Cracking impacts asphalt concrete durability primarily due to cohesive asphalt binder failures. The poker chip test has recently been introduced to better characterize the cracking potential of asphalt binders by fracturing a specimen in a realistic stress state to a thin binder film. However, broader adoption faces challenges due to high instrumentation costs for measuring load and displacement. This paper presents and validates a deep learning model that predicts ductility and tensile strength from posttest images of fractured binder surfaces, with potential extensions to simplified instrumentation. The hybrid model, named PCNet, integrates a custom lightweight convolutional neural network (CNN) developed to capture local features (e.g., edges, boundaries, contours) within fracture cavities with a Swin Transformer that models global contextual dependencies. A bidirectional cross-attention fusion module is designed to facilitate mutual information exchange between CNN and transformer branches. The fused features are then processed by a fully connected network (FCN) to predict indices derived from the test. The proposed model demonstrates high predictive accuracy across a range of binders and test configurations, achieving an <span data-altimg="/cms/asset/e9fbf493-59db-40fa-93fd-5f973187445b/mice13447-math-0001.png"></span><mjx-container ctxtmenu_counter="150" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/mice13447-math-0001.png"><mjx-semantics><mjx-msup data-semantic-children="0,1" data-semantic- data-semantic-role="latinletter" data-semantic-speech="upper R squared" data-semantic-type="superscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: 0.363em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:10939687:media:mice13447:mice13447-math-0001" display="inline" location="graphic/mice13447-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup data-semantic-="" data-semantic-children="0,1" data-semantic-role="latinletter" data-semantic-speech="upper R squared" data-semantic-type="superscript"><mi data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier">R</mi><mn data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="2" data-semantic-rol
{"title":"Hybrid deep learning model for predicting failure properties of asphalt binder from fracture surface images","authors":"Babak Asadi, Viraj Shah, Abhilash Vyas, Mani Golparvar-Fard, Ramez Hajj","doi":"10.1111/mice.13447","DOIUrl":"https://doi.org/10.1111/mice.13447","url":null,"abstract":"Cracking impacts asphalt concrete durability primarily due to cohesive asphalt binder failures. The poker chip test has recently been introduced to better characterize the cracking potential of asphalt binders by fracturing a specimen in a realistic stress state to a thin binder film. However, broader adoption faces challenges due to high instrumentation costs for measuring load and displacement. This paper presents and validates a deep learning model that predicts ductility and tensile strength from posttest images of fractured binder surfaces, with potential extensions to simplified instrumentation. The hybrid model, named PCNet, integrates a custom lightweight convolutional neural network (CNN) developed to capture local features (e.g., edges, boundaries, contours) within fracture cavities with a Swin Transformer that models global contextual dependencies. A bidirectional cross-attention fusion module is designed to facilitate mutual information exchange between CNN and transformer branches. The fused features are then processed by a fully connected network (FCN) to predict indices derived from the test. The proposed model demonstrates high predictive accuracy across a range of binders and test configurations, achieving an <span data-altimg=\"/cms/asset/e9fbf493-59db-40fa-93fd-5f973187445b/mice13447-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"150\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/mice13447-math-0001.png\"><mjx-semantics><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper R squared\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:10939687:media:mice13447:mice13447-math-0001\" display=\"inline\" location=\"graphic/mice13447-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper R squared\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">R</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-rol","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"22 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143463167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanjia Wang, Dong Yang, Ye Yuan, Jing Zhang, Francis T. K. Au
This paper introduces a novel hybrid multi‐model thermo‐temporal physics‐informed neural network (TT‐PINN) framework for thermal loading prediction in composite bridge decks. Unlike the existing PINN applications in heat transfer that focus on simple geometries, this framework uniquely addresses multi‐material domains and realistic boundary conditions through a dual‐network architecture designed for composite structures. The framework further incorporates the environmental boundary conditions of natural convection and solar radiation into the loss function and employs transfer learning for efficient adaptation to varying conditions. Moreover, a transfer learning mechanism enables rapid adaptation to new environmental states, thus markedly reducing the computations as compared to the conventional finite element method (FEM). Through noise‐augmented training and parameter identification, the TT‐PINN effectively handles the real‐world monitoring data uncertainties and allows material property calibration with limited sensor data. The framework's ability to capture complex thermal behavior is validated by studying a cable‐stayed bridge. It significantly reduces the computational costs as compared to the traditional FEM approaches.
{"title":"Hybrid physics‐informed neural network with parametric identification for modeling bridge temperature distribution","authors":"Yanjia Wang, Dong Yang, Ye Yuan, Jing Zhang, Francis T. K. Au","doi":"10.1111/mice.13436","DOIUrl":"https://doi.org/10.1111/mice.13436","url":null,"abstract":"This paper introduces a novel hybrid multi‐model thermo‐temporal physics‐informed neural network (TT‐PINN) framework for thermal loading prediction in composite bridge decks. Unlike the existing PINN applications in heat transfer that focus on simple geometries, this framework uniquely addresses multi‐material domains and realistic boundary conditions through a dual‐network architecture designed for composite structures. The framework further incorporates the environmental boundary conditions of natural convection and solar radiation into the loss function and employs transfer learning for efficient adaptation to varying conditions. Moreover, a transfer learning mechanism enables rapid adaptation to new environmental states, thus markedly reducing the computations as compared to the conventional finite element method (FEM). Through noise‐augmented training and parameter identification, the TT‐PINN effectively handles the real‐world monitoring data uncertainties and allows material property calibration with limited sensor data. The framework's ability to capture complex thermal behavior is validated by studying a cable‐stayed bridge. It significantly reduces the computational costs as compared to the traditional FEM approaches.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"12 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Road cracks pose a serious threat to the stability of road structures and traffic safety. Therefore, this paper proposes an optimized accurate road crack segmentation network called MBGBNet, which can solve the problems of complex background, tiny cracks, and irregular edges in road segmentation. First, multi-scale domain feature aggregation is proposed to address the interference of complex background. Second, bidirectional embedding fusion adaptive attention is proposed to capture the features of tiny cracks, and finally, Gaussian weighted edge segmentation algorithm is proposed to ensure the accuracy of crack edge segmentation. In addition, this paper uses the preheated bat optimization algorithm, which can quickly determine the optimal learning rate to converge the equilibrium. In the validation experiments on the self-built dataset, mean intersection over union reaches 80.54% and precision of 86.38%. MBGBNet outperforms the other seven state-of-the-art crack segmentation networks on the three classical crack datasets, highlighting its advanced segmentation capabilities. Therefore, MBGBNet is an effective auxiliary method for solving road safety problems.
{"title":"An optimized and precise road crack segmentation network in complex scenarios","authors":"Gang Wang, MingFang He, Genhua Liu, Liujun Li, Exian Liu, Guoxiong Zhou","doi":"10.1111/mice.13444","DOIUrl":"https://doi.org/10.1111/mice.13444","url":null,"abstract":"Road cracks pose a serious threat to the stability of road structures and traffic safety. Therefore, this paper proposes an optimized accurate road crack segmentation network called MBGBNet, which can solve the problems of complex background, tiny cracks, and irregular edges in road segmentation. First, multi-scale domain feature aggregation is proposed to address the interference of complex background. Second, bidirectional embedding fusion adaptive attention is proposed to capture the features of tiny cracks, and finally, Gaussian weighted edge segmentation algorithm is proposed to ensure the accuracy of crack edge segmentation. In addition, this paper uses the preheated bat optimization algorithm, which can quickly determine the optimal learning rate to converge the equilibrium. In the validation experiments on the self-built dataset, mean intersection over union reaches 80.54% and precision of 86.38%. MBGBNet outperforms the other seven state-of-the-art crack segmentation networks on the three classical crack datasets, highlighting its advanced segmentation capabilities. Therefore, MBGBNet is an effective auxiliary method for solving road safety problems.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"52 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Semantic segmentation struggles with detecting undefined road obstacles, critical for autonomous driving in urban environments. This study addresses the need for accurate unknown obstacle detection, inspired by drivers’ instinctual vigilance toward unexpected objects. It explores the impact of unexpected object position patterns on anomaly detection using human fixation scan‐paths and gaze density heat maps. Data augmentation based on these patterns enhances the outlier dataset for anomaly detection networks. The proposed driving vigilance enhancement framework (DVEF) improves classification accuracy with multi‐scale detailed features and a vigilance enhancement model, generating vigilance score maps to prioritize unknown regions. An improved energy model joint loss function expands vigilance scores, enhancing anomaly detection accuracy. Compared with recent methods on Fishyscapes (FS) LostAndFound, FS Static, and average datasets, average precision improvements of 2.16%, 2.22%, and 2.89% are achieved on these datasets, respectively. In addition, the false positive rate at a true positive rate of 95% are decreased to 5.79%, 5.62%, and 17.89%, respectively. It is indicated that the performance of the encoder–decoder semantic segmentation network is improved by DVEF, with enhanced consistency and robustness.
{"title":"Pixel‐wise anomaly detection on road by encoder–decoder semantic segmentation framework with driving vigilance","authors":"Yipeng Liu, Jianqing Wu, Xiuguang Song","doi":"10.1111/mice.13443","DOIUrl":"https://doi.org/10.1111/mice.13443","url":null,"abstract":"Semantic segmentation struggles with detecting undefined road obstacles, critical for autonomous driving in urban environments. This study addresses the need for accurate unknown obstacle detection, inspired by drivers’ instinctual vigilance toward unexpected objects. It explores the impact of unexpected object position patterns on anomaly detection using human fixation scan‐paths and gaze density heat maps. Data augmentation based on these patterns enhances the outlier dataset for anomaly detection networks. The proposed driving vigilance enhancement framework (DVEF) improves classification accuracy with multi‐scale detailed features and a vigilance enhancement model, generating vigilance score maps to prioritize unknown regions. An improved energy model joint loss function expands vigilance scores, enhancing anomaly detection accuracy. Compared with recent methods on Fishyscapes (FS) LostAndFound, FS Static, and average datasets, average precision improvements of 2.16%, 2.22%, and 2.89% are achieved on these datasets, respectively. In addition, the false positive rate at a true positive rate of 95% are decreased to 5.79%, 5.62%, and 17.89%, respectively. It is indicated that the performance of the encoder–decoder semantic segmentation network is improved by DVEF, with enhanced consistency and robustness.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"33 1","pages":""},"PeriodicalIF":11.775,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143417506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cover image is based on the article Optimizing green splits in high-dimensional traffic signal control with trust region Bayesian optimization by Yu Jiang et al., https://doi.org/10.1111/mice.13293.