;(ii) 在这种情况下,系统的模拟研究有助于在相互竞争的方法中进行选择;(iii) 生成的数据与实际数据非常相似。
{"title":"Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations","authors":"Susan Athey ,&nbsp;Guido W. Imbens ,&nbsp;Jonas Metzger ,&nbsp;Evan Munro","doi":"10.1016/j.jeconom.2020.09.013","DOIUrl":"https://doi.org/10.1016/j.jeconom.2020.09.013","url":null,"abstract":"<div><p><span><span>When researchers develop new econometric methods it is common practice to compare the performance of the new methods to those of existing methods in </span>Monte Carlo studies<span>. The credibility of such Monte Carlo studies is often limited because of the discretion the researcher has in choosing the Monte Carlo designs reported. To improve the credibility we propose using a class of generative models that has recently been developed in the machine learning literature, termed Generative Adversarial Networks (GANs) which can be used to systematically generate artificial data that closely mimics existing datasets. Thus, in combination with existing real data sets, GANs can be used to limit the degrees of freedom in Monte Carlo study designs for the researcher, making any comparisons more convincing. In addition, if an applied researcher is concerned with the performance of a particular statistical method on a specific data set (beyond its theoretical properties in large samples), she can use such GANs to assess the performance of the proposed method, </span></span><em>e.g.</em><span> the coverage rate of confidence intervals or the bias of the estimator, using simulated data<span> which closely resembles the exact setting of interest. To illustrate these methods we apply Wasserstein GANs (WGANs) to the estimation of average treatment effects. In this example, we find that </span></span><span><math><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></math></span> there is not a single estimator that outperforms the others in all three settings, so researchers should tailor their analytic approach to a given setting, <span><math><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></mrow></math></span> systematic simulation studies can be helpful for selecting among competing methods in this situation, and <span><math><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></mrow></math></span> the generated data closely resemble the actual data.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105076"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140145357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On uniform inference in nonlinear models with endogeneity 关于具有内生性的非线性模型中的统一推理
IF 6.3 3区 经济学 Q1 ECONOMICS Pub Date : 2024-03-01 DOI: 10.1016/j.jeconom.2021.07.016
Shakeeb Khan , Denis Nekipelov

This paper explores the uniformity of inference for parameters of interest in nonlinear econometric models with endogeneity. Here the notion of uniformity arises because the behavior of estimators of parameters of interest is shown to vary with where either they or nuisance parameters lie in the parameter space. As a result, inference becomes nonstandard in a fashion that is loosely analogous to inference complications found in the unit root and weak instruments literature, as well as the models recently studied in Andrews and Cheng (2012), Chen et al. (2014), Han and McCloskey (2019). Our main illustrative example is the standard sample selection model, where the parameter of interest is the intercept term as in Heckman (1990), Andrews and Schafgans (1998) and Lewbel (2007). We show here there is a discontinuity in the limiting distribution for an estimator of this parameter despite it being uniformly consistent. This discontinuity prevents standard inference procedures from being valid, and motivates the development of new methods, for which we establish asymptotic properties. Finite sample properties of the procedure are explored through a simulation study and an empirical illustration using the Mroz (1987) data set as in Newey, Powell, and Walker (1990).

本文探讨了具有内生性的非线性计量经济模型中相关参数推断的一致性问题。这里之所以会出现均匀性的概念,是因为相关参数的估计值的行为会随着它们或滋扰参数在参数空间中的位置而变化。因此,推断变得不标准,这与单位根和弱工具文献中发现的推断复杂性以及 Andrews 和 Cheng(2012)、Chen 等人(2014)、Han 和 McCloskey(2019)最近研究的模型大致类似。我们的主要示例是标准样本选择模型,其中感兴趣的参数是截距项,如 Heckman (1990)、Andrews 和 Schafgans (1998) 以及 Lewbel (2007)。我们在此表明,尽管该参数的估计值具有均匀一致性,但其极限分布存在不连续性。这种不连续性使标准推断程序无法生效,促使我们开发新的方法,并为其建立渐近特性。通过模拟研究和使用 Mroz(1987 年)数据集的经验说明,我们探索了该程序的有限样本特性,如 Newey、Powell 和 Walker(1990 年)所述。
{"title":"On uniform inference in nonlinear models with endogeneity","authors":"Shakeeb Khan ,&nbsp;Denis Nekipelov","doi":"10.1016/j.jeconom.2021.07.016","DOIUrl":"10.1016/j.jeconom.2021.07.016","url":null,"abstract":"<div><p><span><span>This paper explores the uniformity of inference for parameters of interest in nonlinear econometric models with endogeneity. Here the notion of uniformity arises because the behavior of estimators of parameters of interest is shown to vary with where either they or </span>nuisance parameters lie in the parameter space. As a result, inference becomes nonstandard in a fashion that is loosely analogous to inference complications found in the unit root and weak instruments literature, as well as the models recently studied in Andrews and Cheng (2012), Chen et al. (2014), Han and McCloskey (2019). Our main illustrative example is the standard sample selection model, where the parameter of interest is the intercept term as in Heckman (1990), Andrews and Schafgans (1998) and Lewbel (2007). We show here there is a </span><em>discontinuity</em><span> in the limiting distribution for an estimator of this parameter despite it being uniformly consistent. This discontinuity prevents standard inference procedures from being valid, and motivates the development of new methods, for which we establish asymptotic properties. Finite sample properties of the procedure are explored through a simulation study and an empirical illustration using the Mroz (1987) data set as in Newey, Powell, and Walker (1990).</span></p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105261"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132163820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing underidentification in linear models, with applications to dynamic panel and asset pricing models 在线性模型中测试欠识别,并应用于动态面板和资产定价模型
IF 6.3 3区 经济学 Q1 ECONOMICS Pub Date : 2024-03-01 DOI: 10.1016/j.jeconom.2021.03.007
Frank Windmeijer

This paper develops the links between overidentification tests, underidentification tests, score tests and the Cragg and Donald (1993, 1997) and Kleibergen and Paap (2006) rank tests in linear instrumental variable (IV) models. For the structural linear model y=Xβ+u, with the endogenous explanatory variables partitioned as X=x1X2, this general framework shows that standard underidentification tests are tests for overidentification in an auxiliary linear model, x1=X2δ+ɛ, estimated by IV estimation methods using the same instruments as for the original model. This simple structure makes it possible to establish valid robust underidentification tests for linear IV models where these have not been proposed or used before, like clustered dynamic panel data models estimated by GMM. The framework also applies to tests for the rank of general parameter matrices. Invariant rank tests are based on the LIML or continuously updated GMM estimators of both structural and first-stage parameters. This insight leads to the proposal of new two-step invariant asymptotically efficient GMM estimators, and a new iterated GMM estimator that, if it converges, converges to the continuously updated GMM estimator.

本文发展了线性工具变量(IV)模型中的过度识别检验、不足识别检验、得分检验以及 Cragg 和 Donald(1993,1997)和 Kleibergen 和 Paap(2006)等级检验之间的联系。对于结构线性模型 y=Xβ+u,内生解释变量划分为 X=x1X2,这个一般框架表明,标准的识别不足检验是在辅助线性模型 x1=X2δ+ɛ 中的过度识别检验,该辅助线性模型使用与原始模型相同的工具,通过 IV 估计方法进行估计。这种简单的结构使我们有可能为线性 IV 模型(如用 GMM 估计的聚类动态面板数据模型)建立有效的稳健欠识别检验。该框架也适用于一般参数矩阵的秩检验。不变秩检验基于结构参数和第一阶段参数的 LIML 或连续更新的 GMM 估计器。这一洞察力导致提出了新的两步不变渐进有效 GMM 估计器,以及新的迭代 GMM 估计器,如果它收敛,则收敛于连续更新的 GMM 估计器。
{"title":"Testing underidentification in linear models, with applications to dynamic panel and asset pricing models","authors":"Frank Windmeijer","doi":"10.1016/j.jeconom.2021.03.007","DOIUrl":"10.1016/j.jeconom.2021.03.007","url":null,"abstract":"<div><p><span>This paper develops the links between overidentification tests, underidentification tests, score tests and the Cragg and Donald (1993, 1997) and Kleibergen and Paap (2006) rank tests<span> in linear instrumental variable (IV) models. For the structural linear model </span></span><span><math><mrow><mi>y</mi><mo>=</mo><mi>X</mi><mi>β</mi><mo>+</mo><mi>u</mi></mrow></math></span><span>, with the endogenous explanatory variables partitioned as </span><span><math><mrow><mi>X</mi><mo>=</mo><mfenced><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mspace></mspace><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow></math></span>, this general framework shows that standard underidentification tests are tests for overidentification in an auxiliary linear model, <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>δ</mi><mo>+</mo><mi>ɛ</mi></mrow></math></span><span>, estimated by IV estimation methods using the same instruments as for the original model. This simple structure makes it possible to establish valid robust underidentification tests for linear IV models where these have not been proposed or used before, like clustered dynamic panel data models estimated by GMM. The framework also applies to tests for the rank of general parameter matrices. Invariant rank tests are based on the LIML or continuously updated GMM estimators of both structural and first-stage parameters. This insight leads to the proposal of new two-step invariant asymptotically efficient GMM estimators, and a new iterated GMM estimator that, if it converges, converges to the continuously updated GMM estimator.</span></p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105104"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43824339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing and relaxing the exclusion restriction in the control function approach 测试和放松控制函数方法中的排除限制
IF 6.3 3区 经济学 Q1 ECONOMICS Pub Date : 2024-03-01 DOI: 10.1016/j.jeconom.2020.09.012
Xavier D’Haultfœuille , Stefan Hoderlein , Yuya Sasaki

The control function approach which employs an instrumental variable excluded from the outcome equation is a very common solution to deal with the problem of endogeneity in nonseparable models. Exclusion restrictions, however, are frequently controversial. We first argue that, in a nonparametric triangular structure typical of the control function literature, one can actually test this exclusion restriction provided the instrument satisfies a local irrelevance condition. Second, we investigate identification without such exclusion restrictions, i.e., if the “instrument” that is independent of the unobservables in the outcome equation also directly affects the outcome variable. In particular, we show that identification of average causal effects can be achieved in the two most common special cases of the general nonseparable model: linear random coefficients models and single index models.

控制函数法采用排除在结果方程之外的工具变量,是解决非分离模型中内生性问题的常用方法。然而,排除限制经常引起争议。我们首先论证,在控制函数文献中典型的非参数三角结构中,只要工具满足局部无关性条件,我们就可以检验这种排除限制。其次,我们研究了没有这种排除限制的识别,即如果 "工具 "独立于结果方程中的非观测变量,也直接影响结果变量。我们特别指出,在一般不可分割模型的两种最常见的特殊情况下,即线性随机系数模型和单一指数模型中,可以实现平均因果效应的识别。
{"title":"Testing and relaxing the exclusion restriction in the control function approach","authors":"Xavier D’Haultfœuille ,&nbsp;Stefan Hoderlein ,&nbsp;Yuya Sasaki","doi":"10.1016/j.jeconom.2020.09.012","DOIUrl":"10.1016/j.jeconom.2020.09.012","url":null,"abstract":"<div><p><span>The control function approach which employs an </span>instrumental variable<span> excluded from the outcome equation is a very common solution to deal with the problem of endogeneity in nonseparable models. Exclusion restrictions, however, are frequently controversial. We first argue that, in a nonparametric triangular structure typical of the control function literature, one can actually test this exclusion restriction provided the instrument satisfies a local irrelevance condition. Second, we investigate identification without such exclusion restrictions, i.e., if the “instrument” that is independent of the unobservables in the outcome equation also directly affects the outcome variable. In particular, we show that identification of average causal effects can be achieved in the two most common special cases of the general nonseparable model: linear random coefficients models and single index models.</span></p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105075"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46289137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is Newey–West optimal among first-order kernels? 在一阶核中new - west是最优的吗?
IF 6.3 3区 经济学 Q1 ECONOMICS Pub Date : 2024-03-01 DOI: 10.1016/j.jeconom.2022.12.013
Thomas Kolokotrones , James H. Stock , Christopher D. Walker
<div><p><span><span>Newey–West (1987) standard errors are the dominant standard errors used for heteroskedasticity and autocorrelation robust (HAR) inference in </span>time series<span> regression. The Newey–West estimator uses the Bartlett kernel, which is a first-order kernel, meaning that its characteristic exponent, </span></span><span><math><mi>q</mi></math></span>, is equal to 1, where <span><math><mi>q</mi></math></span> is defined as the largest value of <span><math><mi>r</mi></math></span> for which the quantity <span><math><mrow><msup><mrow><mi>k</mi></mrow><mrow><mrow><mo>[</mo><mi>r</mi><mo>]</mo></mrow></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>t</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>k</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>−</mo><mi>k</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> is defined and finite. This raises the apparently uninvestigated question of whether the Bartlett kernel is optimal among first-order kernels. We demonstrate that, for <span><math><mrow><mi>q</mi><mo><</mo><mn>2</mn></mrow></math></span>, there is no optimal <span><math><mi>q</mi></math></span><span>th-order kernel for HAR testing in the Gaussian<span><span> location model or for minimizing the MSE in </span>spectral density estimation. In fact, for any </span></span><span><math><mrow><mi>q</mi><mo><</mo><mn>2</mn></mrow></math></span>, the space of <span><math><mi>q</mi></math></span>th-order positive-semidefinite kernels is not closed and, moreover, all continuous <span><math><mi>q</mi></math></span>th-order kernels can be decomposed into a weighted sum of <span><math><mi>q</mi></math></span>th and second-order kernels, which suggests that there is no meaningful notion of ‘pure’ <span><math><mi>q</mi></math></span>th-order kernels for <span><math><mrow><mi>q</mi><mo><</mo><mn>2</mn></mrow></math></span>. Nevertheless, it is possible to rank any given collection of <span><math><mi>q</mi></math></span>th-order kernels using the functional <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow><mo>=</mo><msup><mrow><mfenced><mrow><msup><mrow><mi>k</mi></mrow><mrow><mrow><mo>[</mo><mi>q</mi><mo>]</mo></mrow></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup><mo>∫</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math></span> with smaller values corresponding to better asymptotic performance. We examine the value of <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></mrow></math></span> for a wide variety of first-order es
Newey-West (1987) 标准误差是时间序列回归中用于异方差和自相关稳健(HAR)推断的主要标准误差。Newey-West 估计器使用的是巴特利特核,这是一个一阶核,意味着其特征指数 q 等于 1,其中 q 被定义为 k[r](0)=limt→0|t|-r(k(0)-k(t)) 所定义的最大 r 值,并且是有限的。这就提出了一个显然尚未研究过的问题:巴特利特核是否是一阶核中的最优核。我们证明,对于 q<2,在高斯位置模型中进行 HAR 检验或在谱密度估计中最小化 MSE 时,不存在最优的 qth 阶核。事实上,对于任何 q<2,qth-阶正半定常核的空间都不是封闭的,而且,所有连续的 qth-阶核都可以分解为 qth 和 second-阶核的加权和,这表明对于 q<2,不存在有意义的 "纯 "qth-阶核的概念。不过,可以使用函数 Iq[k]=k[q](0)1/q∫k2(t)dt 对任何给定的 qth 阶内核集合进行排序,数值越小,渐近性能越好。我们研究了各种一阶估计值的 Iq[k] 值,发现没有一个估计值比 Bartlett 内核更好。这些比较为继续使用具有测试最优平滑参数和固定临界值的 Newey-West 估计器提供了更多理由,尽管 Bartlett 在一阶核中缺乏最优性。
{"title":"Is Newey–West optimal among first-order kernels?","authors":"Thomas Kolokotrones ,&nbsp;James H. Stock ,&nbsp;Christopher D. Walker","doi":"10.1016/j.jeconom.2022.12.013","DOIUrl":"10.1016/j.jeconom.2022.12.013","url":null,"abstract":"&lt;div&gt;&lt;p&gt;&lt;span&gt;&lt;span&gt;Newey–West (1987) standard errors are the dominant standard errors used for heteroskedasticity and autocorrelation robust (HAR) inference in &lt;/span&gt;time series&lt;span&gt; regression. The Newey–West estimator uses the Bartlett kernel, which is a first-order kernel, meaning that its characteristic exponent, &lt;/span&gt;&lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, is equal to 1, where &lt;span&gt;&lt;math&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is defined as the largest value of &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; for which the quantity &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;lim&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is defined and finite. This raises the apparently uninvestigated question of whether the Bartlett kernel is optimal among first-order kernels. We demonstrate that, for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, there is no optimal &lt;span&gt;&lt;math&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;th-order kernel for HAR testing in the Gaussian&lt;span&gt;&lt;span&gt; location model or for minimizing the MSE in &lt;/span&gt;spectral density estimation. In fact, for any &lt;/span&gt;&lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, the space of &lt;span&gt;&lt;math&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;th-order positive-semidefinite kernels is not closed and, moreover, all continuous &lt;span&gt;&lt;math&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;th-order kernels can be decomposed into a weighted sum of &lt;span&gt;&lt;math&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;th and second-order kernels, which suggests that there is no meaningful notion of ‘pure’ &lt;span&gt;&lt;math&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;th-order kernels for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Nevertheless, it is possible to rank any given collection of &lt;span&gt;&lt;math&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;th-order kernels using the functional &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with smaller values corresponding to better asymptotic performance. We examine the value of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for a wide variety of first-order es","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105399"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45646742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Econometrics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1