Utilizing nanotechnology and composites to create a protective film on titanium alloy is an effective means of achieving the desired high performance. Self-assembly of nanocomposite structures offers a promising route to forming high entropy alloy films (HEAFs), but controlled preparation remains challenging. This work used magnetron sputtering through adjusting preparation parameters to prepare ZrNbTiCrCu HEAFs, achieving a significant improvement in corrosion resistance and biocompatibility induced by the precipitation of Cu. According to the electrochemical corrosion test, without obvious corrosion pits on the surface of S2 after corrosion, a passivation film composed of bimetallic oxide CuCrO2 formed on the film surface, indicating that ZrNbTiCrCu HEAFs have remarkable corrosion resistance performance. In the cytocompatibility experiment, the cell viability of HEAFs reached over 95 % due to the precipitation of Cu, suggesting their excellent biocompatibility. In addition, ZrNbTiCrCu HEAFs exhibit outstanding antibacterial ability, especially when the sputtering current is 0.6 A, and the in vitro antibacterial rate of the sample against Escherichia coli is close to 99 %.
利用纳米技术和复合材料在钛合金上形成保护膜是实现所需的高性能的有效手段。纳米复合材料结构的自组装为形成高熵合金薄膜(HEAF)提供了一条前景广阔的途径,但可控制备仍具有挑战性。本研究通过调整制备参数,利用磁控溅射技术制备了 ZrNbTiCrCu HEAFs,通过 Cu 的析出显著提高了其耐腐蚀性和生物相容性。电化学腐蚀实验表明,腐蚀后的 S2 表面无明显腐蚀坑,薄膜表面形成了由双金属氧化物 CuCrO2 组成的钝化膜,表明 ZrNbTiCrCu HEAFs 具有显著的耐腐蚀性能。在细胞相容性实验中,由于 Cu 的沉淀,HEAFs 的细胞存活率达到 95% 以上,表明其具有良好的生物相容性。此外,ZrNbTiCrCu HEAFs 还具有出色的抗菌能力,尤其是当溅射电流为 0.6 A 时,样品对大肠杆菌的体外抗菌率接近 99%。
{"title":"A significant improvement in corrosion resistance and biocompatibility in ZrNbTiCrCu high-entropy films induced by the precipitation of Cu","authors":"Xiaofei Ma, Ping Ren, Shangzhou Zhang, Xiaochun He, Yang Li, Xuelei Yin, Huanyu Li, Shizeng Dang, Daliang Yu, Jianxun Qiu, Xin Zhou, Bing Zhou","doi":"10.1016/j.jmst.2024.10.016","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.016","url":null,"abstract":"Utilizing nanotechnology and composites to create a protective film on titanium alloy is an effective means of achieving the desired high performance. Self-assembly of nanocomposite structures offers a promising route to forming high entropy alloy films (HEAFs), but controlled preparation remains challenging. This work used magnetron sputtering through adjusting preparation parameters to prepare ZrNbTiCrCu HEAFs, achieving a significant improvement in corrosion resistance and biocompatibility induced by the precipitation of Cu. According to the electrochemical corrosion test, without obvious corrosion pits on the surface of S2 after corrosion, a passivation film composed of bimetallic oxide CuCrO<sub>2</sub> formed on the film surface, indicating that ZrNbTiCrCu HEAFs have remarkable corrosion resistance performance. In the cytocompatibility experiment, the cell viability of HEAFs reached over 95 % due to the precipitation of Cu, suggesting their excellent biocompatibility. In addition, ZrNbTiCrCu HEAFs exhibit outstanding antibacterial ability, especially when the sputtering current is 0.6 A, and the in vitro antibacterial rate of the sample against Escherichia coli is close to 99 %.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"244 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.jmst.2024.11.001
Jia Zeng, Jiaqi Li, Jingya Wang, Kai Chen, Zhao Shen
This study investigates the stress corrosion cracking (SCC) behavior of a Mg-8Gd-3Y-0.5Zr alloy in a 3.5 wt.% NaCl solution using slow strain rate tensile (SSRT) testing. The results reveal that SCC susceptibility increases as the strain rate decreases, with hydrogen embrittlement (HE) becoming more dominant at lower strain rates, leading to brittle fracture. Anodic dissolution (AD) plays a more significant role at higher strain rates, resulting in mixed fracture modes. Additionally, the mechanical properties and SCC resistance are strongly influenced by the sample orientation. TD-oriented samples show higher SCC susceptibility than RD-oriented ones due to the alignment of Gd- and Y-rich precipitates and grain boundaries, which act as initiation sites for SCC. These precipitates form micro-galvanic couples with the Mg matrix, accelerating localized corrosion and HE. The findings provide insights into the SCC mechanisms of VW83 alloy and highlight the importance of optimizing microstructure and processing conditions to improve its corrosion resistance.
{"title":"Anisotropic stress corrosion cracking susceptibility of Mg-8Gd-3Y-0.5Zr alloy","authors":"Jia Zeng, Jiaqi Li, Jingya Wang, Kai Chen, Zhao Shen","doi":"10.1016/j.jmst.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.11.001","url":null,"abstract":"This study investigates the stress corrosion cracking (SCC) behavior of a Mg-8Gd-3Y-0.5Zr alloy in a 3.5 wt.% NaCl solution using slow strain rate tensile (SSRT) testing. The results reveal that SCC susceptibility increases as the strain rate decreases, with hydrogen embrittlement (HE) becoming more dominant at lower strain rates, leading to brittle fracture. Anodic dissolution (AD) plays a more significant role at higher strain rates, resulting in mixed fracture modes. Additionally, the mechanical properties and SCC resistance are strongly influenced by the sample orientation. TD-oriented samples show higher SCC susceptibility than RD-oriented ones due to the alignment of Gd- and Y-rich precipitates and grain boundaries, which act as initiation sites for SCC. These precipitates form micro-galvanic couples with the Mg matrix, accelerating localized corrosion and HE. The findings provide insights into the SCC mechanisms of VW83 alloy and highlight the importance of optimizing microstructure and processing conditions to improve its corrosion resistance.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"30 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.jmst.2024.10.019
Chengjuan Wang, Yanxiang Wang, Haotian Jiang, Yanqiu Feng, Deli Yang, Chengguo Wang
The novel fabrication of multiple components and unique heterostructure can inject infinite vitality into the electromagnetic wave (EMW) attenuation field. Herein, through the self-assembly of polyimide complexes and catalytic chemical vapor deposition, porous carbon microflowers were synthesized accompanied by carbon nanotubes (CNTs). By regulating the metal ions, the composition and structure of the as-obtained hybrids are modified correspondingly, and thus the adjustable thermal management and EMW absorption capabilities are obtained. In detail, the rich pores and huge specific surface area endow the hierarchical structures with distinguished thermal insulation ability (λ<0.07). The carbon framework and CNTs are beneficial for consuming EMWs via conductive loss and defect polarization loss while reducing the filling ratio and thickness. The doped heteroatoms and abundant heterointerfaces generate ample dipole polarization and interface polarization losses (supported by DFT calculation). The metal nanoparticles uniformly embedded in the carbon framework offer optimized impedance matching, proper defect polarization, and suitable magnetic loss. Accordingly, the synergy of magnetic-dielectric balance and flower-like superstructure enables FNCFN2 and NNCFN2 to accomplish remarkable microwave absorbing capacity with thin thickness (14 wt.%). Therefore, respectable specific reflection loss and specific effective absorption bandwidth are acquired (215.39 dB mm–1 and 22.10 GHz mm–1, 257.23 dB mm–1 and 22.12 GHz mm–1 respectively), superior to those of certain renowned carbon-based absorbers. The simulation results of electric field intensity distributions, power loss density, and radar cross section reduction (maximum value of 36.02 dBm2) also verify the prominent radar stealth capability. Moreover, the customizable approach can be applied to other metals to obtain fulfilling behaviors. Henceforth, this work provides profound insights into the relationship between structure and performance, and proposes an efficient path for mass-producing multifunctional and high-performance EMW absorbers with excellent thermal properties.
{"title":"A facile strategy for customizing multifunctional magnetic‑dielectric carbon microflower superstructures deposited with carbon nanotubes","authors":"Chengjuan Wang, Yanxiang Wang, Haotian Jiang, Yanqiu Feng, Deli Yang, Chengguo Wang","doi":"10.1016/j.jmst.2024.10.019","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.019","url":null,"abstract":"The novel fabrication of multiple components and unique heterostructure can inject infinite vitality into the electromagnetic wave (EMW) attenuation field. Herein, through the self-assembly of polyimide complexes and catalytic chemical vapor deposition, porous carbon microflowers were synthesized accompanied by carbon nanotubes (CNTs). By regulating the metal ions, the composition and structure of the as-obtained hybrids are modified correspondingly, and thus the adjustable thermal management and EMW absorption capabilities are obtained. In detail, the rich pores and huge specific surface area endow the hierarchical structures with distinguished thermal insulation ability (<em>λ</em><0.07). The carbon framework and CNTs are beneficial for consuming EMWs via conductive loss and defect polarization loss while reducing the filling ratio and thickness. The doped heteroatoms and abundant heterointerfaces generate ample dipole polarization and interface polarization losses (supported by DFT calculation). The metal nanoparticles uniformly embedded in the carbon framework offer optimized impedance matching, proper defect polarization, and suitable magnetic loss. Accordingly, the synergy of magnetic-dielectric balance and flower-like superstructure enables FNCFN2 and NNCFN2 to accomplish remarkable microwave absorbing capacity with thin thickness (14 wt.%). Therefore, respectable specific reflection loss and specific effective absorption bandwidth are acquired (215.39 dB mm<sup>–1</sup> and 22.10 GHz mm<sup>–1</sup>, 257.23 dB mm<sup>–1</sup> and 22.12 GHz mm<sup>–1</sup> respectively), superior to those of certain renowned carbon-based absorbers. The simulation results of electric field intensity distributions, power loss density, and radar cross section reduction (maximum value of 36.02 dBm<sup>2</sup>) also verify the prominent radar stealth capability. Moreover, the customizable approach can be applied to other metals to obtain fulfilling behaviors. Henceforth, this work provides profound insights into the relationship between structure and performance, and proposes an efficient path for mass-producing multifunctional and high-performance EMW absorbers with excellent thermal properties.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"127 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.jmst.2024.08.073
Dinh Cung Tien Nguyen, Seonghan Kim, Bo-Seok Kim, Sejung Kim, Soo-Hyoung Lee
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic devices. Nevertheless, employing PEDOT:PSS in supercapacitors (SC) in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability. To surmount these limitations, PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes, which exhibit physical and chemical stability during SC operation. We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots (CQDs). The CQDs were synthesized under microwave irradiation, yielding green- and red-light emissions. Through optimizing the ratios of CQDs to PEDOT:PSS, the SC electrodes were prepared using a spray-coating technique, marking a significant improvement in device performance with a high volumetric capacitance (104.10 F cm−3), impressive energy density (19.68 Wh cm−3), and excellent cyclic stability, retaining ∼85% of its original volumetric capacitance after 15,000 repeated GCD cycles. Moreover, the SCs, when utilized as a flexible substrate, demonstrated the ability to maintain up to ∼85% of their electrochemical performance even after 3,000 bending cycles (at a bending angle of 60°). These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.
{"title":"High volumetric-energy-density flexible supercapacitors based on PEDOT:PSS incorporated with carbon quantum dots hybrid electrodes","authors":"Dinh Cung Tien Nguyen, Seonghan Kim, Bo-Seok Kim, Sejung Kim, Soo-Hyoung Lee","doi":"10.1016/j.jmst.2024.08.073","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.08.073","url":null,"abstract":"Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic devices. Nevertheless, employing PEDOT:PSS in supercapacitors (SC) in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability. To surmount these limitations, PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes, which exhibit physical and chemical stability during SC operation. We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots (CQDs). The CQDs were synthesized under microwave irradiation, yielding green- and red-light emissions. Through optimizing the ratios of CQDs to PEDOT:PSS, the SC electrodes were prepared using a spray-coating technique, marking a significant improvement in device performance with a high volumetric capacitance (104.10 F cm<sup>−3</sup>), impressive energy density (19.68 Wh cm<sup>−3</sup>), and excellent cyclic stability, retaining ∼85% of its original volumetric capacitance after 15,000 repeated GCD cycles. Moreover, the SCs, when utilized as a flexible substrate, demonstrated the ability to maintain up to ∼85% of their electrochemical performance even after 3,000 bending cycles (at a bending angle of 60°). These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"95 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.jmst.2024.10.010
Ningning Dan, Yao Yang, Tao Ying, Xiaoqin Zeng
Although hydrogen evolution reaction (HER) is considered to be the main cathodic reaction of Mg corrosion, oxygen reduction reaction (ORR) has been recently confirmed to be a secondary cathodic reaction. The factors affecting ORR of magnesium (Mg) alloys are still unclear, especially in cases under thin electrolyte layers (TEL). In this work, the influence of the corrosion product films on the cathodic reactions of Mg alloys under TEL and in a bulk solution was investigated. ORR does not influence the hydrogen evolution rates in the corrosion of Mg alloys. Therefore, with the existence of oxygen, corrosion rates of Mg alloys measured by hydrogen evolution tests are not accurate under TEL. And weight loss test is a more accurate method to evaluate Mg corrosion rates under TEL. ORR was confirmed to participate in the corrosion of Mg–4Nd–0.4Zr, Mg–4Nd and Mg–0.4Zr alloys under TEL. In 100-μm TEL, the highest contribution of ORR in cathodic reactions for the corrosion of Mg–4Nd–0.4Zr, Mg–4Nd and Mg–0.4Zr alloys are 28.6%, 39.1%, and 35.8%, respectively. The more protective film on Mg–4Nd–0.4Zr alloy provides a stronger inhibition effect against the diffusion of oxygen, leading to decreased ORR contribution in cathodic reactions. In addition, it is suggested that the preparation of Mg alloys with protective corrosion product films can inhibit the corrosion induced by ORR in the atmosphere. This work emphasizes the effects of corrosion product films on ORR in Mg corrosion, especially under TEL.
尽管氢进化反应(HER)被认为是镁腐蚀的主要阴极反应,但最近已证实氧还原反应(ORR)是次要的阴极反应。影响镁(Mg)合金氧还原反应的因素尚不清楚,尤其是在电解质层较薄(TEL)的情况下。在这项工作中,研究了腐蚀产物膜对镁合金在薄膜电解质层下和大体积溶液中阴极反应的影响。ORR 不会影响镁合金腐蚀过程中的氢演化率。因此,由于氧气的存在,在 TEL 下通过氢演化试验测量的镁合金腐蚀速率并不准确。而失重试验是评估镁合金在 TEL 下腐蚀速率的一种更准确的方法。经证实,ORR 参与了 Mg-4Nd-0.4Zr、Mg-4Nd 和 Mg-0.4Zr 合金在 TEL 下的腐蚀。在 100μm TEL 中,ORR 在 Mg-4Nd-0.4Zr、Mg-4Nd 和 Mg-0.4Zr 合金腐蚀的阴极反应中的贡献率最高,分别为 28.6%、39.1% 和 35.8%。Mg-4Nd-0.4Zr 合金上的保护膜对氧气的扩散具有更强的抑制作用,从而降低了阴极反应中的 ORR 贡献。此外,研究还表明,制备具有腐蚀产物保护膜的镁合金可以抑制大气中 ORR 引起的腐蚀。这项研究强调了腐蚀产物膜对镁腐蚀中 ORR 的影响,尤其是在 TEL 条件下。
{"title":"Unveiling the interaction between corrosion products and oxygen reduction on the corrosion of Mg–4Nd–0.4Zr alloy under thin electrolyte layers","authors":"Ningning Dan, Yao Yang, Tao Ying, Xiaoqin Zeng","doi":"10.1016/j.jmst.2024.10.010","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.010","url":null,"abstract":"Although hydrogen evolution reaction (HER) is considered to be the main cathodic reaction of Mg corrosion, oxygen reduction reaction (ORR) has been recently confirmed to be a secondary cathodic reaction. The factors affecting ORR of magnesium (Mg) alloys are still unclear, especially in cases under thin electrolyte layers (TEL). In this work, the influence of the corrosion product films on the cathodic reactions of Mg alloys under TEL and in a bulk solution was investigated. ORR does not influence the hydrogen evolution rates in the corrosion of Mg alloys. Therefore, with the existence of oxygen, corrosion rates of Mg alloys measured by hydrogen evolution tests are not accurate under TEL. And weight loss test is a more accurate method to evaluate Mg corrosion rates under TEL. ORR was confirmed to participate in the corrosion of Mg–4Nd–0.4Zr, Mg–4Nd and Mg–0.4Zr alloys under TEL. In 100-μm TEL, the highest contribution of ORR in cathodic reactions for the corrosion of Mg–4Nd–0.4Zr, Mg–4Nd and Mg–0.4Zr alloys are 28.6%, 39.1%, and 35.8%, respectively. The more protective film on Mg–4Nd–0.4Zr alloy provides a stronger inhibition effect against the diffusion of oxygen, leading to decreased ORR contribution in cathodic reactions. In addition, it is suggested that the preparation of Mg alloys with protective corrosion product films can inhibit the corrosion induced by ORR in the atmosphere. This work emphasizes the effects of corrosion product films on ORR in <span><span>Mg corrosion</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span>, especially under TEL.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"241 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isotropic pyrolytic carbon (IPC) is renowned for its robust mechanical, biological, and tribological properties. However, the current mechanisms for modulating IPC microstructure are insufficient to achieve higher performance. Herein, this study provides nanoscale insights into the formation and property regulation of the core–shell structure of the IPC, integrating simulation and experimental approaches. Large-scale reactive molecular dynamics simulations elucidate the microstructural evolution and assembly processes from precursors to nanoparticles and intertwined graphene networks. Simulation process characterization enable versatile adjustment of IPC microstructural features and one-step deposition of hybrid structures with disordered cores and ordered shell layers. Compared to Pyrolytic carbon (PyC) with laminated graphene arrangement, the prepared hybrid structure enables rapid assembly of large-size standalone carbon components. Moreover, the hybrid architecture effectively improves the core–shell phase connection and significantly increases the interfacial shear stress within the intertwined graphene shell layers. Consequently, it greatly improves load transfer efficiency and enhances crack-bridging toughening effect. The endeavor to establish precise microstructure formation and property regulation in IPC materials promises to steer high-performance carbon materials toward distinct developmental trajectories.
{"title":"Nanoscale insights in core–shell structure formation and property regulation of isotropic pyrolytic carbon materials","authors":"Caixiang Xiao, Fei Zhao, Xu Yang, Yuanxiao Zhao, Qiang Song, Qingliang Shen","doi":"10.1016/j.jmst.2024.09.045","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.09.045","url":null,"abstract":"Isotropic pyrolytic carbon (IPC) is renowned for its robust mechanical, biological, and tribological properties. However, the current mechanisms for modulating IPC microstructure are insufficient to achieve higher performance. Herein, this study provides nanoscale insights into the formation and property regulation of the core–shell structure of the IPC, integrating simulation and experimental approaches. Large-scale reactive molecular dynamics simulations elucidate the microstructural evolution and assembly processes from precursors to nanoparticles and intertwined graphene networks. Simulation process characterization enable versatile adjustment of IPC microstructural features and one-step deposition of hybrid structures with disordered cores and ordered shell layers. Compared to Pyrolytic carbon (PyC) with laminated graphene arrangement, the prepared hybrid structure enables rapid assembly of large-size standalone carbon components. Moreover, the hybrid architecture effectively improves the core–shell phase connection and significantly increases the interfacial shear stress within the intertwined graphene shell layers. Consequently, it greatly improves load transfer efficiency and enhances crack-bridging toughening effect. The endeavor to establish precise microstructure formation and property regulation in IPC materials promises to steer high-performance carbon materials toward distinct developmental trajectories.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"16 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.jmst.2024.08.071
Zhenxin Zhao, Zonglin Yi, Rong Niu, Jiajun Chen, Rajesh Pathak, Yongzhen Wang, Jeffrey W Elam, Xiaomin Wang
While neutral aqueous metal batteries, featuring cost-effectiveness and non-flammability, hold significant potential for large-scale energy storage, their practical application is hampered by the limited specific capacity of cathode materials (less than 500 mAh g−1). Herein, capacity-oriented CoS2 and rate-optimized Co9S8 cathodes are developed based on the aqueous copper ion system. The charge-storage mechanism is systematically investigated through a series of ex-situ tests and density functional theory calculations, focusing on the reversible transitions of Co9S8→Cu7S4→Cu9S5/Cu1.8S and CoS2→Cu7S4→Cu2S, which are associated with the redox reactions of Cu2+/Cu+‖Co2+/Co and Cu2+/Cu+‖S22−/S2−, respectively. The electrochemical results show that CoS2 can exhibit a superior capacity of 619 mAh g−1 at 1 A g−1 after 400 cycles, while Co9S8 maintains an outstanding rate performance of 497 mAh g−1 at 10 A g−1 (the retention rate is 95% compared to 521 mAh g−1 at 1 A g−1). As a proof of concept, an advanced CoS2//Zn hybrid aqueous battery demonstrates a working voltage of 1.20 V and a specific energy of 663 Wh kgcathode−1. This work provides an alternative direction for developing sulfide cathodes in energetic aqueous metal batteries.
中性水溶液金属电池具有成本效益高、不易燃等特点,在大规模储能方面具有巨大潜力,但其实际应用却受到阴极材料比容量有限(小于 500 mAh g-1)的阻碍。本文基于水性铜离子体系开发了容量导向型 CoS2 和速率优化型 Co9S8 阴极。通过一系列原位测试和密度泛函理论计算,重点研究了 Co9S8→Cu7S4→Cu9S5/Cu1.8S 和 CoS2→Cu7S4→Cu2S 的电荷存储机理,这些机理分别与 Cu2+/Cu+‖Co2+/Co 和 Cu2+/Cu+‖S22-/S2- 的氧化还原反应有关。电化学结果表明,CoS2 在 1 A g-1 循环 400 次后可显示出 619 mAh g-1 的超强容量,而 Co9S8 在 10 A g-1 循环时可保持 497 mAh g-1 的出色速率性能(与 1 A g-1 循环时的 521 mAh g-1 相比,保持率为 95%)。作为概念验证,先进的 CoS2//Zn 混合水电池的工作电压为 1.20 V,比能量为 663 Wh kgcathode-1。这项研究为在高能水性金属电池中开发硫化物阴极提供了另一个方向。
{"title":"Deciphering the multi-electron redox chemistry of metal-sulfide electrode toward advanced aqueous Cu ion storage","authors":"Zhenxin Zhao, Zonglin Yi, Rong Niu, Jiajun Chen, Rajesh Pathak, Yongzhen Wang, Jeffrey W Elam, Xiaomin Wang","doi":"10.1016/j.jmst.2024.08.071","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.08.071","url":null,"abstract":"While neutral aqueous metal batteries, featuring cost-effectiveness and non-flammability, hold significant potential for large-scale energy storage, their practical application is hampered by the limited specific capacity of cathode materials (less than 500 mAh g<sup>−1</sup>). Herein, capacity-oriented CoS<sub>2</sub> and rate-optimized Co<sub>9</sub>S<sub>8</sub> cathodes are developed based on the aqueous copper ion system. The charge-storage mechanism is systematically investigated through a series of ex-situ tests and density functional theory calculations, focusing on the reversible transitions of Co<sub>9</sub>S<sub>8</sub>→Cu<sub>7</sub>S<sub>4</sub>→Cu<sub>9</sub>S<sub>5</sub>/Cu<sub>1.8</sub>S and CoS<sub>2</sub>→Cu<sub>7</sub>S<sub>4</sub>→Cu<sub>2</sub>S, which are associated with the redox reactions of Cu<sup>2+</sup>/Cu<sup>+</sup>‖Co<sup>2+</sup>/Co and Cu<sup>2+</sup>/Cu<sup>+</sup>‖S<sub>2</sub><sup>2−</sup>/S<sup>2−</sup>, respectively. The electrochemical results show that CoS<sub>2</sub> can exhibit a superior capacity of 619 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup> after 400 cycles, while Co<sub>9</sub>S<sub>8</sub> maintains an outstanding rate performance of 497 mAh g<sup>−1</sup> at 10 A g<sup>−1</sup> (the retention rate is 95% compared to 521 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup>). As a proof of concept, an advanced CoS<sub>2</sub>//Zn hybrid aqueous battery demonstrates a working voltage of 1.20 V and a specific energy of 663 Wh kg<sub>cathode</sub><sup>−1</sup>. This work provides an alternative direction for developing sulfide cathodes in energetic aqueous metal batteries.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"18 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.jmst.2024.10.013
Yonghao Yu, Hongchao Kou, Tingting Zhao, Zilong Zhang, Yarong Wang, Xiaoxuan Xu, Peixuan Li, Mingxiang Zhu, Zhihong Wu, William Yi Wang, Jinshan Li
TiAl alloys with the (α2 + γ) lamellar structure are highly valued for their excellent high-temperature strength and creep resistance. Understanding the formation mechanism of the lamellar structure is crucial for tuning the microstructure and properties. This work investigates the formation of lamellar structure in Ti-48Al-7Nb-2.5V-1Cr alloy, revealing the presence of hcp-based long-period superstructure (hcp-LPS) as a metastable phase during lamellar formation. The identification of hcp-LPS demonstrates that the necessary solute enrichment for the formation of γ lamellae occurs on the hexagonal α matrix, implying that phase separation of α → Al-rich α lamellae + Al-depleted α lamellae is the first step of lamellar formation. Once phase separation is completed, all subsequent phase transitions occur within the Al-rich α lamellae. Additionally, the formation of twin lamellae is further discussed. The formation of the twin lamellae occurs sequentially. Pre-existing lamella promotes the formation of later lamella by inducing solute enrichment in its surrounding region, and then the successive slip of Shockley partial dislocations with opposite Burgers vectors ensures special stacking of later lamellae. These findings not only contribute to the fundamental understanding of spinodal mechanisms in hexagonal crystals, but also provide novel insights into the formation of twin lamellae.
{"title":"Phase separation in hexagonal α phase during lamellar formation of TiAl alloys and its effect on subsequent phase transformations","authors":"Yonghao Yu, Hongchao Kou, Tingting Zhao, Zilong Zhang, Yarong Wang, Xiaoxuan Xu, Peixuan Li, Mingxiang Zhu, Zhihong Wu, William Yi Wang, Jinshan Li","doi":"10.1016/j.jmst.2024.10.013","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.013","url":null,"abstract":"TiAl alloys with the (α<sub>2</sub> + γ) lamellar structure are highly valued for their excellent high-temperature strength and creep resistance. Understanding the formation mechanism of the lamellar structure is crucial for tuning the microstructure and properties. This work investigates the formation of lamellar structure in Ti-48Al-7Nb-2.5V-1Cr alloy, revealing the presence of hcp-based long-period superstructure (hcp-LPS) as a metastable phase during lamellar formation. The identification of hcp-LPS demonstrates that the necessary solute enrichment for the formation of γ lamellae occurs on the hexagonal α matrix, implying that phase separation of α → Al-rich α lamellae + Al-depleted α lamellae is the first step of lamellar formation. Once phase separation is completed, all subsequent phase transitions occur within the Al-rich α lamellae. Additionally, the formation of twin lamellae is further discussed. The formation of the twin lamellae occurs sequentially. Pre-existing lamella promotes the formation of later lamella by inducing solute enrichment in its surrounding region, and then the successive slip of Shockley partial dislocations with opposite Burgers vectors ensures special stacking of later lamellae. These findings not only contribute to the fundamental understanding of spinodal mechanisms in hexagonal crystals, but also provide novel insights into the formation of twin lamellae.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"24 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.jmst.2024.10.012
Tong Ding, Yanfang Zhang, Yuankun Hou, Lei Zhou, Jianxing Zhang, Tengfei Wu, Zhiguo Xing, Sefei Yang
The durability of dental implant carrier coatings is of paramount importance for the expeditious and predictable osseointegration process. The present work is based on a bionic micro/nano hierarchy structure, which consists of titanium surface microstructures and their internal TiO2 nanotubes (TNTs) with drug-carrying capacity. This effectively increases the wear resistance of the drug-carrying coating on the titanium surface. In comparison to untextured samples, the wear volume and wear depth of the optimal texture group are markedly diminished, resulting in a significant enhancement of wear resistance. This improvement was primarily attributed to the smaller contact area of the microstructure. Concurrently, the microstructure serves to safeguard the TNTs from damage during friction. The hydrophilic biomimetic anti-wear micro/nano hierarchies demonstrated the capacity to promote MC3T3-E1 cell adhesion and proliferation, while also exhibiting no cytotoxic effects. Moreover, the micro/nano hierarchical structure can be directly applied to the surface of commercialized implants. In simulated clinical conditions, the implant was inserted into a fresh Bama porcine mandible, and the structure of the drug-loading coatings remained intact. This structure enhances the abrasion resistance of the drug coating while minimizing alterations to the original treatment process of the implant, which is of great significance in the clinical application of implant-loaded drug delivery.
{"title":"Fundamental study on the construction of anti-wear drug delivery system through the design of titanium surface morphology","authors":"Tong Ding, Yanfang Zhang, Yuankun Hou, Lei Zhou, Jianxing Zhang, Tengfei Wu, Zhiguo Xing, Sefei Yang","doi":"10.1016/j.jmst.2024.10.012","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.012","url":null,"abstract":"The durability of dental implant carrier coatings is of paramount importance for the expeditious and predictable osseointegration process. The present work is based on a bionic micro/nano hierarchy structure, which consists of titanium surface microstructures and their internal TiO<sub>2</sub> nanotubes (TNTs) with drug-carrying capacity. This effectively increases the wear resistance of the drug-carrying coating on the titanium surface. In comparison to untextured samples, the wear volume and wear depth of the optimal texture group are markedly diminished, resulting in a significant enhancement of wear resistance. This improvement was primarily attributed to the smaller contact area of the microstructure. Concurrently, the microstructure serves to safeguard the TNTs from damage during friction. The hydrophilic biomimetic anti-wear micro/nano hierarchies demonstrated the capacity to promote MC3T3-E1 cell adhesion and proliferation, while also exhibiting no cytotoxic effects. Moreover, the micro/nano hierarchical structure can be directly applied to the surface of commercialized implants. In simulated clinical conditions, the implant was inserted into a fresh Bama porcine mandible, and the structure of the drug-loading coatings remained intact. This structure enhances the abrasion resistance of the drug coating while minimizing alterations to the original treatment process of the implant, which is of great significance in the clinical application of implant-loaded drug delivery.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"42 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.jmst.2024.10.014
Xin Li, Peitao Liu, Wang Gao, Xing-Qiu Chen, Qing Jiang
The control of solute segregation at grain boundaries is of significance in engineering alloy properties. However, there is currently a lack of a physics-informed predictive model for estimating solute segregation energies. Here we propose novel electronic descriptors for grain-boundary segregation based on the valence, electronegativity and size of solutes. By integrating the non-local coordination number of surfaces, we build a predictive analytic framework for evaluating the segregation energies across various solutes, grain-boundary structures, and segregation sites. This framework uncovers not only the coupling rule of solutes and matrices, but also the origin of solute-segregation determinants, which stems from the d- and sp-states hybridization in alloying. Our scheme establishes a novel picture for grain-boundary segregation and provides a useful tool for the design of advanced alloys.
控制晶界的溶质偏析对合金的工程特性具有重要意义。然而,目前还缺乏一个基于物理学的预测模型来估算溶质偏析能。在此,我们根据溶质的价态、电负性和尺寸,提出了新的晶界偏析电子描述符。通过整合表面的非局部配位数,我们建立了一个预测分析框架,用于评估各种溶质、晶界结构和偏析位点的偏析能。这一框架不仅揭示了溶质和基质的耦合规则,还揭示了溶质-偏析决定因素的起源,即合金化过程中的 d 态和 sp 态杂化。我们的方案为晶界偏析建立了一个新的图景,并为先进合金的设计提供了一个有用的工具。
{"title":"A universal descriptor to determine the effect of solutes in segregation at grain boundaries","authors":"Xin Li, Peitao Liu, Wang Gao, Xing-Qiu Chen, Qing Jiang","doi":"10.1016/j.jmst.2024.10.014","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.014","url":null,"abstract":"The control of solute segregation at grain boundaries is of significance in engineering alloy properties. However, there is currently a lack of a physics-informed predictive model for estimating solute segregation energies. Here we propose novel electronic descriptors for grain-boundary segregation based on the valence, electronegativity and size of solutes. By integrating the non-local coordination number of surfaces, we build a predictive analytic framework for evaluating the segregation energies across various solutes, grain-boundary structures, and segregation sites. This framework uncovers not only the coupling rule of solutes and matrices, but also the origin of solute-segregation determinants, which stems from the d- and sp-states hybridization in alloying. Our scheme establishes a novel picture for grain-boundary segregation and provides a useful tool for the design of advanced alloys.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"67 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}