The steel girder of high-speed railway bridges requires regular inspections to ensure bridge stability and provide a safe environment for railway operations. Unmanned aerial vehicle (UAV)-based inspection has great potential to become an efficient solution by offering superior aerial perspectives and mitigating safety concerns. Unfortunately, classic convolutional neural network (CNN) models suffer from limited detection accuracy or redundant model parameters, and existing CNN-based bridge inspection systems are only designed for a single visual task (e.g., bolt detection or rust parsing only). This paper develops a novel bi-task girder inspection network (i.e., BGInet) to recognize different types of surface defects on girder from UAV imagery. First, the network assembles an advanced detection branch that integrates the sparse attention module, extended efficient linear aggregation network, and RepConv to solve the small object with scarce samples and complete efficient bolt defect identification. Then, an innovative U-shape saliency parsing branch is integrated into this system to supplement the detection branch and parse the rust regions. Smoothly, a pixel-to-real-world mapping model utilizing critical UAV flight parameters is also developed and assembled to measure rust areas. Finally, extensive experiments conducted on the UAV-based bridge girder dataset show our method achieves better detection accuracy over the current advanced models yet remains a reasonably high inference speed. The superior performance illustrates the system can effectively turn UAV imagery into useful information.
{"title":"Automatic steel girder inspection system for high-speed railway bridge using hybrid learning framework","authors":"Tao Xu, Yunpeng Wu, Yong Qin, Sihui Long, Zhen Yang, Fengxiang Guo","doi":"10.1111/mice.13409","DOIUrl":"https://doi.org/10.1111/mice.13409","url":null,"abstract":"The steel girder of high-speed railway bridges requires regular inspections to ensure bridge stability and provide a safe environment for railway operations. Unmanned aerial vehicle (UAV)-based inspection has great potential to become an efficient solution by offering superior aerial perspectives and mitigating safety concerns. Unfortunately, classic convolutional neural network (CNN) models suffer from limited detection accuracy or redundant model parameters, and existing CNN-based bridge inspection systems are only designed for a single visual task (e.g., bolt detection or rust parsing only). This paper develops a novel bi-task girder inspection network (i.e., BGInet) to recognize different types of surface defects on girder from UAV imagery. First, the network assembles an advanced detection branch that integrates the sparse attention module, extended efficient linear aggregation network, and RepConv to solve the small object with scarce samples and complete efficient bolt defect identification. Then, an innovative U-shape saliency parsing branch is integrated into this system to supplement the detection branch and parse the rust regions. Smoothly, a pixel-to-real-world mapping model utilizing critical UAV flight parameters is also developed and assembled to measure rust areas. Finally, extensive experiments conducted on the UAV-based bridge girder dataset show our method achieves better detection accuracy over the current advanced models yet remains a reasonably high inference speed. The superior performance illustrates the system can effectively turn UAV imagery into useful information.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"143 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142887241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongwu Yang, Yingmin Li, Weihao Pan, Lei Hu, Shuyan Ji
This study presents an automated, quantitative classification method for near-fault pulse-like ground motions, distinguishing between forward-directivity and fling-step (FS) motions. The method introduces two novel parameters—the pulse velocity ratio and pulse area ratio—which transform the classification standard from a qualitative to a quantitative framework. Combined with an enhanced pulse extraction technique that captures permanent displacement characteristics, these parameters significantly improve classification efficiency and repeatability. This automated approach overcomes the limitations of manual classification, providing reproducible results. The identified FS ground motions can be applied to the dynamic analysis of cross-fault structures, enhancing the reliability of seismic hazard assessments.
{"title":"Automatic classification of near-fault pulse-like ground motions","authors":"Hongwu Yang, Yingmin Li, Weihao Pan, Lei Hu, Shuyan Ji","doi":"10.1111/mice.13408","DOIUrl":"https://doi.org/10.1111/mice.13408","url":null,"abstract":"This study presents an automated, quantitative classification method for near-fault pulse-like ground motions, distinguishing between forward-directivity and fling-step (FS) motions. The method introduces two novel parameters—the pulse velocity ratio and pulse area ratio—which transform the classification standard from a qualitative to a quantitative framework. Combined with an enhanced pulse extraction technique that captures permanent displacement characteristics, these parameters significantly improve classification efficiency and repeatability. This automated approach overcomes the limitations of manual classification, providing reproducible results. The identified FS ground motions can be applied to the dynamic analysis of cross-fault structures, enhancing the reliability of seismic hazard assessments.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"29 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142884772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mikiko Yamashita, Koichi Kawanishi, Kenji Hashizume, Pang-jo Chun
Deterioration of the concrete deck surface, including disintegration and delamination between the deck slab and pavement, presents significant challenges in bridge maintenance due to its hidden nature and the risk it poses to the deck's durability as damage progresses. Early detection is critical for preventing issues such as pothole formation and ensuring long-term durability. However, traditional methods require core sampling, which often delays detection until damage is extensive. This study proposes a nondestructive approach combining infrared thermography (IRT) and laser-based surface profiling to improve early detection of subsurface damage. IRT captures temperature variations on the pavement surface, detecting horizontal voids and moisture, while laser profiling refines the detection of deeper, progressive damage. By integrating these two methods, the technique offers a comprehensive assessment that single-method approaches cannot provide. Field validation demonstrates that this method enables precise evaluation of bridge deck conditions, contributing to safer and more efficient bridge maintenance.
{"title":"Infrared thermography and 3D pavement surface unevenness measurement algorithm for damage assessment of concrete bridge decks","authors":"Mikiko Yamashita, Koichi Kawanishi, Kenji Hashizume, Pang-jo Chun","doi":"10.1111/mice.13406","DOIUrl":"https://doi.org/10.1111/mice.13406","url":null,"abstract":"Deterioration of the concrete deck surface, including disintegration and delamination between the deck slab and pavement, presents significant challenges in bridge maintenance due to its hidden nature and the risk it poses to the deck's durability as damage progresses. Early detection is critical for preventing issues such as pothole formation and ensuring long-term durability. However, traditional methods require core sampling, which often delays detection until damage is extensive. This study proposes a nondestructive approach combining infrared thermography (IRT) and laser-based surface profiling to improve early detection of subsurface damage. IRT captures temperature variations on the pavement surface, detecting horizontal voids and moisture, while laser profiling refines the detection of deeper, progressive damage. By integrating these two methods, the technique offers a comprehensive assessment that single-method approaches cannot provide. Field validation demonstrates that this method enables precise evaluation of bridge deck conditions, contributing to safer and more efficient bridge maintenance.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"57 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142884771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cover image is based on the article Deep neural network based time–frequency decomposition for structural seismic responses training with synthetic samples by Ranting Cui et al., https://doi.org/10.1111/mice.13242.