Pub Date : 2024-06-01DOI: 10.31026/j.eng.2024.06.06
Manar M. Amer, Dahlia A. Al-Obaidi
Reservoir pressure plays a significant role in all reservoir and production engineering studies. It is crucial to characterize petroleum reservoirs: by detecting fluid movement, computing oil in place, and calculating the recovery factor. Knowledge of reservoir pressure is essential for predicting future production rates, optimizing well performance, or planning enhanced oil recovery strategies. However, applying the methods to investigate reservoir pressure performance is challenging because reservoirs are large, complex systems with irregular geometries in subsurface formations with numerous uncertainties and limited information about the reservoir's structure and behavior. Furthermore, many computational techniques, both numerical and analytical, have been utilized to examine reservoir pressure performance. This paper summarizes the concepts and applications of traditional and novel ways to investigate reservoir pressure changes over time. It provides a comprehensive review that assists the reader in recognizing and distinguishing between various techniques for obtaining an accurate description of reservoir pressure behavior during production, such as the reservoir simulation method, material balance equation approach, time-lapse seismic data, and modern artificial intelligence methods. Thus, the central concept of these procedures and a list of the authors' research are discussed.
{"title":"Methods Used to Estimate Reservoir Pressure Performance: A Review","authors":"Manar M. Amer, Dahlia A. Al-Obaidi","doi":"10.31026/j.eng.2024.06.06","DOIUrl":"https://doi.org/10.31026/j.eng.2024.06.06","url":null,"abstract":"Reservoir pressure plays a significant role in all reservoir and production engineering studies. It is crucial to characterize petroleum reservoirs: by detecting fluid movement, computing oil in place, and calculating the recovery factor. Knowledge of reservoir pressure is essential for predicting future production rates, optimizing well performance, or planning enhanced oil recovery strategies. However, applying the methods to investigate reservoir pressure performance is challenging because reservoirs are large, complex systems with irregular geometries in subsurface formations with numerous uncertainties and limited information about the reservoir's structure and behavior. Furthermore, many computational techniques, both numerical and analytical, have been utilized to examine reservoir pressure performance. This paper summarizes the concepts and applications of traditional and novel ways to investigate reservoir pressure changes over time. It provides a comprehensive review that assists the reader in recognizing and distinguishing between various techniques for obtaining an accurate description of reservoir pressure behavior during production, such as the reservoir simulation method, material balance equation approach, time-lapse seismic data, and modern artificial intelligence methods. Thus, the central concept of these procedures and a list of the authors' research are discussed.","PeriodicalId":15716,"journal":{"name":"Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141275437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.31026/j.eng.2024.06.12
Sura Kamal Mohamed, M. Al-Sherrawi
When designing the pavement layers, a suitable thickness must be chosen to protect the pavement from environmental conditions and traffic loads and ensure the structure's durability up to the design life. To investigate the behavior of flexible pavement, the characteristics and thickness of each layer are programmed into the finite element method (FEM). The Abaqus program is one of the infinite-element analysis programs. The use of the Abaqus program leads to a reduction in cost and time compared to laboratory tests. In this study, the Abaqus program analyzed a three-dimensional model of a multi-layered road section, and all materials have elastic behavior. The model comprises five layers (wearing, binder, base, subbase, and subgrade). The model was looked at with different base layer thicknesses (15, 25, and 30 cm) and elasticity moduli (1655, 2070, and 3000 MPa). Critical parameters were looked at in the present research: vertical displacement at the wearing layer's top, horizontal tensile strain in the asphalt layer's lowest point, and vertical compressive strain at the subgrade's surface. The outcomes indicated that the pavement is more susceptible to rutting than fatigue as a result of static load. An increase in thickness and modulus of elasticity for the base layer leads to a reduction in rutting risks.
{"title":"Influence of Base Layer Thickness and Property on Flexible Pavement Behavior","authors":"Sura Kamal Mohamed, M. Al-Sherrawi","doi":"10.31026/j.eng.2024.06.12","DOIUrl":"https://doi.org/10.31026/j.eng.2024.06.12","url":null,"abstract":"When designing the pavement layers, a suitable thickness must be chosen to protect the pavement from environmental conditions and traffic loads and ensure the structure's durability up to the design life. To investigate the behavior of flexible pavement, the characteristics and thickness of each layer are programmed into the finite element method (FEM). The Abaqus program is one of the infinite-element analysis programs. The use of the Abaqus program leads to a reduction in cost and time compared to laboratory tests. In this study, the Abaqus program analyzed a three-dimensional model of a multi-layered road section, and all materials have elastic behavior. The model comprises five layers (wearing, binder, base, subbase, and subgrade). The model was looked at with different base layer thicknesses (15, 25, and 30 cm) and elasticity moduli (1655, 2070, and 3000 MPa). Critical parameters were looked at in the present research: vertical displacement at the wearing layer's top, horizontal tensile strain in the asphalt layer's lowest point, and vertical compressive strain at the subgrade's surface. The outcomes indicated that the pavement is more susceptible to rutting than fatigue as a result of static load. An increase in thickness and modulus of elasticity for the base layer leads to a reduction in rutting risks.","PeriodicalId":15716,"journal":{"name":"Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.31026/j.eng.2024.06.08
Rawah Khalid Rakaa, Rafaa Mahmood Abbas
This study aims to evaluate experimentally the mechanical characteristics of Self-Compacting Concrete (SCC) comprising expanded polystyrene beads (EPS) to produce flowable lightweight concrete reinforced with steel fibers. In this paper, the effect of steel fibers and EPS content on the fresh and hardened mechanical properties of SCC specimens, using two percentages for Polystyrene aggregate replacement (25% and 50%) and three values for volume fraction of steel fiber content (0%, 0.75%, and 1.5%), were examined. Fresh mixture properties were determined using slump flow, L-box, and V-funnel tests. Mechanical properties for hardened samples were obtained using standard specimens for compressive strength, density, split, and flexural strength. The study showed that EPS content has no adverse effect on the rheological features of the SCC. However, workability falls below specification limits when adding steel fibers to SCC. Results revealed that using 25% of EPS content resulted in lightweight structural concrete, while lightweight moderate-strength concrete was produced using 50% of EPS content. Furthermore, the study has shown that the split and flexural tensile strength were reduced substantially by 53% and 60% due to EPS addition. However, adding steel fibers remarkably improved the indirect tensile strength and Modulus of rupture by 46% and 80%, respectively. The mode of failure of the concrete specimens containing EPS beads and steel fibers did not show brittle failure behavior generally encountered in normal-weight concrete, indicating a more ductile behavior.
{"title":"Mechanical Properties of Lightweight EPS Self-compacting Concrete Reinforced with Steel Fibers","authors":"Rawah Khalid Rakaa, Rafaa Mahmood Abbas","doi":"10.31026/j.eng.2024.06.08","DOIUrl":"https://doi.org/10.31026/j.eng.2024.06.08","url":null,"abstract":"This study aims to evaluate experimentally the mechanical characteristics of Self-Compacting Concrete (SCC) comprising expanded polystyrene beads (EPS) to produce flowable lightweight concrete reinforced with steel fibers. In this paper, the effect of steel fibers and EPS content on the fresh and hardened mechanical properties of SCC specimens, using two percentages for Polystyrene aggregate replacement (25% and 50%) and three values for volume fraction of steel fiber content (0%, 0.75%, and 1.5%), were examined. Fresh mixture properties were determined using slump flow, L-box, and V-funnel tests. Mechanical properties for hardened samples were obtained using standard specimens for compressive strength, density, split, and flexural strength. The study showed that EPS content has no adverse effect on the rheological features of the SCC. However, workability falls below specification limits when adding steel fibers to SCC. Results revealed that using 25% of EPS content resulted in lightweight structural concrete, while lightweight moderate-strength concrete was produced using 50% of EPS content. Furthermore, the study has shown that the split and flexural tensile strength were reduced substantially by 53% and 60% due to EPS addition. However, adding steel fibers remarkably improved the indirect tensile strength and Modulus of rupture by 46% and 80%, respectively. The mode of failure of the concrete specimens containing EPS beads and steel fibers did not show brittle failure behavior generally encountered in normal-weight concrete, indicating a more ductile behavior.","PeriodicalId":15716,"journal":{"name":"Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.31026/j.eng.2024.06.04
Rafal Mohanad Qasim, N. Aljalawi
Reactive Powder Concrete (RPC) is a type of high-performance concrete that is known for its exceptional strength and durability also RPC is one of the new composite materials that allow for the most efficient use of materials, which benefits the concrete industry economically. Additionally, it improves environmental sensitivity. The main objective of this paper is the determine some characteristics of RPC, such as (compressive strength and fresh density) after exposure to different curing temperatures (60, 120, and 200) oC for 4 hours due two days. This study involves many variables such as micro steel fibers content with 1% by vol. of reactive powder concrete samples as well as elevated temperature. It was discovered that the optimum temperature that was used after conducting the tests was 60 Celsius, as it gave the best results for the mechanical properties of RPC, which were adopted in the rest of the tests. The value of fresh density increased by about (1.95%) and compressive strength increased by about (33.3%) at 60 oC for the age of 28 days in contrast to the reference mixture.
{"title":"The Effect of Different Curing Temperatures on Properties of Reactive Powder Concrete Reinforced by Micro Steel Fibers","authors":"Rafal Mohanad Qasim, N. Aljalawi","doi":"10.31026/j.eng.2024.06.04","DOIUrl":"https://doi.org/10.31026/j.eng.2024.06.04","url":null,"abstract":"Reactive Powder Concrete (RPC) is a type of high-performance concrete that is known for its exceptional strength and durability also RPC is one of the new composite materials that allow for the most efficient use of materials, which benefits the concrete industry economically. Additionally, it improves environmental sensitivity. The main objective of this paper is the determine some characteristics of RPC, such as (compressive strength and fresh density) after exposure to different curing temperatures (60, 120, and 200) oC for 4 hours due two days. This study involves many variables such as micro steel fibers content with 1% by vol. of reactive powder concrete samples as well as elevated temperature. It was discovered that the optimum temperature that was used after conducting the tests was 60 Celsius, as it gave the best results for the mechanical properties of RPC, which were adopted in the rest of the tests. The value of fresh density increased by about (1.95%) and compressive strength increased by about (33.3%) at 60 oC for the age of 28 days in contrast to the reference mixture.","PeriodicalId":15716,"journal":{"name":"Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The air permeability of the fabric is affected by the type of yarn used, the loom speed, and the amount of air pressure delivered by the relay nozzles. In this study, 21 Ne of ring and rotor spun yarns were used as a weft in an air jet loom. Loom speed and left- and right-side relay nozzles pressure in a range of 400–600 RPM, 2–4 bar, and 3–6.5 bar, respectively, were taken as additional factors. To develop and analyze the experiment, a full factorial design was used. It was observed that the air permeability of rotor spun weft yarn fabric’s is greater than ring spun weft yarn fabrics. Furthermore, when the speed of the loom increased and the left- and right-side relay nozzles air pressure decreased, the fabric’s air permeability increased and vice versa.
织物的透气性受所用纱线类型、织机速度和中继喷嘴提供的气压大小的影响。在这项研究中,21 Ne 环锭纺纱和转杯纺纱被用作喷气织机的纬纱。织机速度、左侧和右侧中继喷嘴的压力分别为 400-600 转/分钟、2-4 巴和 3-6.5 巴。为了开发和分析实验,采用了全因子设计。实验结果表明,转杯纬纱织物的透气性比环锭纬纱织物大。此外,当织机速度增加、左右侧继电器喷嘴气压降低时,织物的透气性增加,反之亦然。
{"title":"Effects of Loom Speed, Insertion Air Pressure, and Yarn Type on Fabric Air Permeability: Case Study on Air Jet Loom","authors":"Anmen Admas, Alemayehu Assefa","doi":"10.1155/2024/2660559","DOIUrl":"https://doi.org/10.1155/2024/2660559","url":null,"abstract":"The air permeability of the fabric is affected by the type of yarn used, the loom speed, and the amount of air pressure delivered by the relay nozzles. In this study, 21 Ne of ring and rotor spun yarns were used as a weft in an air jet loom. Loom speed and left- and right-side relay nozzles pressure in a range of 400–600 RPM, 2–4 bar, and 3–6.5 bar, respectively, were taken as additional factors. To develop and analyze the experiment, a full factorial design was used. It was observed that the air permeability of rotor spun weft yarn fabric’s is greater than ring spun weft yarn fabrics. Furthermore, when the speed of the loom increased and the left- and right-side relay nozzles air pressure decreased, the fabric’s air permeability increased and vice versa.","PeriodicalId":15716,"journal":{"name":"Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141115627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Composite materials have played an important role throughout human history, from housing early civilizations to enabling future innovations. This study explores the development of composite materials from recycled polypropylene and cotton fabric waste targeted for different applications. The composites were manufactured by the melt-mixing method. The effects of cotton fabric waste content on various composite characteristics were investigated using tensile strength, tensile modulus, flexural strength, flexural modulus, impact strength, compressive strength, and water absorption. The study showed that with an increase in cotton fabric waste content, properties such as tensile strength, tensile modulus, flexural strength, flexural modulus, impact strength, and compressive strength increase up to the optimum level, while a decrease in these properties is observed after the optimal level. The maximum tensile strength of 57.84 MPa, tensile modulus of 1.31 GPa, flexural strength of 55.32 MPa, flexural modulus of 2.7 GPa, impact strength of 33.06 kJ/m2, and compressive strength of 53.68 MPa were obtained. The water absorption rate increased with an increase in the cotton fabric waste weight proportion. From the result of this study, it can be concluded that the optimal mechanical and water absorption properties were achieved at 30% cotton fabric waste content. Therefore, creating composites from recovered polypropylene and cotton fabric waste can have both environmental and financial benefits.
{"title":"Production and Characterization of Recycled Polypropylene Composite Reinforced with Cotton Fabric Waste","authors":"Eyasu Ferede, Genet Gebru, Tsigemariam Worku, Tsigemariam Jambo, Desalegn Atalie, Worku Zerefa","doi":"10.1155/2024/9247702","DOIUrl":"https://doi.org/10.1155/2024/9247702","url":null,"abstract":"Composite materials have played an important role throughout human history, from housing early civilizations to enabling future innovations. This study explores the development of composite materials from recycled polypropylene and cotton fabric waste targeted for different applications. The composites were manufactured by the melt-mixing method. The effects of cotton fabric waste content on various composite characteristics were investigated using tensile strength, tensile modulus, flexural strength, flexural modulus, impact strength, compressive strength, and water absorption. The study showed that with an increase in cotton fabric waste content, properties such as tensile strength, tensile modulus, flexural strength, flexural modulus, impact strength, and compressive strength increase up to the optimum level, while a decrease in these properties is observed after the optimal level. The maximum tensile strength of 57.84 MPa, tensile modulus of 1.31 GPa, flexural strength of 55.32 MPa, flexural modulus of 2.7 GPa, impact strength of 33.06 kJ/m2, and compressive strength of 53.68 MPa were obtained. The water absorption rate increased with an increase in the cotton fabric waste weight proportion. From the result of this study, it can be concluded that the optimal mechanical and water absorption properties were achieved at 30% cotton fabric waste content. Therefore, creating composites from recovered polypropylene and cotton fabric waste can have both environmental and financial benefits.","PeriodicalId":15716,"journal":{"name":"Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141125805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study addresses the intricate interplay of magnetohydrodynamics (MHD), thermal radiation, and porous media effects, which are crucial in numerous engineering applications, including aerospace, energy systems, and environmental processes. The development of a mass-based hybrid nanofluid model signifies a novel approach, potentially yielding more accurate predictions and insights into the thermal behavior of fluids in diverse scenarios. Thus, the current research explores the heat transfer characteristics of a unique nanofluid known as TiO2 (titania)-CuO (copper oxide)/H2O (water) hybrid nanofluid. This nanofluid flows past a static or moving wedge considering the impact of thermal radiation and magnetic field in the appearance of porous medium. To calculate the effective thermophysical attributions of the hybrid (TiO2-CuO) nanofluid, a mass-based strategy is employed. This approach involves analyzing the masses of both the first and second nanoparticles, along with the mass of the base fluid, as essential input parameters. The proposed mathematical model is modified to a dimensionless form by applying similarity transformations. The numerical solution is obtained by utilizing the bvp4c built-in function within the MATLAB environment. Graphs illustrate the influence of various parameters on temperature and velocity trends, including the magnetic field parameter and heat absorption/generation parameter as well as the thermal radiation parameter. It is noted that along with the enhancement in the values of parameters related to porous medium or magnetic field, the velocity of the hybrid nanofluid improves. This occurs when the moving wedge parameter’s value is below 1. Conversely, when the moving wedge parameter’s value exceeds 1, the velocity of the hybrid nanofluid decreases. The shape factor is more effective in the temperature profile for developed inputs of heat absorption/generation parameter. A juxtaposition of enhancement in heat transfer rate due to nanofluid (TiO2/H2O) and hybrid nanofluid (TiO2-CuO/H2O) is likewise presented. The main outcome indicates that the hybrid nanofluid exhibits superior thermal conductivity relative to the conventional nanofluid.
{"title":"Mass-Based Hybrid Nanofluid Model for Thermal Radiation Analysis of MHD Flow over a Wedge Embedded in Porous Medium","authors":"Sushila Choudhary, Vijendra Kumar Jarwal, Prasun Choudhary, K. Loganathan, Balachandra Pattanaik","doi":"10.1155/2024/9528362","DOIUrl":"https://doi.org/10.1155/2024/9528362","url":null,"abstract":"This study addresses the intricate interplay of magnetohydrodynamics (MHD), thermal radiation, and porous media effects, which are crucial in numerous engineering applications, including aerospace, energy systems, and environmental processes. The development of a mass-based hybrid nanofluid model signifies a novel approach, potentially yielding more accurate predictions and insights into the thermal behavior of fluids in diverse scenarios. Thus, the current research explores the heat transfer characteristics of a unique nanofluid known as TiO2 (titania)-CuO (copper oxide)/H2O (water) hybrid nanofluid. This nanofluid flows past a static or moving wedge considering the impact of thermal radiation and magnetic field in the appearance of porous medium. To calculate the effective thermophysical attributions of the hybrid (TiO2-CuO) nanofluid, a mass-based strategy is employed. This approach involves analyzing the masses of both the first and second nanoparticles, along with the mass of the base fluid, as essential input parameters. The proposed mathematical model is modified to a dimensionless form by applying similarity transformations. The numerical solution is obtained by utilizing the bvp4c built-in function within the MATLAB environment. Graphs illustrate the influence of various parameters on temperature and velocity trends, including the magnetic field parameter and heat absorption/generation parameter as well as the thermal radiation parameter. It is noted that along with the enhancement in the values of parameters related to porous medium or magnetic field, the velocity of the hybrid nanofluid improves. This occurs when the moving wedge parameter’s value is below 1. Conversely, when the moving wedge parameter’s value exceeds 1, the velocity of the hybrid nanofluid decreases. The shape factor is more effective in the temperature profile for developed inputs of heat absorption/generation parameter. A juxtaposition of enhancement in heat transfer rate due to nanofluid (TiO2/H2O) and hybrid nanofluid (TiO2-CuO/H2O) is likewise presented. The main outcome indicates that the hybrid nanofluid exhibits superior thermal conductivity relative to the conventional nanofluid.","PeriodicalId":15716,"journal":{"name":"Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141126305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ikram Faraoun Al-Mulla, Abbas Salim Al-Ameeri, Tareq Salih Al-Attar
The lack of concrete tensile stress endurance led to the invention of engineered cementitious composite. However, the absence of gravel from the mixture in addition to the high binder content may lead to high shrinkage strain. Therefore, a radical solution to this problem is worth to be anticipated. The importance of this research lies in investigating the long-term drying shrinkage strain of the engineered cementitious composite since there is a lack of information regarding this behavior. Mixes of 30 and 60 MPa strengths were produced with polyvinyl alcohol fibers PVA-ECC and polypropylene fibers PP-ECC. The drying shrinkage strain of PVA-ECC mixes has been compared to PP-ECC mixes for both short term (0–28 days) and long term (0–360 days). Results indicated that all PVA-ECC mixes exhibited lower drying shrinkage strains than PP-ECC mixes. The ultimate drying shrinkage strain was recorded to be 1200 microstrain at 28 days. The increment in drying shrinkage strain after 28 days was 5.6% in PVA-ECC mixes when compared to that in PP-ECC mixes which was 6.77%. For high strength levels, the drying shrinkage strain at the age of 360 days declared a reduction of 3.5% for PVA-ECC compared to PP-ECC mixes. Also, it was lower for mixes with 60 MPa (6.3%) than for mixes with 30 MPa (7.6%). Therefore, despite the higher cement content for mixes with 60 MPa strength, the higher fiber volume fraction and the higher PVA solution percentage restricted the drying shrinkage strain increment. The research also addresses some mechanical tests of engineered cementitious composite concrete such as compressive strength, flexural strength, and strain capacity that may provide a strong relation to the drying shrinkage behavior of the different mixes. The scanning electron microscope images were involved in this research to declare the impact of fiber types on the microstructure of the ECC mixes.
{"title":"Long-Term Drying Shrinkage Strain of Engineered Cementitious Composite Concrete Contains Polymeric Fibers","authors":"Ikram Faraoun Al-Mulla, Abbas Salim Al-Ameeri, Tareq Salih Al-Attar","doi":"10.1155/2024/8887928","DOIUrl":"https://doi.org/10.1155/2024/8887928","url":null,"abstract":"The lack of concrete tensile stress endurance led to the invention of engineered cementitious composite. However, the absence of gravel from the mixture in addition to the high binder content may lead to high shrinkage strain. Therefore, a radical solution to this problem is worth to be anticipated. The importance of this research lies in investigating the long-term drying shrinkage strain of the engineered cementitious composite since there is a lack of information regarding this behavior. Mixes of 30 and 60 MPa strengths were produced with polyvinyl alcohol fibers PVA-ECC and polypropylene fibers PP-ECC. The drying shrinkage strain of PVA-ECC mixes has been compared to PP-ECC mixes for both short term (0–28 days) and long term (0–360 days). Results indicated that all PVA-ECC mixes exhibited lower drying shrinkage strains than PP-ECC mixes. The ultimate drying shrinkage strain was recorded to be 1200 microstrain at 28 days. The increment in drying shrinkage strain after 28 days was 5.6% in PVA-ECC mixes when compared to that in PP-ECC mixes which was 6.77%. For high strength levels, the drying shrinkage strain at the age of 360 days declared a reduction of 3.5% for PVA-ECC compared to PP-ECC mixes. Also, it was lower for mixes with 60 MPa (6.3%) than for mixes with 30 MPa (7.6%). Therefore, despite the higher cement content for mixes with 60 MPa strength, the higher fiber volume fraction and the higher PVA solution percentage restricted the drying shrinkage strain increment. The research also addresses some mechanical tests of engineered cementitious composite concrete such as compressive strength, flexural strength, and strain capacity that may provide a strong relation to the drying shrinkage behavior of the different mixes. The scanning electron microscope images were involved in this research to declare the impact of fiber types on the microstructure of the ECC mixes.","PeriodicalId":15716,"journal":{"name":"Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Farid Hossain, Abhijit Bhowmik, Samim Alam, S. Gajghate, Golam Kibria, Chander Prakash, Himadri Majumder
It is quite evident that some of the experimental research works have been carried out by researchers in the area of spiral polishing using abrasive for surface finishing improvement but most of the experiment has been employed on Steel or Alloy Steel as a material. Very few number of research works have been performed by researchers across the globe on the Spiral Polishing Method of Titanium holes made by Electrical Discharge Machining (EDM). Therefore, experimental investigations were carried out in the area of Spiral Polishing and Finishing of EDM-drilled holes of various materials to meet the desired goal of demands on the surface quality. This experimentation aims to develop a novel method with spiral polishing using abrasive flow finishing. To explore the search investigation and find out the better surface finishing for through holes made on EDM, the process parameters have been designed using the Taguchi L16 orthogonal array with input parameters such as Current (I), Pulse on time (Ton), and Pulse off time (Toff). The addition of Boron Carbide Powder with Handwash, Glycerine, Shampoo, and Liquid Soap is used to decrease the Surface Roughness (Ra) with a ratio of 5 : 1. The Taguchi technique is used to assess the P/M process parameter setting for a given signal to noise (S/N) ratio.
{"title":"Experimental Analysis of Spiral Finishing Process on EDM Drilled Hole in Titanium","authors":"Md Farid Hossain, Abhijit Bhowmik, Samim Alam, S. Gajghate, Golam Kibria, Chander Prakash, Himadri Majumder","doi":"10.1155/2024/4572676","DOIUrl":"https://doi.org/10.1155/2024/4572676","url":null,"abstract":"It is quite evident that some of the experimental research works have been carried out by researchers in the area of spiral polishing using abrasive for surface finishing improvement but most of the experiment has been employed on Steel or Alloy Steel as a material. Very few number of research works have been performed by researchers across the globe on the Spiral Polishing Method of Titanium holes made by Electrical Discharge Machining (EDM). Therefore, experimental investigations were carried out in the area of Spiral Polishing and Finishing of EDM-drilled holes of various materials to meet the desired goal of demands on the surface quality. This experimentation aims to develop a novel method with spiral polishing using abrasive flow finishing. To explore the search investigation and find out the better surface finishing for through holes made on EDM, the process parameters have been designed using the Taguchi L16 orthogonal array with input parameters such as Current (I), Pulse on time (Ton), and Pulse off time (Toff). The addition of Boron Carbide Powder with Handwash, Glycerine, Shampoo, and Liquid Soap is used to decrease the Surface Roughness (Ra) with a ratio of 5 : 1. The Taguchi technique is used to assess the P/M process parameter setting for a given signal to noise (S/N) ratio.","PeriodicalId":15716,"journal":{"name":"Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140985284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siddhant Arora, S. Naveen Venkatesh, V. Sugumaran, Anoop Prabhakaranpillai Sreelatha, V. Mahamuni
Tire pressure monitoring system (TPMS) has a critical role in safeguarding vehicle safety by monitoring tire pressure levels. Keeping the accurate tire pressure is necessary for confirming comfortable driving and safety, and improving fuel consumption. Tire problems can result from various factors, such as road surface conditions, weather changes, and driving activities, emphasizing the importance of systematic tire checks. This study presents a novel method for tire condition monitoring using weightless neural networks (WNN), which mimic neural processes using random-access memory (RAM) components, supporting fast and precise training. Wilkes, Stonham, and Aleksander Recognition Device (WiSARD), a type of WNN, stands out for its capability in classification and pattern recognition, gaining from its ability to avoid repetitive training and residual formation. For vibration data acquisition from tires, cost-effective micro-electro-mechanical system (MEMS) sensors are employed, offering a more economical solution than piezoelectric sensors. This approach yields a variety of features, such as autoregressive moving average (ARMA), statistical and histogram features. The J48 decision tree algorithm plays a critical role in selecting essential features for classification, which are subsequently divided into training and testing sets, crucial for assessing the WiSARD classifier’s efficacy. Hyperparameter optimization of the WNN leads to improved classification accuracy and shorter computation times. In practical tests, the WiSARD classifier, when optimally configured, achieved an impressive 97.92% accuracy with histogram features in only 0.008 seconds, showcasing the capability of WNN to enhance tire technology and the accuracy and efficiency of tire monitoring and maintenance.
{"title":"Enhancing Tire Condition Monitoring through Weightless Neural Networks Using MEMS-Based Vibration Signals","authors":"Siddhant Arora, S. Naveen Venkatesh, V. Sugumaran, Anoop Prabhakaranpillai Sreelatha, V. Mahamuni","doi":"10.1155/2024/1321775","DOIUrl":"https://doi.org/10.1155/2024/1321775","url":null,"abstract":"Tire pressure monitoring system (TPMS) has a critical role in safeguarding vehicle safety by monitoring tire pressure levels. Keeping the accurate tire pressure is necessary for confirming comfortable driving and safety, and improving fuel consumption. Tire problems can result from various factors, such as road surface conditions, weather changes, and driving activities, emphasizing the importance of systematic tire checks. This study presents a novel method for tire condition monitoring using weightless neural networks (WNN), which mimic neural processes using random-access memory (RAM) components, supporting fast and precise training. Wilkes, Stonham, and Aleksander Recognition Device (WiSARD), a type of WNN, stands out for its capability in classification and pattern recognition, gaining from its ability to avoid repetitive training and residual formation. For vibration data acquisition from tires, cost-effective micro-electro-mechanical system (MEMS) sensors are employed, offering a more economical solution than piezoelectric sensors. This approach yields a variety of features, such as autoregressive moving average (ARMA), statistical and histogram features. The J48 decision tree algorithm plays a critical role in selecting essential features for classification, which are subsequently divided into training and testing sets, crucial for assessing the WiSARD classifier’s efficacy. Hyperparameter optimization of the WNN leads to improved classification accuracy and shorter computation times. In practical tests, the WiSARD classifier, when optimally configured, achieved an impressive 97.92% accuracy with histogram features in only 0.008 seconds, showcasing the capability of WNN to enhance tire technology and the accuracy and efficiency of tire monitoring and maintenance.","PeriodicalId":15716,"journal":{"name":"Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140993956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}