首页 > 最新文献

Journal of Materiomics最新文献

英文 中文
Atmosphere-driven metal-support synergy in ZnO/Au catalysts for efficient piezo-catalytic hydrogen evolution ZnO/Au 催化剂中大气驱动的金属-支撑协同作用促进高效压电催化氢气进化
IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-05 DOI: 10.1016/j.jmat.2024.100959
Di Wu , Yingxin He , Chi Lin , Bing Li , Jiangping Ma , Lujie Ruan , Yajie Feng , Chaogang Ban , Junjie Ding , Xiaoxing Wang , Danmei Yu , Li-Yong Gan , Xiaoyuan Zhou
Piezo-catalysis, which leverages mechanical energy to drive chemical reactions, is emerging as a promising method for sustainable energy production. While the enhancement of piezo-catalytic performance through metal-support interactions is well-documented, the critical influence of the synthesis atmosphere during metal-loaded piezo-catalyst preparation has been a notable gap in the field. To this end, we systematically investigate how different atmospheric conditions during the synthesis of catalysts—without gas flow or with Ar, N2 and O2—affect metal dispersion, oxidation states, piezo-carrier dynamics, and electronic structure, and subsequently shape the metal-support interactions and piezo-catalytic activity. ZnO/Au, with Au deposited on ZnO, is selected as the model system, and hydrogen evolution reaction is used as the probe reaction. Our results demonstrate that an oxygen-enriched atmosphere significantly enhances the metal-support interactions, achieving an ultrahigh net hydrogen yield of 16.5 mmol·g−1·h−1 on ZnO/Au, a 3.58-fold increase over pristine ZnO. Specifically, the performance improvements substantially surpass those synthesized under other atmospheric conditions. Conversely, exposure to CO2 transforms the ZnO support into ZnCO3, adversely affecting its catalytic activity. These findings reveal the crucial impact of synthesis conditions on piezo-catalyst performance and thereby open new avenues for optimizing catalyst systems for enhanced sustainability.
压电催化利用机械能驱动化学反应,正在成为一种有前途的可持续能源生产方法。虽然通过金属与支撑物的相互作用提高压电催化性能已得到充分证实,但在金属负载压电催化剂制备过程中合成气氛的关键影响一直是该领域的一个显著空白。为此,我们系统地研究了催化剂合成过程中的不同气氛条件--无气流或有 Ar、N2 和 O2--如何影响金属分散、氧化态、压电载体动力学和电子结构,并进而影响金属-支撑相互作用和压电催化活性。我们选择金沉积在 ZnO 上的 ZnO/Au 作为模型体系,并以氢进化反应作为探针反应。我们的研究结果表明,富氧气氛显著增强了金属与支撑物之间的相互作用,在 ZnO/Au 上实现了 16.5 mmol-g-1-h-1 的超高净氢产率,是原始 ZnO 的 3.58 倍。具体而言,性能的提高大大超过了在其他大气条件下合成的产品。相反,暴露在二氧化碳中会使氧化锌支持物转化为 ZnCO3,从而对其催化活性产生不利影响。这些发现揭示了合成条件对压电催化剂性能的重要影响,从而为优化催化剂系统以提高可持续性开辟了新的途径。
{"title":"Atmosphere-driven metal-support synergy in ZnO/Au catalysts for efficient piezo-catalytic hydrogen evolution","authors":"Di Wu ,&nbsp;Yingxin He ,&nbsp;Chi Lin ,&nbsp;Bing Li ,&nbsp;Jiangping Ma ,&nbsp;Lujie Ruan ,&nbsp;Yajie Feng ,&nbsp;Chaogang Ban ,&nbsp;Junjie Ding ,&nbsp;Xiaoxing Wang ,&nbsp;Danmei Yu ,&nbsp;Li-Yong Gan ,&nbsp;Xiaoyuan Zhou","doi":"10.1016/j.jmat.2024.100959","DOIUrl":"10.1016/j.jmat.2024.100959","url":null,"abstract":"<div><div>Piezo-catalysis, which leverages mechanical energy to drive chemical reactions, is emerging as a promising method for sustainable energy production. While the enhancement of piezo-catalytic performance through metal-support interactions is well-documented, the critical influence of the synthesis atmosphere during metal-loaded piezo-catalyst preparation has been a notable gap in the field. To this end, we systematically investigate how different atmospheric conditions during the synthesis of catalysts—without gas flow or with Ar, N<sub>2</sub> and O<sub>2</sub>—affect metal dispersion, oxidation states, piezo-carrier dynamics, and electronic structure, and subsequently shape the metal-support interactions and piezo-catalytic activity. ZnO/Au, with Au deposited on ZnO, is selected as the model system, and hydrogen evolution reaction is used as the probe reaction. Our results demonstrate that an oxygen-enriched atmosphere significantly enhances the metal-support interactions, achieving an ultrahigh net hydrogen yield of 16.5 mmol·g<sup>−1</sup>·h<sup>−1</sup> on ZnO/Au, a 3.58-fold increase over pristine ZnO. Specifically, the performance improvements substantially surpass those synthesized under other atmospheric conditions. Conversely, exposure to CO<sub>2</sub> transforms the ZnO support into ZnCO<sub>3</sub>, adversely affecting its catalytic activity. These findings reveal the crucial impact of synthesis conditions on piezo-catalyst performance and thereby open new avenues for optimizing catalyst systems for enhanced sustainability.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100959"},"PeriodicalIF":8.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-equimolar bismuth-layered [CaxSr(1–x)/3Ba(1–x)/3Pb(1–x)/3]Bi4Ti4O15 high-entropy ceramics with high curie temperature 具有高居里温度的非等摩尔铋层[CaxSr(1-x)/3Ba(1-x)/3Pb(1-x)/3]Bi4Ti4O15 高熵陶瓷
IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1016/j.jmat.2024.100945
Mingxin Lu , Yan Fang , Xiaoyu Xu , Xiaoying Feng , Haoqi Xu , Liyang Zhou , Hui Wang , Bin Yan , Chao Chen , Hui Mei , Jie Xu , Feng Gao
Aurivillius phase ceramics exhibit significant potential in high-temperature piezoelectric devices due to their high Curie temperature. However, the rapid decrease in electrical resistivity at high temperatures limits their application. In this work, a series of non-equimolar high-entropy piezoelectric ceramics [CaxSr(1–x)/3Ba(1–x)/3Pb(1–x)/3]Bi4Ti4O15 were designed and prepared via a conventional solid-state method, and the influence of configurational entropy on the microstructure and electrical properties was investigated. The results show that the pure Aurivillius phase was obtained for all compositions. Due to the hysteretic diffusion effect caused by high entropy design, the grain boundary density is effectively increased, leading to a degradation of electrical transport properties. The results of Raman and TEM indicate that disordered structure and various lattice distortions such as edge dislocations, twists, and tilts of oxygen octahedra coexist in high-entropy ceramics, which synergistically contribute to the increase in ceramic electrical resistivity. Consequently, the electrical resistivity at 500 °C increased by 1–2 orders of magnitude, the sample with x = 0.4 exhibits high electrical resistivity (1.18 × 108 Ω·cm), and also boasts a high piezoelectric coefficient (14 pC/N) and an optimal operating temperature (>550 °C). This work highlights a way to obtain high-performance piezoelectric ceramics with high Curie temperature through the non-equimolar high-entropy composition design.
由于具有较高的居里温度,奥里维利相陶瓷在高温压电器件方面具有巨大的潜力。然而,高温下电阻率的快速下降限制了它们的应用。本研究采用传统固态法设计并制备了一系列非等摩尔高熵压电陶瓷[CaxSr(1-x)/3Ba(1-x)/3Pb(1-x)/3]Bi4Ti4O15,并研究了构型熵对其微观结构和电性能的影响。结果表明,所有成分都获得了纯净的 Aurivillius 相。由于高熵设计引起的滞后扩散效应,晶界密度有效增加,导致电传输性能下降。拉曼和 TEM 的结果表明,无序结构和各种晶格畸变(如氧八面体的边缘位错、扭曲和倾斜)共存于高熵陶瓷中,它们协同促进了陶瓷电阻率的增加。因此,500 °C时的电阻率增加了1-2个数量级,x = 0.4的样品具有高电阻率(1.18×108 Ω-cm),同时还具有高压电系数(14 pC/N)和最佳工作温度(550 °C)。这项工作强调了一种通过非等摩尔高熵成分设计获得高居里温度高性能压电陶瓷的方法。
{"title":"Non-equimolar bismuth-layered [CaxSr(1–x)/3Ba(1–x)/3Pb(1–x)/3]Bi4Ti4O15 high-entropy ceramics with high curie temperature","authors":"Mingxin Lu ,&nbsp;Yan Fang ,&nbsp;Xiaoyu Xu ,&nbsp;Xiaoying Feng ,&nbsp;Haoqi Xu ,&nbsp;Liyang Zhou ,&nbsp;Hui Wang ,&nbsp;Bin Yan ,&nbsp;Chao Chen ,&nbsp;Hui Mei ,&nbsp;Jie Xu ,&nbsp;Feng Gao","doi":"10.1016/j.jmat.2024.100945","DOIUrl":"10.1016/j.jmat.2024.100945","url":null,"abstract":"<div><div>Aurivillius phase ceramics exhibit significant potential in high-temperature piezoelectric devices due to their high Curie temperature. However, the rapid decrease in electrical resistivity at high temperatures limits their application. In this work, a series of non-equimolar high-entropy piezoelectric ceramics [Ca<sub><em>x</em></sub>Sr<sub>(1–<em>x</em>)/3</sub>Ba<sub>(1–<em>x</em>)/3</sub>Pb<sub>(1–<em>x</em>)/3</sub>]Bi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub> were designed and prepared <em>via</em> a conventional solid-state method, and the influence of configurational entropy on the microstructure and electrical properties was investigated. The results show that the pure Aurivillius phase was obtained for all compositions. Due to the hysteretic diffusion effect caused by high entropy design, the grain boundary density is effectively increased, leading to a degradation of electrical transport properties. The results of Raman and TEM indicate that disordered structure and various lattice distortions such as edge dislocations, twists, and tilts of oxygen octahedra coexist in high-entropy ceramics, which synergistically contribute to the increase in ceramic electrical resistivity. Consequently, the electrical resistivity at 500 °C increased by 1–2 orders of magnitude, the sample with <em>x</em> = 0.4 exhibits high electrical resistivity (1.18 × 10<sup>8</sup> Ω·cm), and also boasts a high piezoelectric coefficient (14 pC/N) and an optimal operating temperature (&gt;550 °C). This work highlights a way to obtain high-performance piezoelectric ceramics with high Curie temperature through the non-equimolar high-entropy composition design.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100945"},"PeriodicalIF":8.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the mechanisms of enhanced piezoelectric properties in (K,Na)NbO3 single crystals 探索 (K,Na)NbO3 单晶压电特性增强的机理
IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1016/j.jmat.2024.100943
Da Huo , Biao Wang , Jinhui Fan , Kai Li , Yang Liu , Xudong Qi , Limei Zheng
(K,Na)NbO3 (KNN)-based piezoelectric materials are candidates for replacing Pb-based materials. However, the piezoelectric properties of existing KNN-based single crystals are still inferior to those of Pb-based relaxor ferroelectric single crystals. Moreover, the piezoelectric response mechanism of KNN-based single crystals remains unclear. In this study, (Li,K,Na)(Nb,Sb,Ta)O3:Mn (KNNLST:Mn) single crystals with an excellent piezoelectric coefficient d33 of approximately 778 pC/N were prepared. Systematically studies of intrinsic and extrinsic piezoelectric responses have revealed that the high d33 of KNNLST:Mn single crystals is related to the shear piezoelectric response of a single-domain state and irreversible domain wall motion of the engineering domains. Furthermore, the effect of the orthorhombic (O)-tetragonal (T) phase boundary on intrinsic and extrinsic piezoelectric response is systematically studied, and the impact mechanism is elucidated. The results indicate that a lower dielectric response and elastic constant limit the intrinsic shear piezoelectric response of KNNLST:Mn single crystals, and approaching the O–T phase boundary can enhance both intrinsic and extrinsic piezoelectric responses. This study improves our understanding of the structure-performance relationship in KNN-based single crystals and offers insights for optimizing piezoelectric properties in KNN-based materials.
(K,Na)NbO3 (KNN) 基压电材料是替代铅基材料的候选材料。然而,现有的 KNN 基单晶的压电特性仍不如 Pb 基松弛铁电单晶。此外,KNN 基单晶的压电响应机制仍不清楚。本研究制备了(Li,K,Na)(Nb,Sb,Ta)O3:Mn(KNNLST:Mn)单晶,其压电系数 d33 约为 778 pC/N。对内在和外在压电响应的系统研究表明,KNNLST:Mn 单晶的高 d33 与单畴状态的剪切压电响应和工程畴的不可逆畴壁运动有关。此外,还系统研究了正交(O)-四方(T)相界对内在和外在压电响应的影响,并阐明了其影响机理。结果表明,较低的介电响应和弹性常数限制了 KNNLST:Mn 单晶的本征剪切压电响应,而接近 O-T 相边界可以增强本征和外征压电响应。这项研究加深了我们对 KNN 基单晶的结构-性能关系的理解,并为优化 KNN 基材料的压电特性提供了启示。
{"title":"Exploring the mechanisms of enhanced piezoelectric properties in (K,Na)NbO3 single crystals","authors":"Da Huo ,&nbsp;Biao Wang ,&nbsp;Jinhui Fan ,&nbsp;Kai Li ,&nbsp;Yang Liu ,&nbsp;Xudong Qi ,&nbsp;Limei Zheng","doi":"10.1016/j.jmat.2024.100943","DOIUrl":"10.1016/j.jmat.2024.100943","url":null,"abstract":"<div><div>(K,Na)NbO<sub>3</sub> (KNN)-based piezoelectric materials are candidates for replacing Pb-based materials. However, the piezoelectric properties of existing KNN-based single crystals are still inferior to those of Pb-based relaxor ferroelectric single crystals. Moreover, the piezoelectric response mechanism of KNN-based single crystals remains unclear. In this study, (Li,K,Na)(Nb,Sb,Ta)O<sub>3</sub>:Mn (KNNLST:Mn) single crystals with an excellent piezoelectric coefficient <em>d</em><sub>33</sub> of approximately 778 pC/N were prepared. Systematically studies of intrinsic and extrinsic piezoelectric responses have revealed that the high <em>d</em><sub>33</sub> of KNNLST:Mn single crystals is related to the shear piezoelectric response of a single-domain state and irreversible domain wall motion of the engineering domains. Furthermore, the effect of the orthorhombic (O)-tetragonal (T) phase boundary on intrinsic and extrinsic piezoelectric response is systematically studied, and the impact mechanism is elucidated. The results indicate that a lower dielectric response and elastic constant limit the intrinsic shear piezoelectric response of KNNLST:Mn single crystals, and approaching the O–T phase boundary can enhance both intrinsic and extrinsic piezoelectric responses. This study improves our understanding of the structure-performance relationship in KNN-based single crystals and offers insights for optimizing piezoelectric properties in KNN-based materials.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100943"},"PeriodicalIF":8.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic algorithm-enabled mechanical metamaterials for vibration isolation with different payloads 采用遗传算法的机械超材料用于不同有效载荷的振动隔离
IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-15 DOI: 10.1016/j.jmat.2024.100944
Xinyu Song , Sen Yan , Yong Wang , Haojie Zhang , Jiacheng Xue , Tengfei Liu , Xiaoyong Tian , Lingling Wu , Hanqing Jiang , Dichen Li
Mechanical vibration isolation with adaptable payloads has always been one of the most challenging topics in mechanical engineering. In this study, we address this problem by introducing machine learning method to search for quasi-zero stiffness metamaterials with arbitrarily predetermined payloads and by employing multi-material 3D printing technology to fabricate them as an integrated part. Dynamic tests demonstrate that both the single- and multi-payload metamaterials can effectively isolate mechanical vibration in low frequency domain. Importantly, the payload of the metamaterial could be arbitrarily designed according to the application scenario and could function at multiple payloads. This design strategy opens new avenues for mechanical energy shielding under various scenarios and under variable loading conditions.
可适应有效载荷的机械隔振一直是机械工程领域最具挑战性的课题之一。在本研究中,我们通过引入机器学习方法来寻找具有任意预设有效载荷的准零刚度超材料,并采用多材料三维打印技术将其制造为一个集成部件,从而解决了这一问题。动态测试表明,单负载和多负载超材料都能有效隔离低频域的机械振动。重要的是,超材料的有效载荷可根据应用场景任意设计,并可在多种有效载荷下发挥作用。这种设计策略为在不同场景和不同负载条件下的机械能屏蔽开辟了新途径。
{"title":"Genetic algorithm-enabled mechanical metamaterials for vibration isolation with different payloads","authors":"Xinyu Song ,&nbsp;Sen Yan ,&nbsp;Yong Wang ,&nbsp;Haojie Zhang ,&nbsp;Jiacheng Xue ,&nbsp;Tengfei Liu ,&nbsp;Xiaoyong Tian ,&nbsp;Lingling Wu ,&nbsp;Hanqing Jiang ,&nbsp;Dichen Li","doi":"10.1016/j.jmat.2024.100944","DOIUrl":"10.1016/j.jmat.2024.100944","url":null,"abstract":"<div><div>Mechanical vibration isolation with adaptable payloads has always been one of the most challenging topics in mechanical engineering. In this study, we address this problem by introducing machine learning method to search for quasi-zero stiffness metamaterials with arbitrarily predetermined payloads and by employing multi-material 3D printing technology to fabricate them as an integrated part. Dynamic tests demonstrate that both the single- and multi-payload metamaterials can effectively isolate mechanical vibration in low frequency domain. Importantly, the payload of the metamaterial could be arbitrarily designed according to the application scenario and could function at multiple payloads. This design strategy opens new avenues for mechanical energy shielding under various scenarios and under variable loading conditions.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 3","pages":"Article 100944"},"PeriodicalIF":8.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing piezoelectricity and excellent thermal stability: <001>-textured 0.75BF–0.25BT lead-free ceramics for high temperature applications 先进的压电性和出色的热稳定性:用于高温应用的纹理 0.75BF-0.25BT 无铅陶瓷
IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-13 DOI: 10.1016/j.jmat.2024.100946
Zhangpan Shen , Jian Guo , Xiaoyi Gao , Weidong Xuan , Jiye Zhang , Dawei Wang , Jinrong Cheng , Shujun Zhang , Jianguo Chen
There is an urgent need for piezoelectric materials possessing both high piezoelectric properties and good thermal stability to facilitate the advancement of high temperature piezoelectric devices. However, conventional strategy for enhancing piezoelectricity via chemical modifications often comes at the cost of thermal stability due to a drop in Curie temperatures. In this study, we achieved remarkable results in <001>-oriented 0.75BiFeO3–0.25BaTiO3 (0.75BF–0.25BT) lead-free textured ceramics. These textured ceramics exhibit a high Curie temperatures TC of 552 °C, large piezoelectric coefficients d33 of 265 pC/N, and exceptional piezoelectric thermal stability, with minimal variation of 8% across temperature from 25 °C to 300 °C. Compared to randomly oriented ceramics, the piezoelectric coefficient is about 2.5 times higher, marking it as one of the highest reported value for ceramics with Tc near 550 °C. The enhanced piezoelectric properties can be ascribed to improvements in both intrinsic lattice distortions and extrinsic non-180° domain motions, while the excellent piezoelectric thermal stability is attributed to the stable domain texture. These superior properties of the studied textured 0.75BF–0.25BT ceramics position them as competitive lead-free candidates for high-temperature piezoelectric applications.
为促进高温压电器件的发展,迫切需要同时具有高压电特性和良好热稳定性的压电材料。然而,通过化学修饰增强压电性的传统策略往往以居里温度下降导致热稳定性降低为代价。在这项研究中,我们在取向 0.75BiFeO3-0.25BaTiO3 (0.75BF-0.25BT)无铅纹理陶瓷中取得了令人瞩目的成果。这些纹理陶瓷的居里温度 Tc 高达 552 °C,压电系数 d33 高达 265 pC/N,并且具有优异的压电热稳定性,在 25 °C 至 300 °C 的温度范围内变化极小,仅为 8%。与随机取向陶瓷相比,其压电系数高出约 2.5 倍,是所报道的 Tc 接近 550 °C 的陶瓷中最高值之一。压电特性的增强可归因于内在晶格畸变和外在非 180o 畴运动的改善,而优异的压电热稳定性则归因于稳定的畴纹理。所研究的纹理 0.75BF-0.25BT 陶瓷的这些优异特性使其成为高温压电应用中具有竞争力的无铅候选材料。
{"title":"Advancing piezoelectricity and excellent thermal stability: <001>-textured 0.75BF–0.25BT lead-free ceramics for high temperature applications","authors":"Zhangpan Shen ,&nbsp;Jian Guo ,&nbsp;Xiaoyi Gao ,&nbsp;Weidong Xuan ,&nbsp;Jiye Zhang ,&nbsp;Dawei Wang ,&nbsp;Jinrong Cheng ,&nbsp;Shujun Zhang ,&nbsp;Jianguo Chen","doi":"10.1016/j.jmat.2024.100946","DOIUrl":"10.1016/j.jmat.2024.100946","url":null,"abstract":"<div><div>There is an urgent need for piezoelectric materials possessing both high piezoelectric properties and good thermal stability to facilitate the advancement of high temperature piezoelectric devices. However, conventional strategy for enhancing piezoelectricity via chemical modifications often comes at the cost of thermal stability due to a drop in Curie temperatures. In this study, we achieved remarkable results in &lt;001&gt;-oriented 0.75BiFeO<sub>3</sub>–0.25BaTiO<sub>3</sub> (0.75BF–0.25BT) lead-free textured ceramics. These textured ceramics exhibit a high Curie temperatures <em>T</em><sub>C</sub> of 552 °C, large piezoelectric coefficients <em>d</em><sub>33</sub> of 265 pC/N, and exceptional piezoelectric thermal stability, with minimal variation of 8% across temperature from 25 °C to 300 °C. Compared to randomly oriented ceramics, the piezoelectric coefficient is about 2.5 times higher, marking it as one of the highest reported value for ceramics with <em>T</em><sub>c</sub> near 550 °C. The enhanced piezoelectric properties can be ascribed to improvements in both intrinsic lattice distortions and extrinsic non-180° domain motions, while the excellent piezoelectric thermal stability is attributed to the stable domain texture. These superior properties of the studied textured 0.75BF–0.25BT ceramics position them as competitive lead-free candidates for high-temperature piezoelectric applications.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100946"},"PeriodicalIF":8.4,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrathin WOx interfacial layer improving the ferroelectricity and endurance of Hf0.5Zr0.5O2 thin films on polyimide 超薄 WOx 界面层可提高聚酰亚胺上 Hf0.5Zr0.5O2 薄膜的铁电性和耐久性
IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-03 DOI: 10.1016/j.jmat.2024.100942
Chunxu Zhao , Huiping Wang , Xinyu Gu, Wei Zhang, Yubao Li
Here we report substantial effects of inserting PVD-prepared highly-conductive ultrathin WOx as interfacial layer in TiN/Hf0.5Zr0.5O2(HZO)/TiN structure on the ferroelectricity of HZO thin films. The prepared TiN/WOx/HZO/WOx/TiN capacitor, exhibiting a remnant polarization (Pr) of 18.8 μC/cm2 at 2 MV/cm and outstanding endurance of over 3.2 × 109 cycles under 105 Hz bipolar square field cycling. Furthermore, a scalable transfer technique, in which CVD-grown few-layered graphene thin film is used as a sacrificial layer, is developed for transferring HZO-based ferroelectric stack pre-fabricated on SiO2/Si substrate onto a flexible polyimide (PI) membrane, with marginal loss in the ferroelectric properties of HZO. Importantly, mechanical bending testing demonstrates excellent flexibility of TiN/WOx/HZO/WOx/TiN stack, with robust polarization and superb endurance properties being well-maintained even after 104 cycles at a small bending radius of 2 mm. Both implementing ultrathin WOx as interfacial layers and utilizing two-dimensional materials assisted transfer technique would be of great value in the development of HfO2-based flexible ferroelectric memory.
在此,我们报告了在 TiN/Hf0.5Zr0.5O2(HZO)/TiN 结构中插入 PVD 制备的高导电性超薄 WOx 作为界面层对 HZO 薄膜铁电性的实质性影响。所制备的 TiN/WOx/HZO/WOx/TiN 电容器在 2 MV/cm 的条件下显示出 18.8 μC/cm2 的残余极化 (Pr),在 105 Hz 双极性方场循环下显示出超过 3.2×109 周期的出色耐久性。此外,还开发了一种可扩展的转移技术,即使用 CVD 生长的少层石墨烯薄膜作为牺牲层,将预制在二氧化硅/硅衬底上的基于 HZO 的铁电堆栈转移到柔性聚酰亚胺(PI)膜上,而 HZO 的铁电特性损失甚微。重要的是,机械弯曲测试表明,TiN/WOx/HZO/WOx/TiN 叠层具有出色的柔韧性,即使在 2 毫米的较小弯曲半径下进行 104 次循环后,仍能保持稳定的极化和出色的耐久性能。采用超薄 WOx 作为界面层和利用二维材料辅助转移技术对于开发基于 HfO2 的柔性铁电存储器都具有重要价值。
{"title":"Ultrathin WOx interfacial layer improving the ferroelectricity and endurance of Hf0.5Zr0.5O2 thin films on polyimide","authors":"Chunxu Zhao ,&nbsp;Huiping Wang ,&nbsp;Xinyu Gu,&nbsp;Wei Zhang,&nbsp;Yubao Li","doi":"10.1016/j.jmat.2024.100942","DOIUrl":"10.1016/j.jmat.2024.100942","url":null,"abstract":"<div><div>Here we report substantial effects of inserting PVD-prepared highly-conductive ultrathin WO<sub><em>x</em></sub> as interfacial layer in TiN/Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub>(HZO)/TiN structure on the ferroelectricity of HZO thin films. The prepared TiN/WO<sub><em>x</em></sub>/HZO/WO<sub><em>x</em></sub>/TiN capacitor, exhibiting a remnant polarization (<em>P</em><sub>r</sub>) of 18.8 μC/cm<sup>2</sup> at 2 MV/cm and outstanding endurance of over 3.2 × 10<sup>9</sup> cycles under 10<sup>5</sup> Hz bipolar square field cycling. Furthermore, a scalable transfer technique, in which CVD-grown few-layered graphene thin film is used as a sacrificial layer, is developed for transferring HZO-based ferroelectric stack pre-fabricated on SiO<sub>2</sub>/Si substrate onto a flexible polyimide (PI) membrane, with marginal loss in the ferroelectric properties of HZO. Importantly, mechanical bending testing demonstrates excellent flexibility of TiN/WO<sub><em>x</em></sub>/HZO/WO<sub><em>x</em></sub>/TiN stack, with robust polarization and superb endurance properties being well-maintained even after 10<sup>4</sup> cycles at a small bending radius of 2 mm. Both implementing ultrathin WO<sub><em>x</em></sub> as interfacial layers and utilizing two-dimensional materials assisted transfer technique would be of great value in the development of HfO<sub>2</sub>-based flexible ferroelectric memory.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100942"},"PeriodicalIF":8.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic functional additives on cycling performance of silicon-carbon composite anode in pouch cells 功能添加剂对袋式电池中硅碳复合阳极循环性能的协同作用
IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-25 DOI: 10.1016/j.jmat.2024.100941
Jun Cheng , Zhenyu Huang , Anqi Lu , Aiqi He , Yuxuan Shao , Yuxin Fan , Yunhui Huang
With increasing application demands of electronics and electric vehicles, the energy density of lithium-ion batteries (LIBs) is expected to be higher and higher. The silicon-based anode materials have triggered global research interest due to low operating voltage and high specific capacity. However, for the Si-based anode, the large volume change during cycling causes cracking and pulverization of Si particles, leading to the sluggish kinetics and poor cycle life. In this work, fluoroethylene carbonate (FEC) and lithium bis(fluorosulfonyl)imide (LiFSI) are used as synergistic functional additives to enhance the performance of silicon–carbon (SiC) composite anode in pouch cell. The properties of solid electrolyte interphase (SEI) formed on the surface of SiC composite anode have been systematically investigated. The images of different electrolytes infiltration and gas production after formation are analyzed with ultrasonic transmission scanning technique. DFT calculations are used to illustrate the mechanism. All date collection is at pouch cell level, which is more persuasive.
随着电子产品和电动汽车应用需求的不断增长,锂离子电池(LIB)的能量密度预计会越来越高。硅基负极材料因工作电压低、比容量高而引发了全球的研究兴趣。然而,对于硅基负极而言,循环过程中较大的体积变化会导致硅颗粒开裂和粉化,从而导致动力学缓慢和循环寿命缩短。在这项研究中,氟碳酸乙烯(FEC)和双(氟磺酰)亚胺锂(LiFSI)被用作协同功能添加剂,以提高袋式电池中硅-碳(Si-C)复合负极的性能。我们系统地研究了在硅碳复合阳极表面形成的固体电解质相(SEI)的特性。利用超声波透射扫描技术分析了不同电解质渗透和形成后气体产生的图像。并使用 DFT 计算来说明其机理。所有数据的收集都是在小袋电池层面上进行的,这更具说服力。
{"title":"Synergistic functional additives on cycling performance of silicon-carbon composite anode in pouch cells","authors":"Jun Cheng ,&nbsp;Zhenyu Huang ,&nbsp;Anqi Lu ,&nbsp;Aiqi He ,&nbsp;Yuxuan Shao ,&nbsp;Yuxin Fan ,&nbsp;Yunhui Huang","doi":"10.1016/j.jmat.2024.100941","DOIUrl":"10.1016/j.jmat.2024.100941","url":null,"abstract":"<div><div>With increasing application demands of electronics and electric vehicles, the energy density of lithium-ion batteries (LIBs) is expected to be higher and higher. The silicon-based anode materials have triggered global research interest due to low operating voltage and high specific capacity. However, for the Si-based anode, the large volume change during cycling causes cracking and pulverization of Si particles, leading to the sluggish kinetics and poor cycle life. In this work, fluoroethylene carbonate (FEC) and lithium bis(fluorosulfonyl)imide (LiFSI) are used as synergistic functional additives to enhance the performance of silicon–carbon (Si<img>C) composite anode in pouch cell. The properties of solid electrolyte interphase (SEI) formed on the surface of Si<img>C composite anode have been systematically investigated. The images of different electrolytes infiltration and gas production after formation are analyzed with ultrasonic transmission scanning technique. DFT calculations are used to illustrate the mechanism. All date collection is at pouch cell level, which is more persuasive.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100941"},"PeriodicalIF":8.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of electrode contact arrangements on Polarisation-Electric field measurements of ferroelectric ceramics: A case study of BaTiO3
IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-15 DOI: 10.1016/j.jmat.2024.100939
Erin L. Carroll , James H. Killeen , Antonio Feteira , Julian S. Dean , Derek C. Sinclair
A range of partial top full bottom electrodes are used to explore the use of bi-polar Polarisation-Electric field (PE) measurements to quantify recoverable energy (Wrec), energy loss (Wloss) and the efficiency (η) of ferroelectric BaTiO3 ceramics. The values obtained are dependent on the ratio of sample thickness (S) and top contact radius (r). With increasing S/r from 0.17 to 1.96 the PE responses become increasingly distorted and broader. Measurements show Wrec increases by a factor of ∼1.4 but Wloss increases by a factor of ∼7 with η decreasing from ∼29% to 8%. Finite element modelling was used to simulate the experimental set-up of the sample/electrode arrangements using the Jiles-Atherton model to replicate the ferroelectric behaviour of BaTiO3. These models demonstrate the experimentally applied electric field using a simple geometric correction for sample thickness is an underestimation of the actual field experienced by the material under the top contact at high S/r values. We stress the importance of reporting the contact sizes and thicknesses of samples when using PE measurements to assess Wrec, Wloss and η in non-linear dielectric materials. This will allow a fairer comparison of performances between various types of materials being considered for high-energy-density ceramic capacitors.
{"title":"Influence of electrode contact arrangements on Polarisation-Electric field measurements of ferroelectric ceramics: A case study of BaTiO3","authors":"Erin L. Carroll ,&nbsp;James H. Killeen ,&nbsp;Antonio Feteira ,&nbsp;Julian S. Dean ,&nbsp;Derek C. Sinclair","doi":"10.1016/j.jmat.2024.100939","DOIUrl":"10.1016/j.jmat.2024.100939","url":null,"abstract":"<div><div>A range of partial top full bottom electrodes are used to explore the use of bi-polar Polarisation-Electric field (<em>P</em>–<em>E</em>) measurements to quantify recoverable energy (<em>W</em><sub>rec</sub>), energy loss (<em>W</em><sub>loss</sub>) and the efficiency (<em>η</em>) of ferroelectric BaTiO<sub>3</sub> ceramics. The values obtained are dependent on the ratio of sample thickness (<em>S</em>) and top contact radius (<em>r</em>). With increasing <em>S</em>/<em>r</em> from 0.17 to 1.96 the <em>P</em>–<em>E</em> responses become increasingly distorted and broader. Measurements show <em>W</em><sub>rec</sub> increases by a factor of ∼1.4 but <em>W</em><sub>loss</sub> increases by a factor of ∼7 with <em>η</em> decreasing from ∼29% to 8%. Finite element modelling was used to simulate the experimental set-up of the sample/electrode arrangements using the Jiles-Atherton model to replicate the ferroelectric behaviour of BaTiO<sub>3</sub>. These models demonstrate the experimentally applied electric field using a simple geometric correction for sample thickness is an underestimation of the actual field experienced by the material under the top contact at high <em>S</em>/<em>r</em> values. We stress the importance of reporting the contact sizes and thicknesses of samples when using <em>P</em>–<em>E</em> measurements to assess <em>W</em><sub>rec</sub>, <em>W</em><sub>loss</sub> and <em>η</em> in non-linear dielectric materials. This will allow a fairer comparison of performances between various types of materials being considered for high-energy-density ceramic capacitors.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 3","pages":"Article 100939"},"PeriodicalIF":8.4,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143093550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure, thermal and microwave dielectric properties of cold-sintered Li2MoO4Al2O3 ceramic
IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-15 DOI: 10.1016/j.jmat.2024.100940
Naichao Chen , Jin Cheng , Xinwei Xu , Hongye Wang , Xiaoyu Li , Zhan Zeng , Bingfeng Zhao , Mingzhao Xu , Hong Wang
Dielectric ceramics are essential components in communication systems that operate within the microwave frequency range. In high-density packages, dielectric substrates ceramics must possess high thermal conductivity to efficiently dissipate heat. However, achieving adequate thermal conductivity (κ) in ceramics sintered at low temperatures is challenging. In this study, we employed the cold sintering process (CSP) to fabricate Li2MoO4-x%Al2O3 (0≤x ≤ 80, in volume) ceramics under 200 MPa pressure at 150 °C. The Li2MoO440%Al2O3 composite exhibited significantly enhanced κ of 5.4 W·m−1·K−1, an 80% increase compared to pure Li2MoO4 ceramic with κ of 3 W·m−1·K−1. At 40% Al2O3 content, the Li2MoO4Al2O3 ceramic demonstrated notable microwave properties (ε ∼ 6.67, Q×f ∼ 17,846 GHz, τf ∼ −105 × 10−6 °C-1). Additionally, simulation of a microstrip patch antenna for 5 GHz applications using Li2MoO420%Al2O3 ceramic as dielectric substrate via Finite Element Simulation software showed excellent performance, with radiation efficiency exceeding 99% and low return loss (S11 < −30 dB) at both 4.9 GHz and 28.0 GHz center frequencies. These findings underscore the suitability of Li2MoO4Al2O3 ceramics for microwave dielectric substrate.
{"title":"Structure, thermal and microwave dielectric properties of cold-sintered Li2MoO4Al2O3 ceramic","authors":"Naichao Chen ,&nbsp;Jin Cheng ,&nbsp;Xinwei Xu ,&nbsp;Hongye Wang ,&nbsp;Xiaoyu Li ,&nbsp;Zhan Zeng ,&nbsp;Bingfeng Zhao ,&nbsp;Mingzhao Xu ,&nbsp;Hong Wang","doi":"10.1016/j.jmat.2024.100940","DOIUrl":"10.1016/j.jmat.2024.100940","url":null,"abstract":"<div><div>Dielectric ceramics are essential components in communication systems that operate within the microwave frequency range. In high-density packages, dielectric substrates ceramics must possess high thermal conductivity to efficiently dissipate heat. However, achieving adequate thermal conductivity (<em>κ</em>) in ceramics sintered at low temperatures is challenging. In this study, we employed the cold sintering process (CSP) to fabricate Li<sub>2</sub>MoO<sub>4</sub>-<em>x</em>%Al<sub>2</sub>O<sub>3</sub> (0≤<em>x</em> ≤ 80, in volume) ceramics under 200 MPa pressure at 150 °C. The Li<sub>2</sub>MoO<sub>4</sub><img>40%Al<sub>2</sub>O<sub>3</sub> composite exhibited significantly enhanced <em>κ</em> of 5.4 W·m<sup>−1</sup>·K<sup>−1</sup>, an 80% increase compared to pure Li<sub>2</sub>MoO<sub>4</sub> ceramic with <em>κ</em> of 3 W·m<sup>−1</sup>·K<sup>−1</sup>. At 40% Al<sub>2</sub>O<sub>3</sub> content, the Li<sub>2</sub>MoO<sub>4</sub><img>Al<sub>2</sub>O<sub>3</sub> ceramic demonstrated notable microwave properties (<em>ε</em> ∼ 6.67, <em>Q×f</em> ∼ 17,846 GHz, <em>τ</em><sub>f</sub> ∼ −105 × 10<sup>−6</sup> °C<sup>-1</sup>). Additionally, simulation of a microstrip patch antenna for 5 GHz applications using Li<sub>2</sub>MoO<sub>4</sub><img>20%Al<sub>2</sub>O<sub>3</sub> ceramic as dielectric substrate <em>via</em> Finite Element Simulation software showed excellent performance, with radiation efficiency exceeding 99% and low return loss (<em>S</em><sub>11</sub> &lt; −30 dB) at both 4.9 GHz and 28.0 GHz center frequencies. These findings underscore the suitability of Li<sub>2</sub>MoO<sub>4</sub><img>Al<sub>2</sub>O<sub>3</sub> ceramics for microwave dielectric substrate.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100940"},"PeriodicalIF":8.4,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-piezoelectric lead-free BiFeO3BaTiO3 ceramics with enhanced temperature stability and mechanical properties
IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-14 DOI: 10.1016/j.jmat.2024.100937
Xiaoxiao Zhou , Yuxin Xu , Xiaoqi Gao , Chengchao Hu , Wan Jiang , Hezhang Li , Bo-Ping Zhang
BiFeO3BaTiO3 (BF–BT) ceramics exhibit higher piezoelectric coefficients (d33), Curie temperatures (TC), and temperature stability than other high-temperature lead-free piezoelectric materials. However, despite their crucial role in piezoelectric devices, the mechanical properties of BF–BT ceramics have been underexplored. A thorough evaluation of the mechanical properties of BF–BT is crucial for developing cost-effective and durable lead-free piezoelectric ceramics. Moreover, the specific causes of the high piezoelectric response and excellent temperature stability of BF–BT ceramics remain unclear owing to the instrumental detection threshold, which limits experimental studies to temperatures above 140 °C and below the degradation temperature of d33. To investigate the intrinsic origins of the high piezoelectricity and temperature stability of BF–xBT ceramics and to enhance their mechanical properties, a two-step sintering process is used to fabricate these ceramics (0.25 ≤ x ≤ 0.40). Owing to improvements in grain refinement and reduced Bi3+ volatilization, the BF–0.33 BT ceramic exhibits enhanced overall performance, with a modified small punch strength of 155 MPa, Vickers hardness of 5.2 GPa, a d33 of 220 pC/N at room temperature, TC of 466 °C, and d33 values exceeding 400 pC/N at 260 °C. Phase-field simulations, which address the limitations of device detection thresholds, reveal that with increasing temperature, the domain structure relaxes, and polarization intensity decreases. This indicates that changes in the high-temperature piezoelectric properties can be attributed to domain structure relaxation and the increase in dielectric constant. Overall, BF–BT ceramics exhibit superior piezoelectric performance, mechanical properties, and temperature stability, making them highly suitable for use in high-temperature and demanding environments.
{"title":"High-piezoelectric lead-free BiFeO3BaTiO3 ceramics with enhanced temperature stability and mechanical properties","authors":"Xiaoxiao Zhou ,&nbsp;Yuxin Xu ,&nbsp;Xiaoqi Gao ,&nbsp;Chengchao Hu ,&nbsp;Wan Jiang ,&nbsp;Hezhang Li ,&nbsp;Bo-Ping Zhang","doi":"10.1016/j.jmat.2024.100937","DOIUrl":"10.1016/j.jmat.2024.100937","url":null,"abstract":"<div><div>BiFeO<sub>3</sub><img>BaTiO<sub>3</sub> (BF–BT) ceramics exhibit higher piezoelectric coefficients (<em>d</em><sub>33</sub>), Curie temperatures (<em>T</em><sub>C</sub>), and temperature stability than other high-temperature lead-free piezoelectric materials. However, despite their crucial role in piezoelectric devices, the mechanical properties of BF–BT ceramics have been underexplored. A thorough evaluation of the mechanical properties of BF–BT is crucial for developing cost-effective and durable lead-free piezoelectric ceramics. Moreover, the specific causes of the high piezoelectric response and excellent temperature stability of BF–BT ceramics remain unclear owing to the instrumental detection threshold, which limits experimental studies to temperatures above 140 °C and below the degradation temperature of <em>d</em><sub>33</sub>. To investigate the intrinsic origins of the high piezoelectricity and temperature stability of BF–<em>x</em>BT ceramics and to enhance their mechanical properties, a two-step sintering process is used to fabricate these ceramics (0.25 ≤ <em>x</em> ≤ 0.40). Owing to improvements in grain refinement and reduced Bi<sup>3+</sup> volatilization, the BF–0.33 BT ceramic exhibits enhanced overall performance, with a modified small punch strength of 155 MPa, Vickers hardness of 5.2 GPa, a <em>d</em><sub>33</sub> of 220 pC/N at room temperature, <em>T</em><sub>C</sub> of 466 °C, and <em>d</em><sub>33</sub> values exceeding 400 pC/N at 260 °C. Phase-field simulations, which address the limitations of device detection thresholds, reveal that with increasing temperature, the domain structure relaxes, and polarization intensity decreases. This indicates that changes in the high-temperature piezoelectric properties can be attributed to domain structure relaxation and the increase in dielectric constant. Overall, BF–BT ceramics exhibit superior piezoelectric performance, mechanical properties, and temperature stability, making them highly suitable for use in high-temperature and demanding environments.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100937"},"PeriodicalIF":8.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Materiomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1