Despite progress in automated bridge point cloud segmentation based on deep learning, challenges persist. For instance, the absence of a public point cloud dataset specifically designed for bridge instances, and the existing bridge point cloud datasets display a lack of diversity in bridge types and inconsistency in component labeling. These factors may hinder the further improvement of accuracy in bridge point cloud segmentation. In this paper, a universal multi-type bridge point cloud databank, named BrPCD, consisting of a total of 98 point cloud data (PCD; 10 of them are obtained from scanning, and the rest is obtained by data augmentation) from small to long-span bridges, is established. Additionally, a method for augmenting bridge PCD is proposed, significantly enriching the spatial feature information of bridges within the dataset. Furthermore, based on the introduced data annotation rules, a uniform categorization of semantic labels for bridge components is implemented, enhancing the applicability of our dataset across various semantic segmentation tasks for different types of bridges. A benchmark testing was conducted on the BrPCD using the PointNet model. The segmentation results indicate that the parameters learned through the BrPCD enable accurate segmentation at the level of various types of bridge components. In other words, the BrPCD can function as a universal dataset, applicable for testing various networks aimed at bridge point cloud segmentation.
{"title":"A bridge point cloud databank for digital bridge understanding","authors":"Hongwei Zhang, Yanjie Zhu, Wen Xiong, C. S. Cai","doi":"10.1111/mice.13384","DOIUrl":"https://doi.org/10.1111/mice.13384","url":null,"abstract":"Despite progress in automated bridge point cloud segmentation based on deep learning, challenges persist. For instance, the absence of a public point cloud dataset specifically designed for bridge instances, and the existing bridge point cloud datasets display a lack of diversity in bridge types and inconsistency in component labeling. These factors may hinder the further improvement of accuracy in bridge point cloud segmentation. In this paper, a universal multi-type bridge point cloud databank, named BrPCD, consisting of a total of 98 point cloud data (PCD; 10 of them are obtained from scanning, and the rest is obtained by data augmentation) from small to long-span bridges, is established. Additionally, a method for augmenting bridge PCD is proposed, significantly enriching the spatial feature information of bridges within the dataset. Furthermore, based on the introduced data annotation rules, a uniform categorization of semantic labels for bridge components is implemented, enhancing the applicability of our dataset across various semantic segmentation tasks for different types of bridges. A benchmark testing was conducted on the BrPCD using the PointNet model. The segmentation results indicate that the parameters learned through the BrPCD enable accurate segmentation at the level of various types of bridge components. In other words, the BrPCD can function as a universal dataset, applicable for testing various networks aimed at bridge point cloud segmentation.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"19 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural health monitoring (SHM) aims to assess civil infrastructures' performance and ensure safety. Automated detection of in situ events of interest, such as earthquakes, from extensive continuous monitoring data, is important to ensure the timeliness of subsequent data analysis. To overcome the poor timeliness of manual identification and the inconsistency of sensors, this paper proposes an automated seismic event detection procedure with interpretability and robustness. The sensor-wise raw time series is transformed into image data, enhancing the separability of classification while endowing with visual understandability. Vision Transformers (ViTs) and Residual Networks (ResNets) aided by a heat map–based visual interpretation technique are used for image classification. Multitype faulty data that could disturb the seismic event detection are considered in the classification. Then, divergent results from multiple sensors are fused by Bayesian fusion, outputting a consistent seismic detection result. A real-world monitoring data set of four seismic responses of a pair of long-span bridges is used for method validation. At the classification stage, ResNet 34 achieved the best accuracy of over 90% with minimal training cost. After Bayesian fusion, globally consistent and accurate seismic detection results can be obtained using a ResNet or ViT. The proposed approach effectively localizes seismic events within multisource, multifault monitoring data, achieving automated and consistent seismic event detection.
结构健康监测(SHM)旨在评估民用基础设施的性能并确保安全。从大量连续监测数据中自动检测地震等现场事件,对于确保后续数据分析的及时性非常重要。为了克服人工识别的不及时性和传感器的不一致性,本文提出了一种具有可解释性和鲁棒性的地震事件自动检测程序。将传感器的原始时间序列转换为图像数据,增强了分类的可分离性,同时赋予了视觉上的可理解性。视觉转换器(ViTs)和残差网络(ResNets)在基于热图的视觉解读技术的辅助下用于图像分类。在分类过程中,考虑了可能干扰地震事件检测的多种错误数据。然后,通过贝叶斯融合法融合来自多个传感器的不同结果,输出一致的地震检测结果。实际监测数据集包括一对大跨度桥梁的四次地震响应,用于方法验证。在分类阶段,ResNet 34 以最小的训练成本达到了 90% 以上的最佳准确率。贝叶斯融合后,使用 ResNet 或 ViT 可以获得全局一致且准确的地震检测结果。所提出的方法能有效定位多源、多断层监测数据中的地震事件,实现自动、一致的地震事件检测。
{"title":"Automated seismic event detection considering faulty data interference using deep learning and Bayesian fusion","authors":"Zhiyi Tang, Jiaxing Guo, Yinhao Wang, Wei Xu, Yuequan Bao, Jingran He, Youqi Zhang","doi":"10.1111/mice.13377","DOIUrl":"https://doi.org/10.1111/mice.13377","url":null,"abstract":"Structural health monitoring (SHM) aims to assess civil infrastructures' performance and ensure safety. Automated detection of in situ events of interest, such as earthquakes, from extensive continuous monitoring data, is important to ensure the timeliness of subsequent data analysis. To overcome the poor timeliness of manual identification and the inconsistency of sensors, this paper proposes an automated seismic event detection procedure with interpretability and robustness. The sensor-wise raw time series is transformed into image data, enhancing the separability of classification while endowing with visual understandability. Vision Transformers (ViTs) and Residual Networks (ResNets) aided by a heat map–based visual interpretation technique are used for image classification. Multitype faulty data that could disturb the seismic event detection are considered in the classification. Then, divergent results from multiple sensors are fused by Bayesian fusion, outputting a consistent seismic detection result. A real-world monitoring data set of four seismic responses of a pair of long-span bridges is used for method validation. At the classification stage, ResNet 34 achieved the best accuracy of over 90% with minimal training cost. After Bayesian fusion, globally consistent and accurate seismic detection results can be obtained using a ResNet or ViT. The proposed approach effectively localizes seismic events within multisource, multifault monitoring data, achieving automated and consistent seismic event detection.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"73 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengfei Wu, Bo Lu, Huan Li, Weijie Li, Xuefeng Zhao
Computer vision strain sensors typically require the camera position to be fixed, limiting measurements to surface deformations of structures at pixel-level resolution. Also, sensors have a service term significantly shorter than the designed service term of the structures. This paper presents research on a high durable computer vision sensor, microimage strain sensing (MISS)-Silica, which utilizes a smartphone connected to an endoscope for measurement. It is designed with a range of 0.05 ε, enabling full-stage strain measurement from loading to failure of structures. The sensor does not require the camera to be fixed during measurements, laying the theoretical foundation for embedded computer vision sensors. Measurement accuracy is improved from pixel level to sub-pixel level, with pixel-based measurement errors around 8 µε (standard deviation approximately 7 µε) and sub-pixel calculation errors around 6 µε (standard deviation approximately 5 µε). Sub-pixel calculation has approximately 30% enhancement in measurement accuracy and stability. MISS-Silica features easy data acquisition, high precision, and long service term, offering a promising method for long-term measurement of both surface and internal structures.
{"title":"Smartphone-based high durable strain sensor with sub-pixel-level accuracy and adjustable camera position","authors":"Pengfei Wu, Bo Lu, Huan Li, Weijie Li, Xuefeng Zhao","doi":"10.1111/mice.13383","DOIUrl":"10.1111/mice.13383","url":null,"abstract":"<p>Computer vision strain sensors typically require the camera position to be fixed, limiting measurements to surface deformations of structures at pixel-level resolution. Also, sensors have a service term significantly shorter than the designed service term of the structures. This paper presents research on a high durable computer vision sensor, microimage strain sensing (MISS)-Silica, which utilizes a smartphone connected to an endoscope for measurement. It is designed with a range of 0.05 ε, enabling full-stage strain measurement from loading to failure of structures. The sensor does not require the camera to be fixed during measurements, laying the theoretical foundation for embedded computer vision sensors. Measurement accuracy is improved from pixel level to sub-pixel level, with pixel-based measurement errors around 8 µε (standard deviation approximately 7 µε) and sub-pixel calculation errors around 6 µε (standard deviation approximately 5 µε). Sub-pixel calculation has approximately 30% enhancement in measurement accuracy and stability. MISS-Silica features easy data acquisition, high precision, and long service term, offering a promising method for long-term measurement of both surface and internal structures.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"39 24","pages":"3805-3820"},"PeriodicalIF":8.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13383","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. E. Seilabi, M. Saneii, M. Pourgholamali, M. Miralinaghi, S. Labi
Growth in urban population, travel, and motorization continue to cause an increased need for urban projects to expand road capacity. Unfortunately, these projects also cause travel delays, emissions, driver frustration, and other road user adversities. To alleviate these ills, road agencies often face two work zone design choices: close the road fully and re-reroute traffic or implement partial closure. Both options have significant implications for peri-construction road capacity, traveler costs, and the project duration and cost. This study presents a decision-making methodology to facilitate the choice between full road closure and partial closure. The presented decision-making methodology is a bi-level optimization problem: at the upper level, the road agency seeks to optimally schedule road construction work to minimize net vehicle emissions and road construction costs. The lower-level of the problem captures two types of travelers’ route choice behaviors: rational travelers who minimize their travel time and path-loyal travelers who do not change their routes from their pre-construction routes. The bi-level mixed integer nonlinear model is solved using a reinforcement learning-based algorithm (the multi-armed bandit-guided particle swarm optimization [PSO] technique). The computational experiments suggest the superiority of the proposed algorithm, compared to the classic PSO algorithm in terms of solution quality. The numerical results suggest that if the percentage of path-loyal travelers increases, the agency needs to invest more in road project construction to implement under partial closure to avoid a significant increase in vehicle emissions.
{"title":"Reinforcement learning-based approach for urban road project scheduling considering alternative closure types","authors":"S. E. Seilabi, M. Saneii, M. Pourgholamali, M. Miralinaghi, S. Labi","doi":"10.1111/mice.13365","DOIUrl":"https://doi.org/10.1111/mice.13365","url":null,"abstract":"Growth in urban population, travel, and motorization continue to cause an increased need for urban projects to expand road capacity. Unfortunately, these projects also cause travel delays, emissions, driver frustration, and other road user adversities. To alleviate these ills, road agencies often face two work zone design choices: close the road fully and re-reroute traffic or implement partial closure. Both options have significant implications for peri-construction road capacity, traveler costs, and the project duration and cost. This study presents a decision-making methodology to facilitate the choice between full road closure and partial closure. The presented decision-making methodology is a bi-level optimization problem: at the upper level, the road agency seeks to optimally schedule road construction work to minimize net vehicle emissions and road construction costs. The lower-level of the problem captures two types of travelers’ route choice behaviors: rational travelers who minimize their travel time and path-loyal travelers who do not change their routes from their pre-construction routes. The bi-level mixed integer nonlinear model is solved using a reinforcement learning-based algorithm (the multi-armed bandit-guided particle swarm optimization [PSO] technique). The computational experiments suggest the superiority of the proposed algorithm, compared to the classic PSO algorithm in terms of solution quality. The numerical results suggest that if the percentage of path-loyal travelers increases, the agency needs to invest more in road project construction to implement under partial closure to avoid a significant increase in vehicle emissions.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"46 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cover image is based on the Article A multi-phase mechanical model of biochar–cement composites at the mesoscale by Muduo Li et al., https://doi.org/10.1111/mice.13307.