首页 > 最新文献

Journal of Materials Science & Technology最新文献

英文 中文
ZrB2-based ceramic composite with simultaneous high-temperature microwave absorption and thermal management zrb2基陶瓷复合材料的同时高温微波吸收和热管理
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-12 DOI: 10.1016/j.jmst.2026.01.054
Mengyu Dai, Yumeng Deng, Qian Wang, Bin Ren, Hang Yu, Changmei Wang, Yujun Jia, Hejun Li
The conventional principle for designing high-temperature electromagnetic wave (EMW) absorbing materials focuses on minimizing oxidation during the material design process. In contrast, our work introduces an additional mechanism suitable for high-temperature EMW absorption: a strategy that actively harnesses the oxidation process. We demonstrate that the high-temperature oxidation behavior of ceramics, such as ZrB2, can be utilized to dynamically engineer superior EMW absorption. Thein-situ formed ZrO2 phase after oxidation serves a dual function: it acts as a dielectric modulator, optimizing impedance matching by counterbalancing the continually increasing electrical conductivity, while simultaneously generating heterogeneous interfaces that significantly enhance interfacial polarization loss. This multi-mechanism synergy enables the composite to achieve an effective absorption bandwidth (EAB) of 3.9 GHz in the X-band at 1073 K, with a thickness of 2.4 mm and a maintained effective absorption rate of 92.8% (X-band), alongside excellent thermal management performance. Our findings reveal a novel approach of leveraging high-temperature oxidation to design advanced composites for applications in harsh environments.
设计高温电磁波吸波材料的传统原则是在材料设计过程中尽量减少氧化。相比之下,我们的工作引入了一种适用于高温EMW吸收的附加机制:一种主动利用氧化过程的策略。我们证明了陶瓷的高温氧化行为,如ZrB2,可以用来动态地设计优异的EMW吸收。氧化后原位形成的ZrO2相具有双重功能:它作为介质调制器,通过平衡不断增加的电导率来优化阻抗匹配,同时产生非均质界面,显著增强界面极化损耗。这种多机制协同作用使复合材料在1073 K时在x波段获得3.9 GHz的有效吸收带宽(EAB),厚度为2.4 mm,保持92.8%的有效吸收率(x波段),同时具有出色的热管理性能。我们的研究结果揭示了一种利用高温氧化来设计用于恶劣环境的先进复合材料的新方法。
{"title":"ZrB2-based ceramic composite with simultaneous high-temperature microwave absorption and thermal management","authors":"Mengyu Dai, Yumeng Deng, Qian Wang, Bin Ren, Hang Yu, Changmei Wang, Yujun Jia, Hejun Li","doi":"10.1016/j.jmst.2026.01.054","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.054","url":null,"abstract":"The conventional principle for designing high-temperature electromagnetic wave (EMW) absorbing materials focuses on minimizing oxidation during the material design process. In contrast, our work introduces an additional mechanism suitable for high-temperature EMW absorption: a strategy that actively harnesses the oxidation process. We demonstrate that the high-temperature oxidation behavior of ceramics, such as ZrB<sub>2</sub>, can be utilized to dynamically engineer superior EMW absorption. Thein-situ formed ZrO<sub>2</sub> phase after oxidation serves a dual function: it acts as a dielectric modulator, optimizing impedance matching by counterbalancing the continually increasing electrical conductivity, while simultaneously generating heterogeneous interfaces that significantly enhance interfacial polarization loss. This multi-mechanism synergy enables the composite to achieve an effective absorption bandwidth (EAB) of 3.9 GHz in the X-band at 1073 K, with a thickness of 2.4 mm and a maintained effective absorption rate of 92.8% (X-band), alongside excellent thermal management performance. Our findings reveal a novel approach of leveraging high-temperature oxidation to design advanced composites for applications in harsh environments.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"94 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146198583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manipulating multi-dimensional crystal defects for ultra-high superelastic stress and excellent shape memory effect in additively manufactured NiTiFe shape memory alloys 在增材制造的NiTiFe形状记忆合金中,通过控制多维晶体缺陷获得超高超弹性应力和优异的形状记忆效应
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-11 DOI: 10.1016/j.jmst.2026.02.006
Xingsong Jiang, Zhicheng Li, Jing Zhong, Wang Yi, Lijun Zhang
{"title":"Manipulating multi-dimensional crystal defects for ultra-high superelastic stress and excellent shape memory effect in additively manufactured NiTiFe shape memory alloys","authors":"Xingsong Jiang, Zhicheng Li, Jing Zhong, Wang Yi, Lijun Zhang","doi":"10.1016/j.jmst.2026.02.006","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.02.006","url":null,"abstract":"","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"3 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146152760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanostructure-specific tailoring engineering toward high-performance Ti-Ni diffusion bonding via Ni-Co co-deposition design 基于Ni-Co共沉积设计的高性能Ti-Ni扩散键的纳米结构定制工程
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-10 DOI: 10.1016/j.jmst.2026.02.003
Yinchen Wang, Zhijie Ding, Zhiwei Qin, Xiaoyang Bi, Jilong Wang, Tianyu Li, Jinkai Wang, Shuyan Shi, Honggang Dong, Yiping Lu, Yutaka S. Sato, Peng Li
{"title":"Nanostructure-specific tailoring engineering toward high-performance Ti-Ni diffusion bonding via Ni-Co co-deposition design","authors":"Yinchen Wang, Zhijie Ding, Zhiwei Qin, Xiaoyang Bi, Jilong Wang, Tianyu Li, Jinkai Wang, Shuyan Shi, Honggang Dong, Yiping Lu, Yutaka S. Sato, Peng Li","doi":"10.1016/j.jmst.2026.02.003","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.02.003","url":null,"abstract":"","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"2 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146152762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bioinspired adhesive hydrogel tape enabling passive cooling and continuous electricity generation 一种生物灵感的水凝胶胶带,可以被动冷却和连续发电
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-10 DOI: 10.1016/j.jmst.2026.01.052
Pengfei Li, Kaifeng Zou, Zhi Zhao, Caiqing Mo, Haomin Chen, Weidong Luo, Xiaojuan Lei, Kai Zhang, Liqun Xu
{"title":"A bioinspired adhesive hydrogel tape enabling passive cooling and continuous electricity generation","authors":"Pengfei Li, Kaifeng Zou, Zhi Zhao, Caiqing Mo, Haomin Chen, Weidong Luo, Xiaojuan Lei, Kai Zhang, Liqun Xu","doi":"10.1016/j.jmst.2026.01.052","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.052","url":null,"abstract":"","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"177 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146152761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical nano-network microstructure in a high-Zr-containing near-α titanium alloy for enhanced strength-ductility combination 高含锆近α钛合金的层状纳米网络组织,增强了强度-延性组合
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-10 DOI: 10.1016/j.jmst.2026.02.004
Yulei Deng, Changjiang Zhang, Kang Wang, Qihao Lian, Shuzhi Zhang, Bin Wang, Jianchao Han, Tao Wang, Peng Cao, Xinyu Zhang
{"title":"Hierarchical nano-network microstructure in a high-Zr-containing near-α titanium alloy for enhanced strength-ductility combination","authors":"Yulei Deng, Changjiang Zhang, Kang Wang, Qihao Lian, Shuzhi Zhang, Bin Wang, Jianchao Han, Tao Wang, Peng Cao, Xinyu Zhang","doi":"10.1016/j.jmst.2026.02.004","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.02.004","url":null,"abstract":"","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"30 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146152763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A low-driving-force Ni50.2Ti43.8V6 alloy with high elastocaloric stability 具有高弹性热稳定性的低驱动力Ni50.2Ti43.8V6合金
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-10 DOI: 10.1016/j.jmst.2026.01.051
Qiuhong Wang, Zhongzheng Deng, Dingshan Liang, Hao Yin, Qingping Sun
{"title":"A low-driving-force Ni50.2Ti43.8V6 alloy with high elastocaloric stability","authors":"Qiuhong Wang, Zhongzheng Deng, Dingshan Liang, Hao Yin, Qingping Sun","doi":"10.1016/j.jmst.2026.01.051","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.051","url":null,"abstract":"","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"13 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146152765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving magnesium alloy sheet isotropy via a multi-DoF forming process 通过多自由度成形工艺实现镁合金板材各向同性
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-10 DOI: 10.1016/j.jmst.2026.02.005
Fang Chai, Xinghui Han, Chaoyuan Tian, Qifu Chen, Xuan Hu, Wuhao Zhuang, Fangyan Zheng, Lin Hua
Severe anisotropy, which originates from intensive basal texture during a single-degree-of-freedom process, is the major bottleneck for the wide application of lightweight magnesium alloy sheets. Herein, we innovatively report a multi-degrees-of-freedom (multi-DoF) forming process and efficiently achieve AZ91 alloy sheet isotropy. Our research demonstrates that as-extruded sheets exhibit obvious anisotropy resulting from anisotropic textures. Owing to the fact that the forces of multi-DoF forming are always with slight inclinations to the axial direction (AD), the c-axes of these anisotropic textures possess large angles to force direction, which leads to these anisotropic textures displaying soft orientation and consequently contribute to the uniform non-basal slip activation. This uniform slip behavior leads to all these anisotropic textures spreading towards AD and gradually forming the isotropic texture. Because of the same deformation mode, the isotropic textures also have a similar proportion. The isotropic textures contribute to excellent isotropy, with the maximum disparity of strength-plasticity decreasing from 55 MPa-5.4% in the as-extruded condition to 8 MPa-0.2%. Our findings are expected to provide a novel strategy for achieving isotropy and brightening the prospect of magnesium alloy sheets.
严重的各向异性是制约镁合金薄板轻量化应用的主要瓶颈,其主要原因是单自由度加工过程中基底织构的强度较大。在此,我们创新地报道了一种多自由度(多自由度)成形工艺,有效地实现了AZ91合金板材的各向同性。我们的研究表明,由于各向异性织构的存在,挤压态板材表现出明显的各向异性。由于各向异性织构的多自由度成形力总是偏向于轴向(AD),因此各向异性织构的c轴与力方向有较大的夹角,这使得这些各向异性织构呈现软取向,从而有助于均匀的非基底滑移激活。这种均匀的滑移行为导致所有这些各向异性织构向AD扩散并逐渐形成各向同性织构。由于相同的变形模式,各向同性纹理也具有相似的比例。各向同性织构使材料具有良好的各向同性,最大强度塑性差从挤压状态下的55 MPa-5.4%降至8 MPa-0.2%。我们的发现有望为实现各向同性和照亮镁合金板的前景提供一种新的策略。
{"title":"Achieving magnesium alloy sheet isotropy via a multi-DoF forming process","authors":"Fang Chai, Xinghui Han, Chaoyuan Tian, Qifu Chen, Xuan Hu, Wuhao Zhuang, Fangyan Zheng, Lin Hua","doi":"10.1016/j.jmst.2026.02.005","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.02.005","url":null,"abstract":"Severe anisotropy, which originates from intensive basal texture during a single-degree-of-freedom process, is the major bottleneck for the wide application of lightweight magnesium alloy sheets. Herein, we innovatively report a multi-degrees-of-freedom (multi-DoF) forming process and efficiently achieve AZ91 alloy sheet isotropy. Our research demonstrates that as-extruded sheets exhibit obvious anisotropy resulting from anisotropic textures. Owing to the fact that the forces of multi-DoF forming are always with slight inclinations to the axial direction (AD), the <em>c</em>-axes of these anisotropic textures possess large angles to force direction, which leads to these anisotropic textures displaying soft orientation and consequently contribute to the uniform non-basal slip activation. This uniform slip behavior leads to all these anisotropic textures spreading towards AD and gradually forming the isotropic texture. Because of the same deformation mode, the isotropic textures also have a similar proportion. The isotropic textures contribute to excellent isotropy, with the maximum disparity of strength-plasticity decreasing from 55 MPa-5.4% in the as-extruded condition to 8 MPa-0.2%. Our findings are expected to provide a novel strategy for achieving isotropy and brightening the prospect of magnesium alloy sheets.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"25 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dislocation source efficiency-based model for grain-size-dependent ductile-to-brittle transition in tungsten 基于位错源效率的钨晶粒尺寸相关韧脆转变模型
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-09 DOI: 10.1016/j.jmst.2026.01.050
Xing-Jian Du, Yu-Heng Zhang, Wei-Zhong Han
{"title":"A dislocation source efficiency-based model for grain-size-dependent ductile-to-brittle transition in tungsten","authors":"Xing-Jian Du, Yu-Heng Zhang, Wei-Zhong Han","doi":"10.1016/j.jmst.2026.01.050","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.050","url":null,"abstract":"","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"47 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146153316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Record high-temperature piezoelectric performance in BNKT-based single crystals via local heterostructure design 通过局部异质结构设计,记录了bnkt基单晶的高温压电性能
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-07 DOI: 10.1016/j.jmst.2026.02.002
Jialin Niu, Yongxing Wei, Yanghuan Deng, Changqing Jin, Changpeng Guan, Siyuan Dong, Zhonghua Dai, Zengzhe Xi, Zengyun Jian, Zhong Yang, Li Jin
As a promising lead-free alternative to Pb-based piezoelectric materials, (Bi,Na,K)TiO<sub>3</sub> (BNKT)-based single crystals have attracted increasing interest for high-performance electromechanical applications. In this work, we report a local heterostructure engineering strategy to achieves record high temperature piezoelectric performance in BNKT-based single crystals. MnO<sub>2</sub> was introduced into flux-grown (Bi<sub>0.48</sub>Na<sub>0.425</sub>K<sub>0.055</sub>Ba<sub>0.04</sub>)TiO<sub>3</sub> single crystals (BNKBT–Mn), resulting in pronounced nanoscale compositional/structural heterogeneity. This engineered local disorder dramatically modifies polarization dynamics and domain configurations: at room temperature, the modified crystals exhibit a large piezoelectric coefficient <em>d</em><sub>33</sub> = 513 pC/N while retaining a relatively high depolarization temperature (<em>T</em><sub>d</sub>) of 148°C. A maximum piezoelectric coefficient of 1257 pC/N is achieved at 147°C, together with a large unipolar electrostrain of 1.24% and an exceptionally high converse piezoelectric coefficient <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow is="true"><mo is="true">(</mo><msubsup is="true"><mi is="true">d</mi><mrow is="true"><mn is="true">33</mn></mrow><mo is="true">*</mo></msubsup></mrow></math>' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="3.24ex" role="img" style="vertical-align: -1.043ex;" viewbox="0 -945.9 1786.8 1395" width="4.15ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g is="true"><use is="true" xlink:href="#MJSZ1-28"></use><g is="true" transform="translate(458,0)"><g is="true"><use xlink:href="#MJMATHI-64"></use></g><g is="true" transform="translate(524,320)"><use transform="scale(0.707)" xlink:href="#MJMAIN-2217"></use></g><g is="true" transform="translate(520,-307)"><g is="true"><use transform="scale(0.707)" xlink:href="#MJMAIN-33"></use><use transform="scale(0.707)" x="500" xlink:href="#MJMAIN-33" y="0"></use></g></g></g></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow is="true"><mo is="true">(</mo><msubsup is="true"><mi is="true">d</mi><mrow is="true"><mn is="true">33</mn></mrow><mo is="true">*</mo></msubsup></mrow></math></span></span><script type="math/mml"><math><mrow is="true"><mo is="true">(</mo><msubsup is="true"><mi is="true">d</mi><mrow is="true"><mn is="true">33</mn></mrow><mo is="true">*</mo></msubsup></mrow></math></script></span>) of 1771 pm/V. Further analyses indicate that the giant high-temperature piezoelectric response is closely associated with a temperature-driven tetragonal (T) – pseudocubic (PC) phase transition,
(Bi,Na,K)TiO3 (BNKT)基单晶作为pb基压电材料的无铅替代品,在高性能机电应用中引起了越来越多的关注。在这项工作中,我们报告了一种局部异质结构工程策略,以实现基于bnkt的单晶创纪录的高温压电性能。将MnO2引入助熔剂生长的(Bi0.48Na0.425K0.055Ba0.04)TiO3单晶(BNKBT-Mn)中,得到了明显的纳米级组成/结构非均质性。这种工程的局部无序极大地改变了极化动力学和畴结构:在室温下,改性晶体表现出较大的压电系数d33 = 513 pC/N,同时保持相对较高的退极化温度(Td) 148°C。在147°C时,最大压电系数达到1257 pC/N,同时具有1.24%的大单极电应变和1771 pm/V的极高反向压电系数(d33*(d33*))。进一步分析表明,巨大的高温压电响应与温度驱动的四方(T) -伪晶(PC)相变、局部异质结构的存在和畴态的演化密切相关。本研究表明,局部异质结构设计为同时提高室温性能和释放无铅bnkt基单晶优越的高温压电功能提供了有效途径。
{"title":"Record high-temperature piezoelectric performance in BNKT-based single crystals via local heterostructure design","authors":"Jialin Niu, Yongxing Wei, Yanghuan Deng, Changqing Jin, Changpeng Guan, Siyuan Dong, Zhonghua Dai, Zengzhe Xi, Zengyun Jian, Zhong Yang, Li Jin","doi":"10.1016/j.jmst.2026.02.002","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.02.002","url":null,"abstract":"As a promising lead-free alternative to Pb-based piezoelectric materials, (Bi,Na,K)TiO&lt;sub&gt;3&lt;/sub&gt; (BNKT)-based single crystals have attracted increasing interest for high-performance electromechanical applications. In this work, we report a local heterostructure engineering strategy to achieves record high temperature piezoelectric performance in BNKT-based single crystals. MnO&lt;sub&gt;2&lt;/sub&gt; was introduced into flux-grown (Bi&lt;sub&gt;0.48&lt;/sub&gt;Na&lt;sub&gt;0.425&lt;/sub&gt;K&lt;sub&gt;0.055&lt;/sub&gt;Ba&lt;sub&gt;0.04&lt;/sub&gt;)TiO&lt;sub&gt;3&lt;/sub&gt; single crystals (BNKBT–Mn), resulting in pronounced nanoscale compositional/structural heterogeneity. This engineered local disorder dramatically modifies polarization dynamics and domain configurations: at room temperature, the modified crystals exhibit a large piezoelectric coefficient &lt;em&gt;d&lt;/em&gt;&lt;sub&gt;33&lt;/sub&gt; = 513 pC/N while retaining a relatively high depolarization temperature (&lt;em&gt;T&lt;/em&gt;&lt;sub&gt;d&lt;/sub&gt;) of 148°C. A maximum piezoelectric coefficient of 1257 pC/N is achieved at 147°C, together with a large unipolar electrostrain of 1.24% and an exceptionally high converse piezoelectric coefficient &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;(&lt;/mo&gt;&lt;msubsup is=\"true\"&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;33&lt;/mn&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;*&lt;/mo&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"3.24ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -945.9 1786.8 1395\" width=\"4.15ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;g is=\"true\"&gt;&lt;use is=\"true\" xlink:href=\"#MJSZ1-28\"&gt;&lt;/use&gt;&lt;g is=\"true\" transform=\"translate(458,0)\"&gt;&lt;g is=\"true\"&gt;&lt;use xlink:href=\"#MJMATHI-64\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g is=\"true\" transform=\"translate(524,320)\"&gt;&lt;use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g is=\"true\" transform=\"translate(520,-307)\"&gt;&lt;g is=\"true\"&gt;&lt;use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-33\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;(&lt;/mo&gt;&lt;msubsup is=\"true\"&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;33&lt;/mn&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;*&lt;/mo&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;(&lt;/mo&gt;&lt;msubsup is=\"true\"&gt;&lt;mi is=\"true\"&gt;d&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;33&lt;/mn&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;*&lt;/mo&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt;) of 1771 pm/V. Further analyses indicate that the giant high-temperature piezoelectric response is closely associated with a temperature-driven tetragonal (T) – pseudocubic (PC) phase transition, ","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"110 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel and efficient benzimidazole derivative corrosion inhibitor by pH-driven gated release from nanotubes for multifunctional protection of X65 steel in submarine oil and gas field pipelines 纳米管ph驱动门控释放新型高效苯并咪唑衍生物缓蚀剂对海底油气田管线X65钢的多功能保护
IF 10.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-07 DOI: 10.1016/j.jmst.2026.01.048
Danyang Wang, Xiaole Xin, Quanqing Wu, Quanrun Wang, Yihui Wang, Shuai Yuan, Jizhou Duan, Huiwen Tian
{"title":"Novel and efficient benzimidazole derivative corrosion inhibitor by pH-driven gated release from nanotubes for multifunctional protection of X65 steel in submarine oil and gas field pipelines","authors":"Danyang Wang, Xiaole Xin, Quanqing Wu, Quanrun Wang, Yihui Wang, Shuai Yuan, Jizhou Duan, Huiwen Tian","doi":"10.1016/j.jmst.2026.01.048","DOIUrl":"https://doi.org/10.1016/j.jmst.2026.01.048","url":null,"abstract":"","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"77 1 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Materials Science & Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1