Pub Date : 2025-01-11DOI: 10.1016/j.jmst.2024.11.063
Ning Yang, Linggang Zhu, Hanyu Liu, Jian Zhou, Zhimei Sun
Chemical short-range order (SRO) in multi-principal element alloys (MPEAs) and its unprecedented benefits on materials performance have been elucidated in recent experimental observations. Hence, manipulating the fine structure of SRO and its interaction with other coexisting SROs or defects becomes increasingly crucial for MPEAs design. Here, using TiZrNb, TiZrVNb, and TiZrV as the model systems, SRO and its interaction with surrounding environment, as well as its effects on mechanical properties are comprehensively explored through density functional theory-based Monte Carlo simulations. We find that both TiZrNb and TiZrVNb exhibit Ti-Zr SRO and Nb-Nb short-range clustering (SRC), whereas in TiZrV, Zr-V SRO occurs in addition to Ti-Zr SRO. SRO largely increases the modulus and the unstable stacking fault energy (USFE). At the electronic scale, SRO is found accompanied with a deeper pseudo-energy gap at Fermi level, and with a covalent bonding character between the metallic atoms. Due to the SRO-oxygen attraction, oxygen centered and Ti/Zr enriched octahedron coined as (O, 2Ti, 4Zr)-octahedron populates in TiZrNb-O and TiZrV-O. In TiZrVNb-O, there mainly exist two types of octahedral: (O, 2Ti, 4Zr) and (O, 3Ti, 3Zr). Quantitatively, forming these (O, Ti, Zr)-octahedra, the modulus and USFE of MPEAs are further increased compared to the individual contribution from SRO or oxygen, but the improvement does not surpass the sum of the increments induced by the two individuals. The present findings deepen the understanding of SROs and their interactions with surrounding environments, pushing forward the effective utilization of SRO in materials design.
{"title":"Enhancing the mechanical properties of TiZr-based multi-principal element alloys via leveraging multiple short-range orders: an atomic-scale study","authors":"Ning Yang, Linggang Zhu, Hanyu Liu, Jian Zhou, Zhimei Sun","doi":"10.1016/j.jmst.2024.11.063","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.11.063","url":null,"abstract":"Chemical short-range order (SRO) in multi-principal element alloys (MPEAs) and its unprecedented benefits on materials performance have been elucidated in recent experimental observations. Hence, manipulating the fine structure of SRO and its interaction with other coexisting SROs or defects becomes increasingly crucial for MPEAs design. Here, using TiZrNb, TiZrVNb, and TiZrV as the model systems, SRO and its interaction with surrounding environment, as well as its effects on mechanical properties are comprehensively explored through density functional theory-based Monte Carlo simulations. We find that both TiZrNb and TiZrVNb exhibit Ti-Zr SRO and Nb-Nb short-range clustering (SRC), whereas in TiZrV, Zr-V SRO occurs in addition to Ti-Zr SRO. SRO largely increases the modulus and the unstable stacking fault energy (USFE). At the electronic scale, SRO is found accompanied with a deeper pseudo-energy gap at Fermi level, and with a covalent bonding character between the metallic atoms. Due to the SRO-oxygen attraction, oxygen centered and Ti/Zr enriched octahedron coined as (O, 2Ti, 4Zr)-octahedron populates in TiZrNb-O and TiZrV-O. In TiZrVNb-O, there mainly exist two types of octahedral: (O, 2Ti, 4Zr) and (O, 3Ti, 3Zr). Quantitatively, forming these (O, Ti, Zr)-octahedra, the modulus and USFE of MPEAs are further increased compared to the individual contribution from SRO or oxygen, but the improvement does not surpass the sum of the increments induced by the two individuals. The present findings deepen the understanding of SROs and their interactions with surrounding environments, pushing forward the effective utilization of SRO in materials design.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"38 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-11DOI: 10.1016/j.jmst.2024.10.055
Rajavel Velayutham, C. Justin Raj, Pugalenthiyar Thondaiman, Amol Marotrao Kale, Ramu Manikandan, John D. Rodney, Yangho Choi, Young-Ju Lee, Myoshin Kim, Simon Moulton, Byung Chul Kim
Strategic design and synergistic interactions between the electrodes and electroactive materials profoundly influence the energy storage efficiency of supercapacitor devices. Herein, we present the interfacial engineering of CoMoS4-NiS2 with a well-defined construction of amorphous/crystalline hetero-phases deposited on carbon cloth using a hydrothermal technique. The optimal in-situ growth of CoMoS4-NiS2@CFC boasts an impressive areal capacity of 1341 mC cm−2 and retains ∼91% capacity after 5000 cycles, attributed to the synergy effect and improved conductivity of multi-metallic sulfide ions over the CFC substrate. Density functional theory (DFT) reveals the metallic nature of CoMoS4-NiS2@CFC and favorable OH- ion adsorption energy of −4.35 eV, enhancing its charge storage capabilities. Furthermore, a hybrid supercapacitor (HSC) and Pouch HSC are assembled utilizing the CoMoS4-NiS2@CFC as a positrode and marine waste jellyfish-derived AC as a negatrode with an aqueous electrolyte. The HSC and PHSC demonstrate superior specific energies of 51.99 and 58.4 W h kg−1, respectively, along with corresponding specific powers of 800 and 780 W kg−1, maintaining robust stability of ∼90% stability over 10000 cycles. Additionally, the HSC and PHSC have successfully illuminated several light-emitting diodes (LEDs) demonstrating superior energy storage performance. This work advances the design of hetero-phase multi-metal sulfides, paving the way for high-performance supercapacitor devices.
电极与电活性材料之间的策略设计和协同作用深刻影响着超级电容器器件的储能效率。在此,我们提出了CoMoS4-NiS2的界面工程,利用水热技术在碳布上沉积了一个明确的非晶/晶异相结构。CoMoS4-NiS2@CFC的最佳原位生长具有令人印象深刻的1341 mC cm−2的面积容量,并在5000次循环后保持约91%的容量,这归因于CFC衬底上多金属硫化物离子的协同效应和电导率的提高。密度泛函理论(DFT)揭示了CoMoS4-NiS2@CFC的金属性质和良好的OH-离子吸附能(- 4.35 eV),增强了其电荷存储能力。此外,混合超级电容器(HSC)和袋状HSC组装利用CoMoS4-NiS2@CFC作为正极和海洋废物水母来源的交流作为负极与水电解质。HSC和PHSC的比能分别为51.99和58.4 W h kg - 1,相应的比能分别为800和780 W kg - 1,在10000次循环中保持90%的稳定性。此外,HSC和PHSC已经成功地照亮了几种发光二极管(led),展示了卓越的储能性能。这项工作推进了异相多金属硫化物的设计,为高性能超级电容器器件铺平了道路。
{"title":"Construction of interfacial amorphous/crystalline multi-metal sulfide heterostructures and jellyfish-derived activated carbon for high-energy density hybrid pouch supercapacitors","authors":"Rajavel Velayutham, C. Justin Raj, Pugalenthiyar Thondaiman, Amol Marotrao Kale, Ramu Manikandan, John D. Rodney, Yangho Choi, Young-Ju Lee, Myoshin Kim, Simon Moulton, Byung Chul Kim","doi":"10.1016/j.jmst.2024.10.055","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.055","url":null,"abstract":"Strategic design and synergistic interactions between the electrodes and electroactive materials profoundly influence the energy storage efficiency of supercapacitor devices. Herein, we present the interfacial engineering of CoMoS<sub>4</sub>-NiS<sub>2</sub> with a well-defined construction of amorphous/crystalline hetero-phases deposited on carbon cloth using a hydrothermal technique. The optimal in-situ growth of CoMoS<sub>4</sub>-NiS<sub>2</sub>@CFC boasts an impressive areal capacity of 1341 mC cm<sup>−2</sup> and retains ∼91% capacity after 5000 cycles, attributed to the synergy effect and improved conductivity of multi-metallic sulfide ions over the CFC substrate. Density functional theory (DFT) reveals the metallic nature of CoMoS<sub>4</sub>-NiS<sub>2</sub>@CFC and favorable OH<sup>-</sup> ion adsorption energy of −4.35 eV, enhancing its charge storage capabilities. Furthermore, a hybrid supercapacitor (HSC) and Pouch HSC are assembled utilizing the CoMoS<sub>4</sub>-NiS<sub>2</sub>@CFC as a positrode and marine waste jellyfish-derived AC as a negatrode with an aqueous electrolyte. The HSC and PHSC demonstrate superior specific energies of 51.99 and 58.4 W h kg<sup>−1</sup>, respectively, along with corresponding specific powers of 800 and 780 W kg<sup>−1</sup>, maintaining robust stability of ∼90% stability over 10000 cycles. Additionally, the HSC and PHSC have successfully illuminated several light-emitting diodes (LEDs) demonstrating superior energy storage performance. This work advances the design of hetero-phase multi-metal sulfides, paving the way for high-performance supercapacitor devices.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"120 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142962660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-11DOI: 10.1016/j.jmst.2024.10.054
D. Bajaj, A.H. Feng, S.J. Qu, D.Y. Li, D.L. Chen
The rapidly increasing scientific interest in 3D-printed high-entropy alloys (HEAs) necessitates the understanding of their deformation mechanisms. Here, we present the grain rotation behavior of a nearly equiatomic CrMnFeCoNi HEA fabricated with laser-beam powder bed fusion via quasi <em>in-situ</em> electron backscatter diffraction (EBSD) observations during compressive deformation. The rotation paths of grains can be predicted via a new lattice reorientation factor (<span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><msub is="true"><mi is="true">m</mi><mi is="true">A</mi></msub></math>' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="1.74ex" role="img" style="vertical-align: -0.582ex;" viewbox="0 -498.8 1509.2 749.2" width="3.505ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g is="true"><g is="true"><use xlink:href="#MJMATHI-6D"></use></g><g is="true" transform="translate(878,-163)"><use transform="scale(0.707)" xlink:href="#MJMATHI-41"></use></g></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub is="true"><mi is="true">m</mi><mi is="true">A</mi></msub></math></span></span><script type="math/mml"><math><msub is="true"><mi is="true">m</mi><mi is="true">A</mi></msub></math></script></span>), defined as the average of primary and secondary slip Schmid factors. The grains that initially have their <111> directions oriented close to the loading direction with low-to-intermediate <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><msub is="true"><mi is="true">m</mi><mi is="true">A</mi></msub></math>' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="1.74ex" role="img" style="vertical-align: -0.582ex;" viewbox="0 -498.8 1509.2 749.2" width="3.505ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g is="true"><g is="true"><use xlink:href="#MJMATHI-6D"></use></g><g is="true" transform="translate(878,-163)"><use transform="scale(0.707)" xlink:href="#MJMATHI-41"></use></g></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub is="true"><mi is="true">m</mi><mi is="true">A</mi></msub></math></span></span><script type="math/mml"><math><msub is="true"><mi is="true">m</mi><mi is="true">A</mi></msub></math></script></span> values tend to rotate towards the <101> pole. The grains oriented in the center of inverse pole figures with high <span><span style=""></span><span data-mathml='<math xmlns="http:
{"title":"Orientation-dependent lattice rotation and phase transformation in an additively manufactured high-entropy alloy","authors":"D. Bajaj, A.H. Feng, S.J. Qu, D.Y. Li, D.L. Chen","doi":"10.1016/j.jmst.2024.10.054","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.054","url":null,"abstract":"The rapidly increasing scientific interest in 3D-printed high-entropy alloys (HEAs) necessitates the understanding of their deformation mechanisms. Here, we present the grain rotation behavior of a nearly equiatomic CrMnFeCoNi HEA fabricated with laser-beam powder bed fusion via quasi <em>in-situ</em> electron backscatter diffraction (EBSD) observations during compressive deformation. The rotation paths of grains can be predicted via a new lattice reorientation factor (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.74ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -498.8 1509.2 749.2\" width=\"3.505ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6D\"></use></g><g is=\"true\" transform=\"translate(878,-163)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-41\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></script></span>), defined as the average of primary and secondary slip Schmid factors. The grains that initially have their <111> directions oriented close to the loading direction with low-to-intermediate <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.74ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -498.8 1509.2 749.2\" width=\"3.505ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6D\"></use></g><g is=\"true\" transform=\"translate(878,-163)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-41\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></script></span> values tend to rotate towards the <101> pole. The grains oriented in the center of inverse pole figures with high <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http:","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"2 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142962697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1016/j.jmst.2024.11.061
Song Yi Back, Steph Meikle, Takao Mori
This study investigates the crystal structure, microstructure, electronic, thermal transport properties, and thermoelectric performance of α-MgAgSb synthesized through various ball milling techniques. Variations in synthesis methods can significantly impact thermoelectric performance. Our findings indicate that impurity phases, particularly the secondary phase Ag₃Sb, hinder grain growth and decrease carrier mobility. By systematically adjusting milling conditions, the increased grain size resulting from the suppression of impurity formation improves charge carrier mobility and enhances the power factor. Low-temperature resistivity analysis reveals distinct scattering mechanisms influenced by impurity levels. α-MgAgSb with a tiny content of Sb primarily exhibits electron-electron scattering, whereas higher impurity levels introduce both electron-electron and electron-phonon scattering. Additionally, thermal conductivity analysis using three Effective Medium Theory (EMT) methods shows that the distribution of Ag3Sb increases interfacial resistance. The maximum zT value of 1.36 was achieved in a compound with an α-MgAgSb to Sb ratio of 99%:1%.
{"title":"Comprehensive study of α-MgAgSb: Microstructure, carrier transport properties, and thermoelectric performance under ball milling techniques","authors":"Song Yi Back, Steph Meikle, Takao Mori","doi":"10.1016/j.jmst.2024.11.061","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.11.061","url":null,"abstract":"This study investigates the crystal structure, microstructure, electronic, thermal transport properties, and thermoelectric performance of α-MgAgSb synthesized through various ball milling techniques. Variations in synthesis methods can significantly impact thermoelectric performance. Our findings indicate that impurity phases, particularly the secondary phase Ag₃Sb, hinder grain growth and decrease carrier mobility. By systematically adjusting milling conditions, the increased grain size resulting from the suppression of impurity formation improves charge carrier mobility and enhances the power factor. Low-temperature resistivity analysis reveals distinct scattering mechanisms influenced by impurity levels. α-MgAgSb with a tiny content of Sb primarily exhibits electron-electron scattering, whereas higher impurity levels introduce both electron-electron and electron-phonon scattering. Additionally, thermal conductivity analysis using three Effective Medium Theory (EMT) methods shows that the distribution of Ag<sub>3</sub>Sb increases interfacial resistance. The maximum zT value of 1.36 was achieved in a compound with an α-MgAgSb to Sb ratio of 99%:1%.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"7 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Outdoor activities are an inevitable part of daily life. However, challenges such as elevated body temperatures due to solar radiation and bacterial infestations pose significant obstacles to comfort and safety. Currently, there is a lack of simple, economical, and efficient solutions for outdoor cooling and bacterial mitigation without external energy input. In this study, a composite fabric was developed by loading iron oxide (Fe2O3) and silver bromide (AB) nanomaterials onto polyester fabric (FC) using low-temperature hydrothermal treatment and in-situ co-precipitation. This composite fabric retained both the aesthetic and structural integrity of the fibers, while effectively reduced the temperature by 5°C under sunlight through reflecting solar radiation and improving the transmission of human body thermal radiation. Additionally, the composite fabric exhibits excellent photocatalytic performance, efficiently degrading volatile organic compounds (VOCs) and demonstrating over 90% antibacterial efficiency against various bacteria. The combination of its superior cooling and photocatalytic capabilities, alongside its cost-effective and straightforward production process, shows broad potential for sustainable applications.
{"title":"Functionalized fabric with Ag/AgBr/Fe2O3 for optimized outdoor applications","authors":"Ruiyin Gu, Zhiyong Huang, Linlin Lv, Jie Zhang, Shiao Feng, Yinyin Xu, Mingzheng Xie","doi":"10.1016/j.jmst.2024.11.059","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.11.059","url":null,"abstract":"Outdoor activities are an inevitable part of daily life. However, challenges such as elevated body temperatures due to solar radiation and bacterial infestations pose significant obstacles to comfort and safety. Currently, there is a lack of simple, economical, and efficient solutions for outdoor cooling and bacterial mitigation without external energy input. In this study, a composite fabric was developed by loading iron oxide (Fe<sub>2</sub>O<sub>3</sub>) and silver bromide (AB) nanomaterials onto polyester fabric (FC) using low-temperature hydrothermal treatment and in-situ co-precipitation. This composite fabric retained both the aesthetic and structural integrity of the fibers, while effectively reduced the temperature by 5°C under sunlight through reflecting solar radiation and improving the transmission of human body thermal radiation. Additionally, the composite fabric exhibits excellent photocatalytic performance, efficiently degrading volatile organic compounds (VOCs) and demonstrating over 90% antibacterial efficiency against various bacteria. The combination of its superior cooling and photocatalytic capabilities, alongside its cost-effective and straightforward production process, shows broad potential for sustainable applications.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"37 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08DOI: 10.1016/j.jmst.2024.11.058
Mugong Zhang, Xuewei Fang, Xinzhi Li, Zhanxin Li, Ke Huang
The inherent hysteresis of NiTi alloy samples is one of the key factors limiting their elastocaloric cooling performance. However, reducing hysteresis often leads to a decrease in adiabatic temperature change (ΔTad), thereby hindering the application of NiTi alloys in the refrigeration field. Here, NiTi alloys with alternating high-Ni and low-Ni content were fabricated by tailoring heat input during the wire-arc directed energy deposition (DED) process, which modifies the Ni concentration gradient and enables the modulation of the elastocaloric cooling performance of NiTi alloys. The coefficient of performance of material (COPmat) of the high-Ni NiTi alloy samples is relatively high, but their ΔTad during deformation is lower. On the other hand, the low-Ni NiTi alloy samples, while exhibiting higher ΔTad, show poorer stability during cycling. Due to the synergistic effect of the microstructures in the high-Ni and low-Ni region, a favorable combination of low cyclic hysteresis and high ΔTad were achieved in the composite NiTi samples. Additionally, the composite NiTi samples also demonstrate excellent cyclic stability, with a degradation rate of only 4% during the cycling process under a 2% strain condition. This study proposes a feasible approach for regulating the elastocaloric effect of NiTi alloys, paving the way for additive manufacturing to prepare elastocaloric cooling materials.
{"title":"Tailorable elastocaloric cooling performance of wire-arc directed energy deposition NiTi alloy through concentration gradient design","authors":"Mugong Zhang, Xuewei Fang, Xinzhi Li, Zhanxin Li, Ke Huang","doi":"10.1016/j.jmst.2024.11.058","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.11.058","url":null,"abstract":"The inherent hysteresis of NiTi alloy samples is one of the key factors limiting their elastocaloric cooling performance. However, reducing hysteresis often leads to a decrease in adiabatic temperature change (Δ<em>T</em><sub>ad</sub>), thereby hindering the application of NiTi alloys in the refrigeration field. Here, NiTi alloys with alternating high-Ni and low-Ni content were fabricated by tailoring heat input during the wire-arc directed energy deposition (DED) process, which modifies the Ni concentration gradient and enables the modulation of the elastocaloric cooling performance of NiTi alloys. The coefficient of performance of material (COP<sub>mat</sub>) of the high-Ni NiTi alloy samples is relatively high, but their Δ<em>T</em><sub>ad</sub> during deformation is lower. On the other hand, the low-Ni NiTi alloy samples, while exhibiting higher Δ<em>T</em><sub>ad</sub>, show poorer stability during cycling. Due to the synergistic effect of the microstructures in the high-Ni and low-Ni region, a favorable combination of low cyclic hysteresis and high Δ<em>T</em><sub>ad</sub> were achieved in the composite NiTi samples. Additionally, the composite NiTi samples also demonstrate excellent cyclic stability, with a degradation rate of only 4% during the cycling process under a 2% strain condition. This study proposes a feasible approach for regulating the elastocaloric effect of NiTi alloys, paving the way for additive manufacturing to prepare elastocaloric cooling materials.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"22 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The 6XXX aluminum alloy is widely used in the production of automotive front crash components. Its performance is evaluated based on two key metrics: damage delay and safety reliability, which are influenced by the material's high product of strength and elongation (PSE) and a moderate yield-to-strength ratio (YTS). This study presents an innovative approach using torsion deformation combined with short-term aging treatment to create a gradient structure. This structure integrates gradients in plastic strain, dislocations, precipitated phases, and grain size, forming an in-situ core-shell configuration characterized by a “soft core and hard shell”. As a result, the yield strength, ultimate tensile strength, elongation, YTS, and PSE increased by 4.07%, 5.72%, 66.59%, −1.52%, and 76.12%, respectively, compared to the as-received material. Its strengthening effect is significantly better than traditional T6 treatment. Notably, the formation of a gradient structure through this novel thermomechanical processing technique optimized YTS by 11.51% compared to traditional heat treatments. The significant increase in PSE is attributed to the marked improvement in elongation indicating an effective enhancement in the strength-ductility balance. This provides a promising strategy for designing and manufacturing high-performance components.
{"title":"Achieving excellent strength-ductility combination in AA6061 alloy via a novel thermomechanical processing technique","authors":"Qian Zhao, Fuguo Li, E Zhu, Anisah Farooq Hashmi, Jingyuan Niu, Xiaohui Fang","doi":"10.1016/j.jmst.2024.12.016","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.12.016","url":null,"abstract":"The 6<em>XXX</em> aluminum alloy is widely used in the production of automotive front crash components. Its performance is evaluated based on two key metrics: damage delay and safety reliability, which are influenced by the material's high product of strength and elongation (PSE) and a moderate yield-to-strength ratio (YTS). This study presents an innovative approach using torsion deformation combined with short-term aging treatment to create a gradient structure. This structure integrates gradients in plastic strain, dislocations, precipitated phases, and grain size, forming an in-situ core-shell configuration characterized by a “soft core and hard shell”. As a result, the yield strength, ultimate tensile strength, elongation, YTS, and PSE increased by 4.07%, 5.72%, 66.59%, −1.52%, and 76.12%, respectively, compared to the as-received material. Its strengthening effect is significantly better than traditional T6 treatment. Notably, the formation of a gradient structure through this novel thermomechanical processing technique optimized YTS by 11.51% compared to traditional heat treatments. The significant increase in PSE is attributed to the marked improvement in elongation indicating an effective enhancement in the strength-ductility balance. This provides a promising strategy for designing and manufacturing high-performance components.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"203 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1016/j.jmst.2024.11.055
Ziyi Zhang, Songya Wang, Changcheng Chen, Minghong Sun, Zhengjun Wang, Yan Cai, Yali Tuo, Yuxi Du, Zhao Han, Xiongfei Yun, Xiaoning Guan, Shaohang Shi, Jiangzhou Xie, Gang Liu, Pengfei Lu
In order to address the limited mechanical properties of silicon-based materials, this study designed 12 B-site mixed-valence perovskites with s0 + s2 electronic configurations. Five machine learning models were used to predict the bandgap values of candidate materials, and Cs2AgSbCl6 was selected as the optimal light absorbing material. By using first principles calculations under stress and strain, it has been determined that micro-strains can achieve the goals of reducing material strength, enhancing flexible characteristics, directionally adjusting the anisotropy of stress concentration areas, improving thermodynamic properties, and enhancing sound insulation ability without significantly affecting photoelectric properties. According to device simulations, tensile strain can effectively increase the theoretical efficiency of solar cells. This work elucidates the mechanism of mechanical property changes under stress and strain, offering insights into new materials for solar energy conversion and accelerating the development of high-performance photovoltaic devices.
{"title":"Design of photovoltaic materials assisted by machine learning and the mechanical tunability under micro-strain","authors":"Ziyi Zhang, Songya Wang, Changcheng Chen, Minghong Sun, Zhengjun Wang, Yan Cai, Yali Tuo, Yuxi Du, Zhao Han, Xiongfei Yun, Xiaoning Guan, Shaohang Shi, Jiangzhou Xie, Gang Liu, Pengfei Lu","doi":"10.1016/j.jmst.2024.11.055","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.11.055","url":null,"abstract":"In order to address the limited mechanical properties of silicon-based materials, this study designed 12 B-site mixed-valence perovskites with <em>s</em><sup>0</sup> + <em>s</em><sup>2</sup> electronic configurations. Five machine learning models were used to predict the bandgap values of candidate materials, and Cs<sub>2</sub>AgSbCl<sub>6</sub> was selected as the optimal light absorbing material. By using first principles calculations under stress and strain, it has been determined that micro-strains can achieve the goals of reducing material strength, enhancing flexible characteristics, directionally adjusting the anisotropy of stress concentration areas, improving thermodynamic properties, and enhancing sound insulation ability without significantly affecting photoelectric properties. According to device simulations, tensile strain can effectively increase the theoretical efficiency of solar cells. This work elucidates the mechanism of mechanical property changes under stress and strain, offering insights into new materials for solar energy conversion and accelerating the development of high-performance photovoltaic devices.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"28 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1016/j.jmst.2024.11.056
Shan Wang, Kezhen Qi
An emerging ZnO/CuInS2 S-scheme heterojunction enables the transformation of ZnO, originally limited to ultraviolet light absorption, into a composite with a strong near-infrared response. The charge transfer from the p-type semiconductor CuInS2 to the n-type semiconductor ZnO leads to an increased hole concentration in the CuInS2 quantum dots at the heterojunction interface. Consequently, this enhancement not only amplifies the localized surface plasmon resonance effect but also enhances the near-infrared light absorption of CuInS2 quantum dots. This strategy effectively addresses common light response challenges, advancing the overarching objective of utilizing the full solar spectrum.
{"title":"Localized surface plasmon resonance effect in S-scheme photocatalyst","authors":"Shan Wang, Kezhen Qi","doi":"10.1016/j.jmst.2024.11.056","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.11.056","url":null,"abstract":"An emerging ZnO/CuInS<sub>2</sub> S-scheme heterojunction enables the transformation of ZnO, originally limited to ultraviolet light absorption, into a composite with a strong near-infrared response. The charge transfer from the p-type semiconductor CuInS<sub>2</sub> to the n-type semiconductor ZnO leads to an increased hole concentration in the CuInS<sub>2</sub> quantum dots at the heterojunction interface. Consequently, this enhancement not only amplifies the localized surface plasmon resonance effect but also enhances the near-infrared light absorption of CuInS<sub>2</sub> quantum dots. This strategy effectively addresses common light response challenges, advancing the overarching objective of utilizing the full solar spectrum.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"22 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1016/j.jmst.2024.11.057
Gang Hee Gu, Sang Guk Jeong, Yoon-Uk Heo, Hyojeong Ha, Soung Yeoul Ahn, Ji Yeong Lee, Jungwan Lee, Stefanus Harjo, Wu Gong, Jungwook Cho, Hyoung Seop Kim
Face-centered cubic (FCC) equi-atomic multi-principal element alloys (MPEAs) exhibit excellent mechanical properties over a broad temperature range from cryogenic temperatures (CTs) to room temperature (RT). Specifically, while the deformation mechanism is dominated solely by dislocation slip at RT, the reduction in stacking fault energy (SFE) at CTs leads to enhanced strain hardening with deformation twinning. This study employs in-situ neutron diffraction to reveal the temperature-dependent deformation behavior of the FCC/body-centered cubic (BCC) dual-phase (DP) Al7(CoNiV)93 medium-entropy alloy (MEA), which possesses a matrix exhibiting deformation behavior analogous to that of representative equi-atomic MPEAs. Alongside the increased lattice friction stress associated with reduced temperature as a thermal component, deformation twinning at liquid nitrogen temperature (LNT) facilitates dislocation activity in the FCC matrix, leading to additional strain hardening induced by the dynamic Hall–Petch effect. This would give the appearance that the improved strengthening/hardening behaviors at LNT, compared to RT, are primarily attributable to the FCC phase. In contrast, the BCC precipitates are governed solely by dislocation slip for plastic deformation at both 77 K and 298 K, exhibiting a similar trend in dislocation density evolution. Nevertheless, empirical and quantitative findings indicate that the intrinsically high Peierls–Nabarro barriers in the BCC precipitates exhibit pronounced temperature-dependent lattice friction stress, suggesting that the BCC precipitates play a more significant role in the temperature-dependent strengthening/hardening behaviors for the DP-MEA. This study provides a comprehensive understanding of deformation behavior by thoroughly analyzing temperature-dependent strengthening/hardening mechanisms across various DP-MPEA systems, offering valuable guidelines for future alloy design.
{"title":"Temperature-dependent deformation behavior of dual-phase medium-entropy alloy: In-situ neutron diffraction study","authors":"Gang Hee Gu, Sang Guk Jeong, Yoon-Uk Heo, Hyojeong Ha, Soung Yeoul Ahn, Ji Yeong Lee, Jungwan Lee, Stefanus Harjo, Wu Gong, Jungwook Cho, Hyoung Seop Kim","doi":"10.1016/j.jmst.2024.11.057","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.11.057","url":null,"abstract":"Face-centered cubic (FCC) equi-atomic multi-principal element alloys (MPEAs) exhibit excellent mechanical properties over a broad temperature range from cryogenic temperatures (CTs) to room temperature (RT). Specifically, while the deformation mechanism is dominated solely by dislocation slip at RT, the reduction in stacking fault energy (SFE) at CTs leads to enhanced strain hardening with deformation twinning. This study employs in-situ neutron diffraction to reveal the temperature-dependent deformation behavior of the FCC/body-centered cubic (BCC) dual-phase (DP) Al<sub>7</sub>(CoNiV)<sub>93</sub> medium-entropy alloy (MEA), which possesses a matrix exhibiting deformation behavior analogous to that of representative equi-atomic MPEAs. Alongside the increased lattice friction stress associated with reduced temperature as a thermal component, deformation twinning at liquid nitrogen temperature (LNT) facilitates dislocation activity in the FCC matrix, leading to additional strain hardening induced by the dynamic Hall–Petch effect. This would give the appearance that the improved strengthening/hardening behaviors at LNT, compared to RT, are primarily attributable to the FCC phase. In contrast, the BCC precipitates are governed solely by dislocation slip for plastic deformation at both 77 K and 298 K, exhibiting a similar trend in dislocation density evolution. Nevertheless, empirical and quantitative findings indicate that the intrinsically high Peierls–Nabarro barriers in the BCC precipitates exhibit pronounced temperature-dependent lattice friction stress, suggesting that the BCC precipitates play a more significant role in the temperature-dependent strengthening/hardening behaviors for the DP-MEA. This study provides a comprehensive understanding of deformation behavior by thoroughly analyzing temperature-dependent strengthening/hardening mechanisms across various DP-MPEA systems, offering valuable guidelines for future alloy design.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"15 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}