Pub Date : 2024-11-30DOI: 10.1016/j.jmat.2024.100980
Jamal Belhadi, Zouhair Hanani, Nick A. Shepelin, Urška Trstenjak, Nina Daneu, Arnold M. Müller, Christof Vockenhuber, Bojan Ambrožič, Vid Bobnar, Gertjan Koster, Mimoun El Marssi, Thomas Lippert, Matjaž Spreitzer
Ensuring reliable and safe operation of high-power electronic devices necessitates the development of high-quality dielectric nano-capacitors with high recoverable energy density (URec) and efficiency (η) at low applied electric fields (E)/voltages. In this work, we demonstrate ultra-high URec and η at low E <500 kV/cm in as-grown epitaxial relaxor ferroelectric (RFE) PMN-33PT films, rivaling those typically achieved in state-of-the-art RFE and antiferroelectric (AFE) materials. The high energy storage properties were achieved using a synergistic strategy involving large polarization, a giant built-in potential/imprint (five times higher than the coercive field), and AFE like behavior. The structural, chemical, and electrical investigations revealed that these achievements mainly arise from the effects of strain, dipole defects, and chemical composition. For instance, at low E, the capacitors exhibit under 160 kV/cm (i.e., 8V) and 400 kV/cm (i.e., 20V), respectively, an ultra- high ΔP (45 μC/cm2 and 60 μC/cm2), UE= URec /E (21 J⸱MV/cm2 and 17 J⸱MV/cm2), and UF=URec/(1–η) (20 J/cm3 and 47 J/cm3) with a robust charge-discharge fatigue endurance and outstanding frequency and thermal stability. Additionally, the designed films exhibit outstanding energy storage performance at higher E up to 2 MV/cm (ΔP ≈ 78 μC/cm2, UE≈ 17.3 J⸱MV/cm2 and UF≈ 288 J/cm3) due to their low leakage current density.
{"title":"Ultra-high energy storage density and efficiency at low electric fields/voltages in dielectric thin film capacitors through synergistic effects","authors":"Jamal Belhadi, Zouhair Hanani, Nick A. Shepelin, Urška Trstenjak, Nina Daneu, Arnold M. Müller, Christof Vockenhuber, Bojan Ambrožič, Vid Bobnar, Gertjan Koster, Mimoun El Marssi, Thomas Lippert, Matjaž Spreitzer","doi":"10.1016/j.jmat.2024.100980","DOIUrl":"https://doi.org/10.1016/j.jmat.2024.100980","url":null,"abstract":"Ensuring reliable and safe operation of high-power electronic devices necessitates the development of high-quality dielectric nano-capacitors with high recoverable energy density (<em>U</em><sub>Rec</sub>) and efficiency (<em>η</em>) at low applied electric fields (<em>E</em>)/voltages. In this work, we demonstrate ultra-high <em>U</em><sub>Rec</sub> and η at low <em>E</em> <500 kV/cm in as-grown epitaxial relaxor ferroelectric (RFE) PMN-33PT films, rivaling those typically achieved in state-of-the-art RFE and antiferroelectric (AFE) materials. The high energy storage properties were achieved using a synergistic strategy involving large polarization, a giant built-in potential/imprint (five times higher than the coercive field), and AFE like behavior. The structural, chemical, and electrical investigations revealed that these achievements mainly arise from the effects of strain, dipole defects, and chemical composition. For instance, at low E, the capacitors exhibit under 160 kV/cm (<em>i.e.</em>, 8V) and 400 kV/cm (<em>i.e.</em>, 20V), respectively, an ultra- high Δ<em>P</em> (45 μC/cm<sup>2</sup> and 60 μC/cm<sup>2</sup>), <em>U</em><sub>E</sub>= <em>U</em><sub>Rec</sub> /<em>E</em> (21 J⸱MV/cm<sup>2</sup> and 17 J⸱MV/cm<sup>2</sup>), and <em>U</em><sub>F</sub>=<em>U</em><sub>Rec</sub>/(1–η) (20 J/cm<sup>3</sup> and 47 J/cm<sup>3</sup>) with a robust charge-discharge fatigue endurance and outstanding frequency and thermal stability. Additionally, the designed films exhibit outstanding energy storage performance at higher <em>E</em> up to 2 MV/cm (Δ<em>P</em> ≈ 78 μC/cm<sup>2</sup>, <em>U</em><sub>E</sub>≈ 17.3 J⸱MV/cm<sup>2</sup> and <em>U</em><sub>F</sub>≈ 288 J/cm<sup>3</sup>) due to their low leakage current density.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"76 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30DOI: 10.1016/j.jmat.2024.100983
Yuanyuan Ma , Ke Ping , Peng Sun , Kaibin Lin , Junjie Guo , Lu Yue , Wenhui Zhang , Xiangwei Wu , Zhaoyin Wen
The design of electrode material nanostructures including reducing material sizes and designing appropriate heterostructures, has great potential in improving charge storage dynamics and enhancing practical performance. In this study, we present the innovative synthesis of SnO2SnS2/graphene heterojunction composite materials via a controlled vulcanization reaction process. The unique structure endows the composite with high electronic conductivity, rapid ion diffusion rates, elevated electrochemical activity, excellent structural stability, and abundant reaction sites, making it a highly efficient anode material for sodium-ion batteries (SIBs). Half-cell tests demonstrate that the SnO2SnS2/r–G composite achieves a first Coulombic efficiency of 77.3% at a high current density of 5 A/g, showing remarkable cycling stability. Remarkably, the composite retains a reversible capacity of 330 mA⋅h/g after 1000 cycles, with a capacity retention rate of 77.5%. Moreover, we elucidate the specific sodium storage mechanisms of the heterojunction composite electrode via in-situ and ex-situ characterization methods. Furthermore, a full battery utilizing Na0.53MnO2 as the cathode and SnO2SnS2/r–G composite as the anode exhibits outstanding rate performance and long-term cycling stability. This method of heterostructure design and fabrication, coupled with the exceptional performance metrics, suggests that the SnO2SnS2/r–G heterostructure is a promising candidate for advanced anode materials in SIBs applications.
电极材料纳米结构的设计包括减小材料尺寸和设计合适的异质结构,在改善电荷存储动力学和提高实用性能方面具有很大的潜力。在这项研究中,我们提出了通过控制硫化反应过程合成SnO2-SnS2/石墨烯异质结复合材料的创新方法。独特的结构使该复合材料具有高电子导电性、离子扩散速度快、电化学活性高、结构稳定性好、反应位点丰富等特点,是一种高效的钠离子电池负极材料。半电池测试表明,SnO2-SnS2 / r-G复合材料在5 a /g的高电流密度下,第一库仑效率达到77.3%,具有显著的循环稳定性。值得注意的是,该复合材料在1000次循环后仍保持330 mA·h/g的可逆容量,容量保持率为77.5%。此外,我们通过原位和非原位表征方法阐明了异质结复合电极的特定钠储存机制。此外,以Na0.53MnO2为阴极,SnO2-SnS2 / r-G复合材料为阳极的全电池具有出色的倍率性能和长期循环稳定性。这种异质结构设计和制造方法,加上优异的性能指标,表明SnO2-SnS2 / r-G异质结构是sib应用中先进阳极材料的有希望的候选材料。
{"title":"SnO2SnS2/graphene heterojunction composite promotes high-performance sodium ion storage","authors":"Yuanyuan Ma , Ke Ping , Peng Sun , Kaibin Lin , Junjie Guo , Lu Yue , Wenhui Zhang , Xiangwei Wu , Zhaoyin Wen","doi":"10.1016/j.jmat.2024.100983","DOIUrl":"10.1016/j.jmat.2024.100983","url":null,"abstract":"<div><div>The design of electrode material nanostructures including reducing material sizes and designing appropriate heterostructures, has great potential in improving charge storage dynamics and enhancing practical performance. In this study, we present the innovative synthesis of SnO<sub>2</sub><img>SnS<sub>2</sub>/graphene heterojunction composite materials <em>via</em> a controlled vulcanization reaction process. The unique structure endows the composite with high electronic conductivity, rapid ion diffusion rates, elevated electrochemical activity, excellent structural stability, and abundant reaction sites, making it a highly efficient anode material for sodium-ion batteries (SIBs). Half-cell tests demonstrate that the SnO<sub>2</sub><img>SnS<sub>2</sub>/r–G composite achieves a first Coulombic efficiency of 77.3% at a high current density of 5 A/g, showing remarkable cycling stability. Remarkably, the composite retains a reversible capacity of 330 mA⋅h/g after 1000 cycles, with a capacity retention rate of 77.5%. Moreover, we elucidate the specific sodium storage mechanisms of the heterojunction composite electrode <em>via in-situ</em> and <em>ex-situ</em> characterization methods. Furthermore, a full battery utilizing Na<sub>0.53</sub>MnO<sub>2</sub> as the cathode and SnO<sub>2</sub><img>SnS<sub>2</sub>/r–G composite as the anode exhibits outstanding rate performance and long-term cycling stability. This method of heterostructure design and fabrication, coupled with the exceptional performance metrics, suggests that the SnO<sub>2</sub><img>SnS<sub>2</sub>/r–G heterostructure is a promising candidate for advanced anode materials in SIBs applications.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100983"},"PeriodicalIF":8.4,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1016/j.jmat.2024.100979
Dong-Xu Li , Zhipeng Li , Zong-Yang Shen , Xuhai Shi , Xiaojun Zeng , You Zhang , Wenqin Luo , Fusheng Song , Chao-Feng Wu
Dielectric capacitors are independent in advanced electronics and pulse power systems as an energy storage and conversion medium. However, achieving high energy density at a low electric field remains challenging for dielectric materials to improve the safety of integrated electronic devices. In this work, the strategy of defect engineering-induced phase competition is proposed to improve the polarization behavior and strengthen dielectric temperature stability of (Bi,Na)TiO3 (BNT)-based relaxor ferroelectric, i.e., Na0.325Sr0.245Ba0.105–1.5x□0.5xBi0.325+xTiO3 (NSB0.105–1.5x□0.5xB0.325+xT) ceramics by changing the ratio of Bi3+/Ba2+. A high recoverable energy density (Wrec = 3.6 J/cm3) is achieved at a relatively low electric field of 160 kV/cm for x = 0.06 composition together with a high dielectric constant of 3142% ± 15% in a wide temperature range of 30–386 °C, which exceeds other lead-free dielectric ceramics at the same electric field. The results demonstrate that NSB0.015□0.03B0.385T ceramics are desirable for advanced pulsed power capacitors and will push the development of defect-tuned functionality of dielectric ceramics for energy storage applications.
{"title":"Defect engineering induced phase competition in BNT-based relaxor ferroelectrics for dielectric energy storage","authors":"Dong-Xu Li , Zhipeng Li , Zong-Yang Shen , Xuhai Shi , Xiaojun Zeng , You Zhang , Wenqin Luo , Fusheng Song , Chao-Feng Wu","doi":"10.1016/j.jmat.2024.100979","DOIUrl":"10.1016/j.jmat.2024.100979","url":null,"abstract":"<div><div>Dielectric capacitors are independent in advanced electronics and pulse power systems as an energy storage and conversion medium. However, achieving high energy density at a low electric field remains challenging for dielectric materials to improve the safety of integrated electronic devices. In this work, the strategy of defect engineering-induced phase competition is proposed to improve the polarization behavior and strengthen dielectric temperature stability of (Bi,Na)TiO<sub>3</sub> (BNT)-based relaxor ferroelectric, <em>i.e.</em>, Na<sub>0.325</sub>Sr<sub>0.245</sub>Ba<sub>0.105–1.5<em>x</em></sub>□<sub>0.5<em>x</em></sub>Bi<sub>0.325+<em>x</em></sub>TiO<sub>3</sub> (NSB<sub>0.105–1.5<em>x</em></sub>□<sub>0.5<em>x</em></sub>B<sub>0.325+<em>x</em></sub>T) ceramics by changing the ratio of Bi<sup>3+</sup>/Ba<sup>2+</sup>. A high recoverable energy density (<em>W</em><sub>rec</sub> = 3.6 J/cm<sup>3</sup>) is achieved at a relatively low electric field of 160 kV/cm for <em>x</em> = 0.06 composition together with a high dielectric constant of 3142% ± 15% in a wide temperature range of 30–386 °C, which exceeds other lead-free dielectric ceramics at the same electric field. The results demonstrate that NSB<sub>0.015</sub>□<sub>0.03</sub>B<sub>0.385</sub>T ceramics are desirable for advanced pulsed power capacitors and will push the development of defect-tuned functionality of dielectric ceramics for energy storage applications.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100979"},"PeriodicalIF":8.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142742458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1016/j.jmat.2024.100984
Luyang Zhang , Lin Chen , Jiankun Wang , Yuxuan Zhang , Yanhui Chu , Jing Feng
High entropy engineering has been widely used to optimize properties of various materials, and we improve comprehensive performance of rare-earth tantalates RETaO4 (RE is rare earth) by changing configurational entropy in this work. Four medium/high entropy RETaO4 (M/HERT) are successfully prepared, and the variations of disorders and distortion degree of lattices with the increasing configurational entropy are described in detail. It is revealed that M/HERT with the highest configurational entropy does not correspond to the best comprehensive properties. Unexpected variations in properties of M/HERT compared to RETaO4 are observed. By comparing with values obtained from rule of mixture (ROM), it is believed that the cocktail effect exists in M/HERT. The synergistic optimizations of thermo-mechanical properties are realized, including reducing thermal conductivity, increasing thermal expansion coefficients (TECs), and enhancing mechanical properties. M/HERT exhibit excellent high temperature stability and provide a good thermal insulation gradient, which is significant for high-temperature applications of RETaO4. This work serves as an important part for thermal barrier coatings materials with high working temperatures and low thermal conductivity.
{"title":"High entropy engineering boosts thermo-mechanical properties of rare-earth tantalates: Influences of cocktail effects","authors":"Luyang Zhang , Lin Chen , Jiankun Wang , Yuxuan Zhang , Yanhui Chu , Jing Feng","doi":"10.1016/j.jmat.2024.100984","DOIUrl":"10.1016/j.jmat.2024.100984","url":null,"abstract":"<div><div>High entropy engineering has been widely used to optimize properties of various materials, and we improve comprehensive performance of rare-earth tantalates RETaO<sub>4</sub> (RE is rare earth) by changing configurational entropy in this work. Four medium/high entropy RETaO<sub>4</sub> (M/HERT) are successfully prepared, and the variations of disorders and distortion degree of lattices with the increasing configurational entropy are described in detail. It is revealed that M/HERT with the highest configurational entropy does not correspond to the best comprehensive properties. Unexpected variations in properties of M/HERT compared to RETaO<sub>4</sub> are observed. By comparing with values obtained from rule of mixture (ROM), it is believed that the cocktail effect exists in M/HERT. The synergistic optimizations of thermo-mechanical properties are realized, including reducing thermal conductivity, increasing thermal expansion coefficients (TECs), and enhancing mechanical properties. M/HERT exhibit excellent high temperature stability and provide a good thermal insulation gradient, which is significant for high-temperature applications of RETaO<sub>4</sub>. This work serves as an important part for thermal barrier coatings materials with high working temperatures and low thermal conductivity.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100984"},"PeriodicalIF":8.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142742716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1016/j.jmat.2024.100981
Yunlong He , Yang Liu , Xiaoli Lu , Zhan Wang , Xianqiang Song , Ying Zhou , Xuefeng Zheng , Xiaohua Ma , Yue Hao
In this paper, to overcome the issues of high roughness and defect density in (001) β-Ga2O3 epitaxial films grown by MOCVD, a novel in-situ pulsed Al atom assisted growth method is proposed. Compared to films grown by conventional growth methods, the β-Ga2O3 epitaxial film grown using this method exhibited lower RMS roughness and a smaller FWHM of the (002) peak in the X-ray rocking curve. Additionally, oxygen vacancy defects within the film are significantly reduced, and Al incorporation is relatively limited without inducing lattice distortion. The width of serrations at the substrate-epitaxial layer interface is reduced from 70 nm to 17 nm, demonstrating improved interface flatness. The mechanism of pulsed Al atoms in optimizing homoepitaxial growth of (001) β-Ga2O3 is proposed, including their roles as preferential nucleation sites for Ga atoms, their inhibitory effects on Ga2O formation and desorption, and the enhancement of atomic diffusion while minimizing parasitic side reactions. The phenomenon of epitaxial orientation rotation is observed, and a hypothesis is proposed regarding the causes of the difference in rotation angle and surface flatness. Additionally, Schottky barrier diodes (SBDs) are also fabricated to study the electrical properties of these epitaxial materials. The epitaxial layer obtained through the pulsed Al atom assisted growth method exhibited a breakdown field strength of 1.8 MV/cm. These results demonstrate that the pulsed Al atom assisted growth method may serve as a valuable reference for achieving high-quality (001) β-Ga2O3 epitaxial growth by the MOCVD method.
{"title":"(001) β-Ga2O3 epitaxial layer grown with in-situ pulsed Al atom assisted method by MOCVD","authors":"Yunlong He , Yang Liu , Xiaoli Lu , Zhan Wang , Xianqiang Song , Ying Zhou , Xuefeng Zheng , Xiaohua Ma , Yue Hao","doi":"10.1016/j.jmat.2024.100981","DOIUrl":"10.1016/j.jmat.2024.100981","url":null,"abstract":"<div><div>In this paper, to overcome the issues of high roughness and defect density in (001) β-Ga<sub>2</sub>O<sub>3</sub> epitaxial films grown by MOCVD, a novel in-situ pulsed Al atom assisted growth method is proposed. Compared to films grown by conventional growth methods, the β-Ga<sub>2</sub>O<sub>3</sub> epitaxial film grown using this method exhibited lower RMS roughness and a smaller FWHM of the (002) peak in the X-ray rocking curve. Additionally, oxygen vacancy defects within the film are significantly reduced, and Al incorporation is relatively limited without inducing lattice distortion. The width of serrations at the substrate-epitaxial layer interface is reduced from 70 nm to 17 nm, demonstrating improved interface flatness. The mechanism of pulsed Al atoms in optimizing homoepitaxial growth of (001) β-Ga<sub>2</sub>O<sub>3</sub> is proposed, including their roles as preferential nucleation sites for Ga atoms, their inhibitory effects on Ga<sub>2</sub>O formation and desorption, and the enhancement of atomic diffusion while minimizing parasitic side reactions. The phenomenon of epitaxial orientation rotation is observed, and a hypothesis is proposed regarding the causes of the difference in rotation angle and surface flatness. Additionally, Schottky barrier diodes (SBDs) are also fabricated to study the electrical properties of these epitaxial materials. The epitaxial layer obtained through the pulsed Al atom assisted growth method exhibited a breakdown field strength of 1.8 MV/cm. These results demonstrate that the pulsed Al atom assisted growth method may serve as a valuable reference for achieving high-quality (001) β-Ga<sub>2</sub>O<sub>3</sub> epitaxial growth by the MOCVD method.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100981"},"PeriodicalIF":8.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142742713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1016/j.jmat.2024.100973
Yongjin Chen , Hong Wu , Guang Han , Bin Zhang , Xu Lu , Wenge Yang , Guoyu Wang , Xiaodong Han , Xiaoyuan Zhou
Pseudo-binary layered compound ⅣVI-V2VI3 families show great promise for application in thermoelectrics. Herein, through introducing iodine in GeSb2Te4, several synergistic effects come into being and contribute to outstanding thermoelectric performance. The ITe donor-like defects suppress the hole carrier concentration from 5.72 × 1020 cm−3 to 2.80 × 1020 cm−3. First-principles calculations reveal that iodine doping increases the band gap from 0.253 eV to 0.302 eV and contributes to valence band convergence. Seebeck coefficient value reaches up to 135.7 μV/K at 773 K, and the power factor values are entirely boosted in the whole temperature region, reaching a maximum value of 12.4 μW⸱cm−1⸱K−2 in GeSb2Te3.96I0.04. Moreover, iodine doping simultaneously reduces the lattice and electronic thermal conductivity, leading to the greatly reduced total thermal conductivity from 2.89 W⸱m−1⸱K−1 in pristine sample to 0.89 W⸱m−1⸱K−1 in GeSb2Te3.84I0.16 at 323 K. Finally, a maximum zT ∼1.12 at 773 K and an average zT ∼0.62 over 323–773 K are achieved in GeSb2Te3.88I0.12. This work puts forward an effective strategy to synergistically optimize phonon and carrier transport properties of pseudo-binary compounds through halogen doping, which may be effective in other similar material systems.
{"title":"Synergistic effects lead to high thermoelectric performance of iodine doped pseudo-binary layered GeSb2Te4","authors":"Yongjin Chen , Hong Wu , Guang Han , Bin Zhang , Xu Lu , Wenge Yang , Guoyu Wang , Xiaodong Han , Xiaoyuan Zhou","doi":"10.1016/j.jmat.2024.100973","DOIUrl":"10.1016/j.jmat.2024.100973","url":null,"abstract":"<div><div>Pseudo-binary layered compound ⅣVI-V<sub>2</sub>VI<sub>3</sub> families show great promise for application in thermoelectrics. Herein, through introducing iodine in GeSb<sub>2</sub>Te<sub>4</sub>, several synergistic effects come into being and contribute to outstanding thermoelectric performance. The I<sup>Te</sup> donor-like defects suppress the hole carrier concentration from 5.72 × 10<sup>20</sup> cm<sup>−3</sup> to 2.80 × 10<sup>20</sup> cm<sup>−3</sup>. First-principles calculations reveal that iodine doping increases the band gap from 0.253 eV to 0.302 eV and contributes to valence band convergence. Seebeck coefficient value reaches up to 135.7 μV/K at 773 K, and the power factor values are entirely boosted in the whole temperature region, reaching a maximum value of 12.4 μW⸱cm<sup>−1</sup>⸱K<sup>−2</sup> in GeSb<sub>2</sub>Te<sub>3.96</sub>I<sub>0.04</sub>. Moreover, iodine doping simultaneously reduces the lattice and electronic thermal conductivity, leading to the greatly reduced total thermal conductivity from 2.89 W⸱m<sup>−1</sup>⸱K<sup>−1</sup> in pristine sample to 0.89 W⸱m<sup>−1</sup>⸱K<sup>−1</sup> in GeSb<sub>2</sub>Te<sub>3.84</sub>I<sub>0.16</sub> at 323 K. Finally, a maximum <em>zT</em> ∼1.12 at 773 K and an average <em>zT</em> ∼0.62 over 323–773 K are achieved in GeSb<sub>2</sub>Te<sub>3.88</sub>I<sub>0.12</sub>. This work puts forward an effective strategy to synergistically optimize phonon and carrier transport properties of pseudo-binary compounds through halogen doping, which may be effective in other similar material systems.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100973"},"PeriodicalIF":8.4,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1016/j.jmat.2024.100978
Yunhao Ma , Shan Wang , Yingjie Zhang , Bei Cheng , Liuyang Zhang
The development of heterojunction photocatalysts for hydrogen peroxide (H2O2) generation is both environmentally sustainable and cost-effective but presents considerable challenges. In this study, we synthesized hollow tubular indium oxide (In2O3) by calcining In-MIL-68 and subsequently composited it with polydopamine (PDA) via in-situ self-polymerization. This process resulted in the formation of an In2O3/PDA step-scheme (S-scheme) heterojunction. The optimized sample demonstrated H2O2 production rates approximately 2.1 and 4.5 times higher than the pure In2O3 and PDA, respectively. The enhanced photocatalytic performance of the In2O3/PDA composite is the result of several synergistic factors: increased light absorption due to the hollow structure, a larger specific surface area, and high separation efficiency of photo-generated electron-hole pairs facilitated by the S-scheme heterojunction. In-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) confirmed the charge transfer pathway follows the S-scheme mechanism. This work not only highlights a practical method for constructing inorganic/organic S-scheme heterojunction photocatalysts but also provides a detailed analysis of their underlying mechanisms, paving the way for more efficient and sustainable photocatalytic systems.
开发用于生成过氧化氢(H2O2)的异质结光催化剂既具有环境可持续性,又具有成本效益,但同时也面临着相当大的挑战。在本研究中,我们通过煅烧 In-MIL-68 合成了空心管状氧化铟(In2O3),随后通过原位自聚合将其与多巴胺(PDA)复合。这一过程形成了 In2O3/PDA 阶梯式(S-scheme)异质结。优化样品的 H2O2 生成率分别是纯 In2O3 和 PDA 的约 2.1 倍和 4.5 倍。In2O3/PDA 复合材料光催化性能的增强是几个协同因素共同作用的结果:中空结构增加了光吸收,比表面积增大,S-scheme 异质结促进了光生电子-空穴对的高分离效率。原位辐照 X 射线光电子能谱(ISI-XPS)证实电荷转移途径遵循 S 型机制。这项工作不仅强调了构建无机/有机 S 型异质结光催化剂的实用方法,还详细分析了其基本机制,为建立更高效、更可持续的光催化系统铺平了道路。
{"title":"Convenient synthesis of hollow tubular In2O3/PDA S-scheme inorganic/organic heterojunction photocatalyst for H2O2 production and its mechanism","authors":"Yunhao Ma , Shan Wang , Yingjie Zhang , Bei Cheng , Liuyang Zhang","doi":"10.1016/j.jmat.2024.100978","DOIUrl":"10.1016/j.jmat.2024.100978","url":null,"abstract":"<div><div>The development of heterojunction photocatalysts for hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) generation is both environmentally sustainable and cost-effective but presents considerable challenges. In this study, we synthesized hollow tubular indium oxide (In<sub>2</sub>O<sub>3</sub>) by calcining In-MIL-68 and subsequently composited it with polydopamine (PDA) <em>via in-situ</em> self-polymerization. This process resulted in the formation of an In<sub>2</sub>O<sub>3</sub>/PDA step-scheme (S-scheme) heterojunction. The optimized sample demonstrated H<sub>2</sub>O<sub>2</sub> production rates approximately 2.1 and 4.5 times higher than the pure In<sub>2</sub>O<sub>3</sub> and PDA, respectively. The enhanced photocatalytic performance of the In<sub>2</sub>O<sub>3</sub>/PDA composite is the result of several synergistic factors: increased light absorption due to the hollow structure, a larger specific surface area, and high separation efficiency of photo-generated electron-hole pairs facilitated by the S-scheme heterojunction. <em>In-situ</em> irradiated X-ray photoelectron spectroscopy (ISI-XPS) confirmed the charge transfer pathway follows the S-scheme mechanism. This work not only highlights a practical method for constructing inorganic/organic S-scheme heterojunction photocatalysts but also provides a detailed analysis of their underlying mechanisms, paving the way for more efficient and sustainable photocatalytic systems.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 3","pages":"Article 100978"},"PeriodicalIF":8.4,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1016/j.jmat.2024.100976
Qingxi Zhao, Hongwei Chu, Zhongben Pan, Han Pan, Shengzhi Zhao, Dechun Li
Fe2O3 nanomaterials, as one of the transition metal oxides (TMOs) materials, have garnered attention in ultrafast photonics due to their robust third-order nonlinearity, rapid carrier recovery time, high stability, broad absorption bandwidth and straightforward preparation methods. In order to further enhance the performance of Fe2O3 nanomaterials, oxygen vacancy defects were introduced in the process of preparing the Fe2O3 nanomaterials in this paper. By characterizing the nonlinear optical properties of the prepared Fe2O3 nanomaterials with different surface oxygen vacancy concentrations, we found that Fe2O3 nanomaterials with larger oxygen vacancy content have a deeper modulation depth and the larger third-order nonlinear coefficient. It also indicated that the incorporation of oxygen vacancy defects can significantly enhance the nonlinear optical properties of Fe2O3 nanomaterials. Furthermore, the ultrafast carrier dynamics of Fe2O3 materials with varying concentrations of oxygen vacancies were investigated using femtosecond-resolved transient absorption (TA) spectroscopy, elucidating the microscopic mechanism. Finally, we inserted Fe2O3-based saturable absorbers into Yb- and Er-doped fiber lasers. Noise-like mode-locking operation and multi-pulse mode-locking operation are realized at 1 μm in the Yb-doped fiber laser. Besides, the conventional soliton mode-locking operations with different central wavelengths are realized within 1.5 μm band in an Er-doped fiber laser.
{"title":"Surface oxygen vacancies in amorphous Fe2O3 tailored nonlinear optical properties for ultrafast photonics","authors":"Qingxi Zhao, Hongwei Chu, Zhongben Pan, Han Pan, Shengzhi Zhao, Dechun Li","doi":"10.1016/j.jmat.2024.100976","DOIUrl":"10.1016/j.jmat.2024.100976","url":null,"abstract":"<div><div>Fe<sub>2</sub>O<sub>3</sub> nanomaterials, as one of the transition metal oxides (TMOs) materials, have garnered attention in ultrafast photonics due to their robust third-order nonlinearity, rapid carrier recovery time, high stability, broad absorption bandwidth and straightforward preparation methods. In order to further enhance the performance of Fe<sub>2</sub>O<sub>3</sub> nanomaterials, oxygen vacancy defects were introduced in the process of preparing the Fe<sub>2</sub>O<sub>3</sub> nanomaterials in this paper. By characterizing the nonlinear optical properties of the prepared Fe<sub>2</sub>O<sub>3</sub> nanomaterials with different surface oxygen vacancy concentrations, we found that Fe<sub>2</sub>O<sub>3</sub> nanomaterials with larger oxygen vacancy content have a deeper modulation depth and the larger third-order nonlinear coefficient. It also indicated that the incorporation of oxygen vacancy defects can significantly enhance the nonlinear optical properties of Fe<sub>2</sub>O<sub>3</sub> nanomaterials. Furthermore, the ultrafast carrier dynamics of Fe<sub>2</sub>O<sub>3</sub> materials with varying concentrations of oxygen vacancies were investigated using femtosecond-resolved transient absorption (TA) spectroscopy, elucidating the microscopic mechanism. Finally, we inserted Fe<sub>2</sub>O<sub>3</sub>-based saturable absorbers into Yb- and Er-doped fiber lasers. Noise-like mode-locking operation and multi-pulse mode-locking operation are realized at 1 μm in the Yb-doped fiber laser. Besides, the conventional soliton mode-locking operations with different central wavelengths are realized within 1.5 μm band in an Er-doped fiber laser.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100976"},"PeriodicalIF":8.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1016/j.jmat.2024.100977
Guoqing Ma , Di Zhou , Yunlong Xie , Shuhan Zheng , Meifeng Liu , Leili Tan , Zhen Liu , Fei Liu , Yao Li , Zhen Ma , Yongjun Zhang , Lin Lin , Min Zeng , Xiuzhang Wang , Saiyu Wang , Hong Li , Shuai Dong , Jun-Ming Liu
Fe2TeO6 has long been considered as a promising high-temperature magnetoelectric (ME) material, while the magnetoelectricity and magnetic ground state of Fe2TeO6 have not been well characterized or understood yet. In the present work, we report the systematical study of magnetism, ferroelectricity, ME effect, first principles calculation, and Monte Carlo simulation of Fe2TeO6 single crystals. Fe2TeO6 exhibits linear ME effect below TN ∼208 K, and only diagonal ME coefficients appears to be non-zero, which agrees with the magnetic point group 4/m'm'm'. The calculated magnetic ground state agrees with previous neutron diffraction, and the strong intra(inter)-bilayer interactions coincide with the high TN of Fe2TeO6. This work will contribute to the understanding of A2BO6 ME family and the exploration of high temperature ME materials.
一直以来,Fe2TeO6 被认为是一种很有前途的高温磁电(ME)材料,但人们对 Fe2TeO6 的磁电性和磁基态还没有很好的表征和理解。在本研究中,我们报告了对 Fe2TeO6 单晶的磁性、铁电性、ME 效应、第一性原理计算和蒙特卡罗模拟的系统研究。Fe2TeO6 在 TN ∼ 208 K 以下表现出线性 ME 效应,且只有对角线 ME 系数不为零,这与磁点群 4/m'm'm' 相吻合。计算出的磁基态与之前的中子衍射结果一致,而强的层内(层间)相互作用与 Fe2TeO6 的高 TN 相吻合。这项工作将有助于理解 A2BO6 ME 家族和探索高温 ME 材料。
{"title":"High temperature magnetoelectric effect in Fe2TeO6","authors":"Guoqing Ma , Di Zhou , Yunlong Xie , Shuhan Zheng , Meifeng Liu , Leili Tan , Zhen Liu , Fei Liu , Yao Li , Zhen Ma , Yongjun Zhang , Lin Lin , Min Zeng , Xiuzhang Wang , Saiyu Wang , Hong Li , Shuai Dong , Jun-Ming Liu","doi":"10.1016/j.jmat.2024.100977","DOIUrl":"10.1016/j.jmat.2024.100977","url":null,"abstract":"<div><div>Fe<sub>2</sub>TeO<sub>6</sub> has long been considered as a promising high-temperature magnetoelectric (ME) material, while the magnetoelectricity and magnetic ground state of Fe<sub>2</sub>TeO<sub>6</sub> have not been well characterized or understood yet. In the present work, we report the systematical study of magnetism, ferroelectricity, ME effect, first principles calculation, and Monte Carlo simulation of Fe<sub>2</sub>TeO<sub>6</sub> single crystals. Fe<sub>2</sub>TeO<sub>6</sub> exhibits linear ME effect below <em>T</em><sub>N</sub> ∼208 K, and only diagonal ME coefficients appears to be non-zero, which agrees with the magnetic point group 4/<em>m</em><em>'m'm'</em>. The calculated magnetic ground state agrees with previous neutron diffraction, and the strong intra(inter)-bilayer interactions coincide with the high <em>T</em><sub>N</sub> of Fe<sub>2</sub>TeO<sub>6</sub>. This work will contribute to the understanding of A<sub>2</sub>BO<sub>6</sub> ME family and the exploration of high temperature ME materials.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100977"},"PeriodicalIF":8.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.jmat.2024.100975
Jian Sun , Haowei Liu , Shan Wang , Yingjie Zhang , Chuanbiao Bie , Liuyang Zhang
Recently, the step-scheme (S-scheme) heterojunction has gained significant attention due to its effective electron-hole separation and strong redox capabilities. However, reports on covalent organic framework (COF)-based S-scheme heterojunctions for photocatalytic RhB degradation remain limited. In this study, an S-scheme ZnIn2S4@COF-5 heterojunction photocatalyst was successfully synthesized by growing COF-5 on the surface of ZnIn2S4 nanosheets, achieving efficient RhB degradation. Using 30 mg of ZnIn2S4@COF-5, we degraded 50 mL of an 80×10-6 RhB solution, achieving a 97% removal rate within 90 min. The photocatalytic performance of the ZnIn2S4@COF-5 S-scheme heterojunction was approximately 1.7 times higher than that of ZnIn2S4 and 1.6 times higher than COF-5 alone. Compared to the other reported COF-based S-scheme heterojunctions and commercial photocatalysts, this ZnIn2S4@COF-5 photocatalyst exhibited superior photocatalytic performance. The S-scheme charge transfer mechanism of the ZnIn2S4@COF-5 heterojunction was elucidated through in situ irradiated XPS. Experimental results demonstrate that this rational design not only facilitates the effective separation of photogenerated electrons and holes, but also provides a large surface area and abundant active sites for efficient RhB degradation.
{"title":"In situ irradiated XPS investigation on S-scheme ZnIn2S4@COF-5 photocatalyst for enhanced photocatalytic degradation of RhB","authors":"Jian Sun , Haowei Liu , Shan Wang , Yingjie Zhang , Chuanbiao Bie , Liuyang Zhang","doi":"10.1016/j.jmat.2024.100975","DOIUrl":"10.1016/j.jmat.2024.100975","url":null,"abstract":"<div><div>Recently, the step-scheme (S-scheme) heterojunction has gained significant attention due to its effective electron-hole separation and strong redox capabilities. However, reports on covalent organic framework (COF)-based S-scheme heterojunctions for photocatalytic RhB degradation remain limited. In this study, an S-scheme ZnIn<sub>2</sub>S<sub>4</sub>@COF-5 heterojunction photocatalyst was successfully synthesized by growing COF-5 on the surface of ZnIn<sub>2</sub>S<sub>4</sub> nanosheets, achieving efficient RhB degradation. Using 30 mg of ZnIn<sub>2</sub>S<sub>4</sub>@COF-5, we degraded 50 mL of an 80×10<sup>-6</sup> RhB solution, achieving a 97% removal rate within 90 min. The photocatalytic performance of the ZnIn<sub>2</sub>S<sub>4</sub>@COF-5 S-scheme heterojunction was approximately 1.7 times higher than that of ZnIn<sub>2</sub>S<sub>4</sub> and 1.6 times higher than COF-5 alone. Compared to the other reported COF-based S-scheme heterojunctions and commercial photocatalysts, this ZnIn<sub>2</sub>S<sub>4</sub>@COF-5 photocatalyst exhibited superior photocatalytic performance. The S-scheme charge transfer mechanism of the ZnIn<sub>2</sub>S<sub>4</sub>@COF-5 heterojunction was elucidated through <em>in situ</em> irradiated XPS. Experimental results demonstrate that this rational design not only facilitates the effective separation of photogenerated electrons and holes, but also provides a large surface area and abundant active sites for efficient RhB degradation.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 3","pages":"Article 100975"},"PeriodicalIF":8.4,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}